Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis of RNA oligomers on heterogeneous templates

Abstract

THE concept of an RNA world1,2 in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules3. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3′,5′ linkages between the nucleotide monomers4–7. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2′,5′-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Joyce, G. RNA evolution and the origins of life. Nature 338, 217–224 (1989).

    Article  ADS  CAS  Google Scholar 

  2. The RNA World (eds Gesteland, R. F. & Atkins, J. F. (Cold Spring Harbor Lab. Press, Cold Spring Harbor, 1993).

  3. Gilbert, W. Nature 319, 618 (1986).

    Article  ADS  Google Scholar 

  4. Inoue, T. & Orgel, L. E. Science 219, 859–862 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Sievers, D. & von Kiedrowski, G. Nature 369, 221–224 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Li, T. & Nicolaou, K. C. Nature 369, 218–221 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Grzeskowiak, K. & Orgel, L. E. J. molec Evol. 23, 287–289 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Ferris, J. P. Orig. Life Evol. Biosph. 23, 307–315 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Ferris, J. P. & Ertem, G. Science 257, 1387–1389 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Ferris, J. P. & Ertem, G. Orig. Life Evol. Biopsh. 22, 369–381 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Ferris, J. P. & Ertem, G. Orig. Life Evol. Biopsh. 23, 229–241 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Ferris, J. P. & Ertem, G. J. Am. chem. Soc. 115, 12270–12275 (1993).

    Article  CAS  Google Scholar 

  13. Kawamura, K. & Ferris, J. P. J. Am. chem. Soc. 116, 7564–7572 (1994).

    Article  CAS  Google Scholar 

  14. Prabahar, K. J., Cole, T. D. & Ferris, J. P. J. Am. chem. Soc. 116, 10914–10920 (1994).

    Article  CAS  Google Scholar 

  15. Inoue, T. & Orgel, L. E. J. Am. chem. Soc 103, 7666–7667 (1981).

    Article  CAS  Google Scholar 

  16. Orgel, L. E. Nature 358, 203–209 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Hohn, T. H. & Schaller, H. Biochem. biophys. Acta 138, 466–473 (1967).

    CAS  PubMed  Google Scholar 

  18. Sawai, H. J. Am. chem. Soc. 98, 7037–7039 (1976).

    Article  CAS  Google Scholar 

  19. Sawai, H., Higa, H. & Kuroda, K. J. chem. Soc. Perkins Trans. / 505–508 (1992).

  20. Lohrmann, R., Bridson, P. K. & Orgel, L. E. Science 208, 1464–1465 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Kierzek, R., He, L. & Turner, D. H. Nucleic Acids Res. 20, 1685–1690 (1992).

    Article  CAS  Google Scholar 

  22. Jung, K.-E. & Switzer, C. J. Am. chem. Soc. 116, 6059–6061 (1994).

    Article  CAS  Google Scholar 

  23. Dougherty, J. P., Rizzo, C. J. & Breslow, R. J. Am. chem. Soc. 114, 6254–6255 (1992).

    Article  CAS  Google Scholar 

  24. Lohrmann, R. J. Molec. Evol. 18, 185–195 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Doudna, J. A., Usman, N. & Szostak, J. W. Biochemistry 32, 2111–2115 (1993).

    Article  CAS  Google Scholar 

  26. Doudna, J. A., Couture, S. & Szostak, J. W. Science 251, 1605–1608 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Green, R. & Szostak, J. W. Science 258, 1910–1915 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Stribling, R. J. Chromatography 538, 474–479 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertem, G., Ferris, J. Synthesis of RNA oligomers on heterogeneous templates. Nature 379, 238–240 (1996). https://doi.org/10.1038/379238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379238a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing