Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide

Abstract

NITRIC oxide, a free-radical gas produced endogenously by several mammalian cell types1–6, has been implicated as a diffusible inter-cellular messenger subserving use-dependent modification of synaptic efficacy in the mature central nervous system7–10. It has been suggested on theoretical grounds that nitric oxide might play an analogous role during the establishment of ordered connections by developing neurons11. We report here that nitric oxide rapidly and reversibly inhibits growth of neurites of rat dorsal root ganglion neurons in vitro. In addition, we show that exposure to nitric oxide inhibits thioester-linked long-chain fatty acylation of neuronal proteins, possibly through a direct modification of substrate cysteine thiols. Our results demonstrate a potential role for nitric oxide in the regulation of process outgrowth and remodelling during neuronal development, which may be effected at least in part through modulation of dynamic protein fatty acylation in neuronal growth cones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ignarro, L. J. A. Rev. Pharmac. Toxicol. 30, 535–560 (1990).

    Article  CAS  Google Scholar 

  2. Garthwaite, J. Trends Neurosci. 14, 60–67 (1991).

    Article  CAS  Google Scholar 

  3. Garthwaite, J., Charles, S. L. & Chess-Williams, R. Nature 336, 385–388 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Knowles, R. G., Palacios, M., Palmer, R. M. J. & Moncada, S. Proc. natn. Acad. Sci. U.S.A. 86, 5159–5162 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Bredt, D. S. et al. Neuron 7, 615–624 (1991).

    Article  CAS  Google Scholar 

  6. Bredt, D. S. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 87, 682–685 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Böhme, G. A., Bon, C., Stutzmann, J.-M., Doble, A. & Blanchard, J. C. Eur. J. Pharmac. 199, 379–381 (1991).

    Article  Google Scholar 

  8. O'Dell, T. J., Hawkins, R. D., Kandel, E. R. & Arancio, O. Proc. natn. Acad. Sci. U.S.A. 88, 11285–11289 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Schuman, E. M. & Madison, D. V. Science 254, 1503–1506 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Shibuki, K. & Okada, D. Nature 349, 326–328 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Gally, J. A., Montague, P. R., Reeke, G. N. Jr & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 87, 3574–3551 (1990).

    Article  Google Scholar 

  12. Böhme, E. et al. Adv. Cyclic Nucleotide Prot. Phosphorylation Res. 17, 259–266 (1984).

    Google Scholar 

  13. Manzoni, O. et al. Neuron 8, 653–662 (1992).

    Article  CAS  Google Scholar 

  14. Stamler, J. S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 444–448 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Lipton, S. A. et al. Nature 364, 626–632 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Skene, J. H. P. & Virag, I. J. Cell Biol. 108, 613–624 (1989).

    Article  CAS  Google Scholar 

  17. Kaufman, J. F., Krangel, M. S. & Strominger, J. L. J. biol. Chem. 259, 7230–7238 (1984).

    CAS  PubMed  Google Scholar 

  18. Hess, D. T., Slater, T. M., Wilson, M. C. & Skene, J. H. P. J. Neurosci. 12, 4634–4641 (1992).

    Article  CAS  Google Scholar 

  19. Skene, J. H. P. et al. Science 233, 783–786 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Oyler, G. A. et al. J. Cell Biol. 109, 3039–3052 (1989).

    Article  CAS  Google Scholar 

  21. Osen-Sand, A. et al. Nature 364, 445–448 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Patterson, P. H. Neuron 1, 263–267 (1988).

    Article  CAS  Google Scholar 

  23. Walter, J., Allsopp, T. E. & Bonhoffer, F. Trends Neurosci. 13, 447–452 (1990).

    Article  CAS  Google Scholar 

  24. Bredt, D. S. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 86, 9030–9033 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Constantine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  Google Scholar 

  26. Smith, D. S. & Skene, J. H. P. Soc. Neurosci. Abstr. 16, 1163 (1990).

    Google Scholar 

  27. Lindsay, R. M. J. Neurosci. 8, 2394–2405 (1988).

    Article  CAS  Google Scholar 

  28. Bottenstein, J. E. Adv. cell. Neurobiol. 4, 333–379 (1983).

    Article  CAS  Google Scholar 

  29. Lei, S. Z. et al. Neuron 8, 1087–1099 (1992).

    Article  CAS  Google Scholar 

  30. Juguelin, H. & Cassagne, C. Analyt. Biochem. 142, 329–335 (1984)

    Article  CAS  Google Scholar 

  31. Patterson, S. I. & Skene, J. H. P. J. Cell Biol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, D., Patterson, S., Smith, D. et al. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature 366, 562–565 (1993). https://doi.org/10.1038/366562a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366562a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing