Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A globally coherent fingerprint of climate change impacts across natural systems

Abstract

Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a ‘systematic trend’. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probabilistic model based on parameter estimates from a review of the literature.

References

  1. Intergovernmental Panel on Climate Change Third Assessment Report Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S.) (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  2. Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Parmesan, C., Root, T. L. & Willig, M. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000)

    Article  ADS  Google Scholar 

  4. Pounds, J. A. Climate and amphibian declines. Nature 410, 639–640 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Otterson, G. et al. Ecological effects of the North Atlantic Oscillation. Oecologia 128, 1–14 (2001)

    Article  ADS  Google Scholar 

  6. Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Peñuelas, J. & Flella, I. Responses to a warming world. Science 294, 793–795 (2001)

    Article  Google Scholar 

  8. Smith, R. C. et al. Marine ecosystem sensitivity to climate change. Biol. Sci. 49, 393–404 (1999)

    Google Scholar 

  9. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshwater Res. 50, 839–866 (1999)

    Article  Google Scholar 

  10. Lomborg, B. The Skeptical Environmentalist (Cambridge Univ. Press, Cambridge, 2001)

    Book  Google Scholar 

  11. Moss, R. & Schneider, S. Cross Cutting Issues Guidance Papers Intergovernmental Panel on Climate Change (World Meteorological Organization, Geneva, 2000)

    Google Scholar 

  12. Thomas, C. D. et al. Ecological processes at expanding range margins. Nature 411, 577–581 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Rodriguez-Trellis, F. & Rodriguez, M. A. Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol. Ecol. 12, 829–838 (1998)

    Article  Google Scholar 

  14. de Jong, P. W. & Brakefield, P. M. Climate and change in clines for melanism in the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Proc. R. Soc. Lond. B 265, 39–43 (1998)

    Article  Google Scholar 

  15. Gurevitch, J. & Hedges, L. V. Design and Analysis of Ecological Experiments 2nd edn (eds Scheiner, S. M. & Gurevitch, J.) 347–370 (Oxford Univ. Press, Oxford, 2001)

    Google Scholar 

  16. Thomas, C. D. & Lennon, J. J. Birds extend their ranges northwards. Nature 399, 213 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Grabherr, G., Gottfried, M. & Pauli, H. Climate effects on mountain plants. Nature 369, 448 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Grabherr, G., Gottfried, M., Gruber, A. & Pauli, H. Arctic and Alpine Biodiversity (eds Chapin, F. S. III & Körner, C.) 167–181 (Springer, Berlin, 1995)

    Google Scholar 

  20. Ahas, R. Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int. J. Biometeorol. 42, 119–123 (1999)

    Article  ADS  Google Scholar 

  21. Bradley, N. L., Leopold, A. C., Ross, J. & Huffaker, W. Phenological changes reflect climate change in Wisconsin. Proc. Natl Acad. Sci. USA 96, 9701–9704 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Fitter, A. H. & Fitter, R. S. R. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Menzel, A., Estrella, N. & Fabian, P. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob. Change Biol. 7, 657–666 (2001)

    Article  ADS  Google Scholar 

  24. Menzel, A. & Fabian, P. Growing season extended in Europe. Nature 397, 659 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Intl J. Biometerol. 44, 76–81 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Roy, D. B. & Sparks, T. H. Phenology of British butterflies and climate change. Glob. Change Biol. 6, 407–416 (2000)

    Article  ADS  Google Scholar 

  27. Beebee, T. J. C. Amphibian breeding and climate. Nature 374, 219–220 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Gibbs, J. P. & Breisch, A. R. Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conserv. Biol. 15, 1175–1178 (2001)

    Article  Google Scholar 

  29. Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Crick, H. Q. P., Dudley, C., Glue, D. E. & Thomson, D. L. UK birds are laying eggs earlier. Nature 388, 526 (1997)

    Article  ADS  CAS  Google Scholar 

  31. Crick, H. Q. P. & Sparks, T. H. Climate related to egg-laying trends. Nature 399, 423–424 (1999)

    Article  ADS  CAS  Google Scholar 

  32. Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond. B 266, 2487–2490 (1999)

    Article  CAS  Google Scholar 

  33. Gatter, W. Zugzeiten und Zugmuster im Herbst: Einfluss des Treibhauseffekts auf den Vogelzug? J. Ornithol. 133, 427–436 (1992)

    Article  Google Scholar 

  34. Sagarin, R., Barry, J. P., Gilman, S. E. & Baxter, C. H. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr. 69, 465–490 (1999)

    Article  Google Scholar 

  35. Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002)

    Article  ADS  CAS  Google Scholar 

  36. van Hark, C. M., Aptroot, A. & van Dobben, H. F. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34, 141–154 (2002)

    Article  Google Scholar 

  37. Hersteinsson, P. & MacDonald, D. W. Interspecific competition and the geographical distribution of Red and Arctic foxes Vulpes vulpes and Alopex lagopus. Oikos 64, 505–515 (1992)

    Article  Google Scholar 

  38. Rusterholz, H. P. & Erhardt, A. Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands. Oecologia 113, 341–349 (1998)

    Article  ADS  Google Scholar 

  39. Holbrook, S. J., Schmitt, R. J. & Stephens, J. S. Changes in an assemblage of temperate reef fishes associated with a climate shift. Ecol. Appl. 7, 1299–1310 (1997)

    Article  Google Scholar 

  40. Southward, A. J., Hawkins, S. J. & Burrows, M. T. Seventy years' observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Thermal Biol. 20, 127–155 (1995)

    Article  Google Scholar 

  41. Sturm, M., Racine, C. & Tape, K. Increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001)

    Article  ADS  CAS  Google Scholar 

  42. Smith, R. I. L. Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99, 322–328 (1994)

    Article  ADS  Google Scholar 

  43. Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological responses to climate change on a tropical mountain. Nature 398, 611–615 (1999)

    Article  ADS  CAS  Google Scholar 

  44. Williamson, K. Birds and climatic change. Bird Study 22, 143–164 (1975)

    Article  Google Scholar 

  45. McCleery, R. H. & Perrins, C. M. Temperature and egg-laying trends. Nature 391, 30–31 (1998)

    Article  ADS  CAS  Google Scholar 

  46. Asher, J., et al. The Millennium Atlas of Butterflies in Britain and Ireland (Oxford Univ. Press, Oxford, 2001)

    Google Scholar 

  47. Dennis, R. L. H. Butterflies and Climate Change (Manchester Univ. Press, Manchester, 1993)

    Google Scholar 

  48. Henriksen, H. J. & Kreutzer, I. B. The Butterflies of Scandinavia in Nature (Skandinavisk Bogforlag, Denmark, 1982)

    Google Scholar 

  49. Parmesan, C. Climate and species range. Nature 382, 765–766 (1996)

    Article  ADS  CAS  Google Scholar 

  50. Peters, R. L. Global Warming and Biological Diversity (eds Peters, R. L. & Lovejoy, T. E.) (Yale Univ. Press, New Haven, 1992)

    Google Scholar 

  51. Schneider, S. H. Biotic Interactions and Global Change (eds Kareiva, P. M., Kingsolver, J. G. & Huey, R. B.) (Sinauer, Sunderland, Massachusetts, 1993)

    Google Scholar 

  52. MacArthur, R. H. Geographical Ecology (Harper and Row, New York, 1972)

    Google Scholar 

  53. Aksenov, S. V. Mathematica package for confidence intervals by Bootstrap v.1.12 (Wolfram Research, Mathematica version 4, Champaign, Illinois, 2002).

  54. Kullman, L. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. AMBIO 30, 72–80 (2001)

    Article  CAS  Google Scholar 

  55. Payette, S., Filion, L., Delwaide, A. & Bégin, C. Reconstruction of tree-line vegetation response to long-term climate change. Nature 341, 429–432 (1989)

    Article  ADS  Google Scholar 

  56. Ross, M. S., O'Brien, J. J., Da Silveira, L. & Lobo Sternberg, L. Sea-level rise and the reduction in pine forests in the Florida Keys. Ecol. Appl. 4, 144–156 (1994)

    Article  Google Scholar 

  57. Johnson, J. R. Jr A Century of Avifaunal Change in Western North America (eds Jehl, J. R. & Johnson, N. K.) (Cooper Ornithological Society, Lawrence, Kansas, 1994)

    Google Scholar 

Download references

Acknowledgements

This paper was stimulated by discussion during meetings of the Intergovernmental Panel on Climate Change, particularly with Q. K. Ahmad, N. Leary, R. Leemans, R. Moss, J. Price, T. L. Root, C. Rosenzweig, S. Schneider, R. Tol, F. Toth and R. Warrick. We thank L. Kaila, J. Kullberg, J. J. Lennon, N. Ryrholm, C. D. Thomas, J. A. Thomas and M. Warren for use of their raw data for analyses. We also thank C. Krebs, J. Matthews, R. Plowes, J. A. Pounds, R. Sagarin, M. C. Singer and B. Wee. Writing was facilitated by the Centre National de la Recherche Scientifique (CEFE) and by the National Science Foundation of the United States through its support of the Center for Integrated Assessment of the Human Dimensions of Global Change at Carnegie Mellon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Parmesan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmesan, C., Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003). https://doi.org/10.1038/nature01286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01286

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing