Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attenuation of FGF signalling in mouse β-cells leads to diabetes

Abstract

Fibroblast growth factor (FGF) signalling has been implicated in patterning, proliferation and cell differentiation in many organs, including the developing pancreas1,2. Here we show that the FGF receptors (FGFRs) 1 and 2, together with the ligands FGF1, FGF2, FGF4, FGF5, FGF7 and FGF10, are expressed in adult mouse β-cells, indicating that FGF signalling may have a role in differentiated β-cells. When we perturbed signalling by expressing dominant-negative forms of the receptors, FGFR1c and FGFR2b, in the pancreas, we found that that mice with attenuated FGFR1c signalling, but not those with reduced FGFR2b signalling, develop diabetes with age and exhibit a decreased number of β-cells, impaired expression of glucose transporter 2 and increased proinsulin content in β-cells owing to impaired expression of prohormone convertases 1/3 and 2. These defects are all characteristic of patients with type-2 diabetes. Mutations in the homeobox gene Ipf1/Pdx1 are linked to diabetes in both mouse and human. We also show that Ipf1/Pdx1 is required for the expression of FGFR1 signalling components in β-cells, indicating that Ipf1/Pdx1 acts upstream of FGFR1 signalling in β-cells to maintain proper glucose sensing, insulin processing and glucose homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FGF signalling components are expressed in adult β-cells.
Figure 2: Expression of glucose-sensing and insulin-processing enzymes is impaired in FRID1 mice.
Figure 3: Ipf1/Pdx1 controls several aspects of β-cell identity including FGFR1 expression.
Figure 4: The expression of FGF ligands is perturbed in FRID1 and RIP/Ipf1Δ mice.

Similar content being viewed by others

References

  1. Kato, S. & Sekine, K. FGF-FGFR signaling in vertebrate organogenesis. Cell. Mol. Biol. 45, 631–638 (1999).

    CAS  PubMed  Google Scholar 

  2. Szebenyi, G. & Fallon, J. F. Fibroblast growth factors as multifunctional signaling factors. Int. Rev. Cytol. 185, 45–106 (1999).

    Article  CAS  Google Scholar 

  3. Kahn, B. B. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 92, 593–596 (1998).

    Article  CAS  Google Scholar 

  4. Taylor, S. I. Deconstructing type 2 diabetes. Cell 97, 9–12 (1999).

    Article  CAS  Google Scholar 

  5. Itoh, N., Mima, T. & Mikawa, T. Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle. Development 122, 291–300 (1996).

    CAS  PubMed  Google Scholar 

  6. Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  Google Scholar 

  7. Cheon, H. G., LaRochelle, W. J., Bottaro, D. P., Burgess, W. H. & Aaronson, S. A. High-affinity binding sites for related fibroblast growth factor ligands reside within different receptor immunoglobulin-like domains. Proc. Natl Acad. Sci. USA 91, 989–993 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Celli, G., LaRochelle, W. J., Mackem, S., Sharp, R. & Merlino, G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J. 17, 1642–1655 (1998).

    Article  CAS  Google Scholar 

  9. Apelqvist, A., Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr. Biol. 7, 801–804 (1997).

    Article  CAS  Google Scholar 

  10. Edlund, H. Transcribing pancreas. Diabetes 47, 1817–1823 (1998).

    Article  CAS  Google Scholar 

  11. Githens, S. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. J. Pediatr. Gastroenterol. Nutr. 7, 486–506 (1988).

    Article  CAS  Google Scholar 

  12. Guillam, M. T. et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat. Genet. 17, 327–330 (1997).

    Article  CAS  Google Scholar 

  13. Thorens, B., Guillam, M. T., Beermann, F., Burcelin, R. & Jaquet, M. Transgenic reexpression of GLUT1 or GLUT2 in pancreatic β cells rescues GLUT2 null mice from early death and restores normal glucose-stimulated insulin secretion. J. Biol. Chem. 275, 23751–23758 (2000).

    Article  CAS  Google Scholar 

  14. Grupe, A. et al. Transgenic knockouts reveal a critical requirement for pancreatic β cell glucokinase in maintaining glucose homeostasis. Cell 38, 69–78 (1995).

    Article  Google Scholar 

  15. Kahn, S. E. et al. Proinsulin as a marker for the development of NIDDM in Japanese-American men. Diabetes 44, 173–179 (1995).

    Article  CAS  Google Scholar 

  16. Larsson, H. & Ahren, B. Relative hyperproinsulinemia as a sign of islet dysfunction in women with impaired glucose tolerance. J. Clin. Endocrinol. Metab. 84, 2068–2074 (1999).

    CAS  PubMed  Google Scholar 

  17. Haffner, S. M., Gonzalez, C., Mykkanen, L. & Stern, M. Total immunoreactive proinsulin, immunoreactive insulin and specific insulin in relation to conversion to NIDDM: the Mexico City diabetes study. Diabetologia 40, 830–837 (1997).

    Article  CAS  Google Scholar 

  18. Nijpels, G., Popp-Snijders, C., Kostense, P. J., Bouter, L. M. & Heine, R. J. Fasting proinsulin and 2-h post-load glucose levels predict the conversion to NIDDM in subjects with impaired glucose tolerance: the Hoorn study. Diabetologia 39, 113–118 (1996).

    CAS  PubMed  Google Scholar 

  19. Furuta, M. et al. Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273, 3431–3437 (1998).

    Article  CAS  Google Scholar 

  20. Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genet. 16, 303–306 (1997).

    Article  CAS  Google Scholar 

  21. Blume, N. et al. Immature transformed rat islet β-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene. Mol. Endocrinol. 6, 299–307 (1992).

    CAS  PubMed  Google Scholar 

  22. Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K. & Edlund, H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998).

    Article  CAS  Google Scholar 

  23. van Assche, F. A. & Aerts, L. The fetal endocrine pancreas. Contrib. Gynecol. Obstet. 5, 44–57 (1979).

    Article  CAS  Google Scholar 

  24. Hales, C. N. et al. Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J. 303, 1019–1022 (1991).

    Article  CAS  Google Scholar 

  25. Hellerström, C., Anderson, A., Swenne, I., Welsh, N. & Sjoholm, A. in The Pathology of the Endocrine Pancreas in Diabetes (eds Lefebvre, P. & Pipeleers, D.) 141–170 (Springer, Heidelberg, Germany, 1988).

    Book  Google Scholar 

  26. Parsons, J. A., Brelje, T. C. & Sorenson, R. L. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130, 1459–1466 (1992).

    CAS  PubMed  Google Scholar 

  27. Stoffers, D. A., Ferrer, J., Clarke, W. L. & Habener, J. F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nature Genet 17, 138–139 (1997).

    Article  CAS  Google Scholar 

  28. Macfarlane, W. M. et al. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J. Clin. Invest. 104, R33–R39 (1999).

    Article  CAS  Google Scholar 

  29. Hani, E. H. et al. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J. Clin. Invest. 104, R41–R48 (1999).

    Article  CAS  Google Scholar 

  30. Takumi, I., Steiner, D. F., Sanno, N., Teramoto, A. & Osamura, R. Y. Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Mod. Pathol. 11, 232–238 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Granberg, K. Falk, U. B. Backman, the Umeå Transgene Core Facility, Mouse Camp, Karolinska Institute and U. Valtersson for technical assistance; T. Edlund for critical reading and comments; P. Hart and members from our laboratory for helpful discussions. We are grateful to A. Rosenthal for the dnFGFR1c-construct; W. LaRochelle for the dnFGFR2b-construct; O. Madsen for the proinsulin antisera and the C-peptide 1 and 2 antisera; D. Steiner for PC2 and PC1/3 antisera; B. Thorens for Glut2 antisera; and P. Serup for Nkx6.1 antisera. This work was supported by grants from the Swedish Medical Research Council and the Juvenile Diabetes Foundation, New York (to H.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Edlund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, A., Baeza, N., Apelqvist, Å. et al. Attenuation of FGF signalling in mouse β-cells leads to diabetes. Nature 408, 864–868 (2000). https://doi.org/10.1038/35048589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048589

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing