Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The root of branching river networks

Abstract

Branching river networks are one of the most widespread and recognizable features of Earth’s landscapes and have also been discovered elsewhere in the Solar System1,2. But the mechanisms that create these patterns and control their spatial scales are poorly understood. Theories based on probability3,4,5 or optimality3,6,7,8 have proven useful9, but do not explain how river networks develop over time through erosion and sediment transport. Here we show that branching at the uppermost reaches of river networks is rooted in two coupled instabilities: first, valleys widen at the expense of their smaller neighbours, and second, side slopes of the widening valleys become susceptible to channel incision. Each instability occurs at a critical ratio of the characteristic timescales for soil transport and channel incision. Measurements from two field sites demonstrate that our theory correctly predicts the size of the smallest valleys with tributaries. We also show that the dominant control on the scale of landscape dissection in these sites is the strength of channel incision, which correlates with aridity and rock weakness, rather than the strength of soil transport. These results imply that the fine-scale structure of branching river networks is an organized signature of erosional mechanics, not a consequence of random topology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of the study sites.
Figure 2: Branching instability in valley networks.
Figure 3: Growth rates of incipient valleys on inclined slopes.
Figure 4: Péclet number distributions of first- and second-order drainage basins in the study sites.

Similar content being viewed by others

References

  1. Mars Channel Working Group. Channels and valleys on Mars. Geol. Soc. Am. Bull. 94, 1035–1054 (1983)

  2. Tomasko, M. G. et al. Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438, 765–778 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Leopold, L. B. & Langbein, W. B. The concept of entropy in landscape evolution. Prof. Pap. US Geol. Surv. 500-A, 1–20 (1962)

    Google Scholar 

  4. Shreve, R. L. Infinite topologically random channel networks. J. Geol. 75, 178–186 (1967)

    Article  ADS  Google Scholar 

  5. Howard, A. Simulation of stream networks by headward growth and branching. Geogr. Anal. 3, 29–50 (1971)

    Article  Google Scholar 

  6. Howard, A. Theoretical model of optimal drainage networks. Wat. Resour. Res. 26, 2107–2117 (1990)

    Article  ADS  Google Scholar 

  7. Sun, T., Meakin, P. & Jøssang, T. Minimum energy dissipation model for river basin geometry. Phys. Rev. E 49, 4865–4872 (1994)

    Article  CAS  ADS  Google Scholar 

  8. Rigon, R., Rinaldo, A., Rodriguez-Iturbe, I., Bras, R. L. & Ijjasz-Vasquez, E. Optimal channel networks: a framework for the study of river basin morphology. Wat. Resour. Res. 29, 1635–1646 (1993)

    Article  ADS  Google Scholar 

  9. Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-Organization (Cambridge Univ. Press, 2001)

    Google Scholar 

  10. Gilbert, G. K. Report on the Geology of the Henry Mountains (US Govt Printing Office, 1877)

    Book  Google Scholar 

  11. Horton, R. E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 56, 275–370 (1945)

    Article  Google Scholar 

  12. Willgoose, G., Bras, R. L. & Rodriguez-Iturbe, I. Results from a new model of river basin evolution. Earth Surf. Process. Landf. 16, 237–254 (1991)

    Article  ADS  Google Scholar 

  13. Howard, A. D. A detachment-limited model of drainage basin evolution. Wat. Resour. Res. 30, 2261–2286 (1994)

    Article  ADS  Google Scholar 

  14. Tucker, G. E. & Slingerland, R. Drainage basin responses to climate change. Wat. Resour. Res. 33, 2031–2047 (1997)

    Article  ADS  Google Scholar 

  15. Dunne, T. Formation and controls of channel networks. Prog. Phys. Geogr. 4, 211–239 (1980)

    Article  Google Scholar 

  16. Strahler, A. N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 38, 913–920 (1957)

    Article  ADS  Google Scholar 

  17. Schumm, S. A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 67, 597–646 (1956)

    Article  ADS  Google Scholar 

  18. Kirchner, J. W. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993)

    Article  ADS  Google Scholar 

  19. Berg, T. M. et al. Geologic Map of Pennsylvania (Pennsylvania Geological Survey, 1980)

  20. Durham, D. L. Geology of the southern Salinas Valley area, California. Prof. Pap. US Geol. Surv. 819, 1–111 (1974)

    Google Scholar 

  21. Perron, J. T., Kirchner, J. W. & Dietrich, W. E. Formation of evenly spaced ridges and valleys. Nature 460, 502–505 (2009)

    Article  CAS  ADS  Google Scholar 

  22. Montgomery, D. R. & Dietrich, W. E. Channel initiation and the problem of landscape scale. Science 255, 826–830 (1992)

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Perron, J. T., Dietrich, W. E. & Kirchner, J. W. Controls on the spacing of first-order valleys. J. Geophys. Res.. 113, F04016, http://dx.doi.org/10.1029/2007JF000977 (2008)

    ADS  Google Scholar 

  24. Bonnet, S. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nature Geosci. 2, 766–771 (2009)

    Article  CAS  ADS  Google Scholar 

  25. Hovius, N. Regular spacing of drainage outlets from linear mountain belts. Basin Res. 8, 29–44 (1996)

    Article  ADS  Google Scholar 

  26. Smith, T. R. & Bretherton, F. P. Stability and the conservation of mass in drainage basin evolution. Wat. Resour. Res. 8, 1506–1529 (1972)

    Article  ADS  Google Scholar 

  27. Izumi, N. & Parker, G. Inception of channelization and drainage basin formation: upstream-driven theory. J. Fluid Mech. 283, 341–363 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Snyder, N. P., Whipple, K. X., Tucker, G. E. & Merritts, D. J. Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. 112, 1250–1263 (2000)

    Article  ADS  Google Scholar 

  29. Fernandes, N. F. & Dietrich, W. E. Hillslope evolution by diffusive processes: the timescale for equilibrium adjustments. Wat. Resour. Res. 33, 1307–1318 (1997)

    Article  ADS  Google Scholar 

  30. Mitášová, H. & Hofierka, J. Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Math. Geol. 25, 657–669 (1993)

    Article  Google Scholar 

  31. Peckham, S. D. in Geomorphometry 2011 (eds Hengl, T. Evans, I. S., Wilson, J. P. & Gould, M. ) 27–30 (2011); available at http://geomorphometry.org/Peckham2011a (2011)

  32. Lashermes, B., Foufoula-Georgiou, E. & Dietrich, W. E. Channel network extraction from high resolution topography using wavelets. Geophys. Res. Lett.. 34, L23S04, http://dx.doi.org/10.1029/2007GL031140 (2007)

    Article  Google Scholar 

  33. Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G. & Dietrich, W. E. A geometric framework for channel network extraction from lidar: nonlinear diffusion and geodesic paths. J. Geophys. Res.. 115, F01002, http://dx.doi.org/10.1029/2009JF001254 (2010)

  34. Tarboton, D. G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Wat. Resour. Res. 33, 309–319 (1997)

    Article  ADS  Google Scholar 

  35. Jenson, S. K. & Domingue, J. O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sensing 54, 1593–1600 (1988)

    Google Scholar 

  36. Gonzalez, R. C., Woods, R. E. & Eddins, S. L. Digital Image Processing Using MATLAB (Pearson Prentice Hall, 2004)

    Google Scholar 

  37. Dietrich, W. E. & Dunne, T. in Channel Network Hydrology (eds Beven, K. & Kirkby, M. J. ) 175–219 (Wiley & Sons, 1993)

    Google Scholar 

  38. Hack, J. T. Studies of longitudinal stream profiles in Virginia and Maryland. Prof. Pap. US Geol. Surv. 294-B, 1–97 (1957)

    Google Scholar 

  39. Tucker, G. E. & Slingerland, R. Predicting sediment flux from fold and thrust belts. Basin Res. 8, 329–349 (1996)

    Article  ADS  Google Scholar 

  40. Culling, W. E. H. Analytical theory of erosion. J. Geol. 68, 336–344 (1960)

    Article  ADS  Google Scholar 

  41. Culling, W. E. H. Soil creep and the development of hillside slopes. J. Geol. 71, 127–161 (1963)

    Article  ADS  Google Scholar 

  42. Nash, D. Morphologic dating of degraded normal fault scarps. J. Geol. 88, 353–360 (1980)

    Article  ADS  Google Scholar 

  43. Hanks, T. C., Bucknam, R. C., Lajoie, K. R. & Wallace, R. E. Modification of wave-cut and faulting-controlled landforms. J. Geophys. Res. 89, 5771–5790 (1984)

    Article  ADS  Google Scholar 

  44. Rosenbloom, N. A. & Anderson, R. S. Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, California. J. Geophys. Res. 99, 14013–14029 (1994)

    Article  ADS  Google Scholar 

  45. Monaghan, M. C., McKean, J., Dietrich, W. & Klein, J. 10Be chronometry of bedrock-to-soil conversion rates. Earth Planet. Sci. Lett. 111, 483–492 (1992)

    Article  CAS  ADS  Google Scholar 

  46. McKean, J. A., Dietrich, W. E., Finkel, R. C., Southon, J. R. & Caffee, M. W. Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile. Geology 21, 343–346 (1993)

    Article  CAS  ADS  Google Scholar 

  47. Small, E. E., Anderson, R. S. & Hancock, G. S. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphology 27, 131–150 (1999)

    Article  ADS  Google Scholar 

  48. Seidl, M. A., Dietrich, W. E. & Kirchner, J. W. Longitudinal profile development into bedrock: an analysis of Hawaiian channels. J. Geol. 102, 457–474 (1994)

    Article  ADS  Google Scholar 

  49. Stock, J. D. & Montgomery, D. R. Geologic constraints on bedrock river incision using the stream power law. J. Geophys. Res. 104, 4983–4994 (1999)

    Article  ADS  Google Scholar 

  50. Snyder, N. P., Whipple, K. X., Tucker, G. E. & Merritts, D. J. Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology 53, 97–127 (2003)

    Article  ADS  Google Scholar 

  51. Seidl, M. A. & Dietrich, W. E. The problem of channel erosion into bedrock. Catena 23, 101–124 (1992)

    Google Scholar 

  52. Howard, A. D. & Kerby, G. Channel changes in badlands. Bull. Geol. Soc. Am. 94, 739–752 (1983)

    Article  Google Scholar 

  53. Perron, J. T. & Fagherazzi, S. The legacy of initial conditions in landscape evolution. Earth Surf. Process. Landf. 37, 52–63 (2012)

    Article  ADS  Google Scholar 

  54. Granger, D., Kirchner, J. & Finkel, R. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J. Geol. 104, 249–257 (1996)

    Article  ADS  Google Scholar 

  55. Kohl, C. P. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587 (1992)

    Article  CAS  ADS  Google Scholar 

  56. Ditchburn, R. G. & Whitehead, N. E. The separation of 10Be from silicates. In Proc. Third Workshop of the South Pacific Environmental Radioactivity Association 4–7. (1994)

  57. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the US National Science Foundation Geomorphology and Land Use Dynamics programme through award EAR-0951672 to J.T.P. and by the US Department of Defense through a National Defense Science and Engineering Graduate Fellowship to P.W.R. J.T.P. is a Scholar in the Canadian Institute for Advanced Research (CIFAR). The authors thank T. Clifton and G. Chmiel for assistance with sample preparation, and the Orradre family of San Ardo, California, and numerous landowners in Greene County, Pennsylvania, for granting access to their land.

Author information

Authors and Affiliations

Authors

Contributions

J.T.P. conceived of the study, performed the numerical modelling, and wrote the paper. J.T.P., P.W.R. and K.L.F. conducted the fieldwork. P.W.R. processed the 10Be samples, and P.W.R. and K.L.F. analysed the 10Be data. J.T.P. and M.L. performed the topographic analyses.

Corresponding author

Correspondence to J. Taylor Perron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7, Supplementary Tables 1-2, Supplementary Text and Data and Supplementary References. (PDF 4024 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, J., Richardson, P., Ferrier, K. et al. The root of branching river networks. Nature 492, 100–103 (2012). https://doi.org/10.1038/nature11672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11672

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing