Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Running energetics in the pronghorn antelope

Abstract

THE pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h−1, second only to the cheetah (Acionyx jubatus) among land vertebrates1, a possible response to predation in the exposed habitat of the North American prairie2. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h−1 (ref. 1). We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h–1 in an average 32-kg animal3. The resulting range of predicted values, 3.2-5.1 ml O2 kg–1 s−1, far surpasses the predicted maximum aerobic capacity4 of a 32-kg mammal (1.5 ml O2 kg−1s−1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed >20 ms−1 (70 km h−1), attained without unique respiratory-system structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKean, T. A. & Walker, B. Resp. Physiol. 21, 365–370 (1974).

    Article  CAS  Google Scholar 

  2. O'Gara, B. W. Mammal. Species 90, 1–7 (1978).

    Article  Google Scholar 

  3. Garland, T. Jr J. Zool. 199, 157–170 (1983).

    Article  Google Scholar 

  4. Taylor, C. R. et al. Resp. Physiol. 44, 25–37 (1981).

    Article  CAS  Google Scholar 

  5. Rübner, M. Z. für Biol. 19, 535–562 (1883).

    Google Scholar 

  6. Kleiber, M. Hilgardia 6, 315–353 (1932).

    Article  CAS  Google Scholar 

  7. Lechner, A. J. Resp. Physiol. 34, 29–44 (1978).

    Article  CAS  Google Scholar 

  8. Hemmingsen, A. M. Rep. Steno meml Hosp. 4, 7–58 (1950).

    Google Scholar 

  9. Hemmingsen, A. M. Rep. Steno meml Hosp. 9, 7–110 (1960).

    CAS  Google Scholar 

  10. Calder, W. A. III Size, Function and Life History (Harvard University Press, 1984).

    Google Scholar 

  11. Taylor, C. R., Schmidt-Nielsen, K. & Raab, J. L. Am. J. Physiol. 219, 1104–1107 (1970).

    CAS  PubMed  Google Scholar 

  12. Fedak, M. A. & Seeherman, H. J. Nature 282, 713–716 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Tucker, V. A. Am. Scient. 63, 413–419 (1975).

    ADS  CAS  Google Scholar 

  14. Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge University Press, 1984).

    Book  Google Scholar 

  15. Wells, D. J. thesis, Univ. Wyoming (1990).

  16. Longworth, K. E., Jones, J. H., Taylor, C. R. & Weibel, E. R. Resp. Physiol. 77, 263–276 (1989).

    Article  CAS  Google Scholar 

  17. Costill, D. L., Fink, W. J. & Pollock, M. L. Med. Sci. Sport 8, 96–100 (1976).

    CAS  Google Scholar 

  18. Lindstedt, S. L., Wells, D. J., Jones, J. H., Hoppeler, H. & Thronson, H. A. Jr Int. J. Sports Med. 9, 210–227 (1988).

    Article  CAS  Google Scholar 

  19. Carpenter, R. E. J. exp. Biol. 114, 619–647 (1985).

    Google Scholar 

  20. Thomas, S. P. J. exp. Biol. 63, 273–293 (1975).

    CAS  PubMed  Google Scholar 

  21. Tucker, V. A. J. exp. Biol. 58, 689–709 (1973).

    Google Scholar 

  22. Lasiewski, R. C. Physiol. Zool. 36, 122–140 (1963).

    Article  CAS  Google Scholar 

  23. Epting, R. J. Physiol. Zool. 53, 347–357 (1980).

    Article  Google Scholar 

  24. Casey, M. in Insect Flight (eds Goldsworth, T. Y., Casey, T. M., Goldswothy, G. J. & Wheeler, C. H.) 257–272 (CRC Press, Bocca Raton, Florida, 1989).

    Google Scholar 

  25. Rothe, H. J., Biesel, W. & Nachitgall, W. J. comp. Physiol. 157, 99–109 (1987).

    Article  Google Scholar 

  26. Tucker, V. A. Science 154, 150–153 (1966).

    Article  ADS  CAS  Google Scholar 

  27. Weibel, E. R. & Taylor, C. R. Resp. Physiol. 44, 1–164 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindstedt, S., Hokanson, J., Wells, D. et al. Running energetics in the pronghorn antelope. Nature 353, 748–750 (1991). https://doi.org/10.1038/353748a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353748a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing