Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical treatment of soil alleviates effects of soil compaction on pea seedling growth

Abstract

HIGH mechanical resistance of soils, related to naturally occurring hard pans, or to compaction by machinery and untimely cultivation1–3, often reduces crop yields through poor development of root systems1,4–6. In the laboratory, progressive increases in mechanical resistance of the growth medium cause reduced root elongation7–9, stunting and thickening of root systems3,10 and reduced shoot growth11. Loosening of subsoil in the field can reduce compaction, increase aeration and waterholding capacity of the soil and improve the distribution of available water1. Roots can then penetrate to greater depths and crop yields often increase1,12,13. White light also affects root growth, inhibiting axial extension in some species14–16. This effect can be counteracted in cress roots by 3,5-diiodo-4-hydroxybenzoic acid (DIHB)17–19. The fact that compacted soil and white light can both induce stunting and thickening of root systems suggested to us that similar growth control mechanisms might be involved. We have therefore investigated whether DIHB can improve root development in compacted soils; we have shown that this is the case.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Swain, R. W., MAFF Tech. Bull., 29, 189–204 (1975).

    Google Scholar 

  2. Modern Farming and the Soil, Report of the Agricultural Advisory Council on Soil Structure and Soil Fertility (HMSO, London, 1970).

  3. Goss, M. J., and Drew, M. C., ARC Letcombe Laboratory Annual Report 1971, 35–42 (1972).

    Google Scholar 

  4. Taylor, H. M., in Compaction of Agricultural Soils, Monog. Am. Soc. Agric. Engineers, 292–305 (1971).

    Google Scholar 

  5. Phillips, R. E., and Kirkham, D., Agron. J., 54, 29–34 (1962).

    Article  Google Scholar 

  6. Adams, E. P., Blake, G. R., Martin, W. P., and Boelter, D. H., Seventh Int. Cong. Soil Sci., 607–615 (1960).

    Google Scholar 

  7. Barley, K. P., Farrell, D. A., and Greacen, E. L., Aust. J. Soil Res., 3, 69–79 (1965).

    Article  Google Scholar 

  8. Zimmerman, R. P., and Kardos, L. T., Soil Sci., 91, 280–288 (1961).

    Article  ADS  Google Scholar 

  9. Gooderham, P. T., and Fisher, N. M., MAFF Tech. Bull., 29, 469–482 (1975).

    Google Scholar 

  10. Cannell, R. Q., MAFF Tech. Bull., 29, 439–448 (1975).

    Google Scholar 

  11. Taylor, H. M., and Ratliff, L. F., Soil Sci., 108, 113–119 (1969).

    Article  ADS  Google Scholar 

  12. Pendleton, R. A., Proc. Am. Soc. Sugar Beet Technologists, 6, 278–285 (1950).

    Google Scholar 

  13. Russell, E. W., J. agric. Sci., 48, 129–144 (1956).

    Article  Google Scholar 

  14. Torrey, J. G., Pl. Physiol. Lancaster, 27, 591–602 (1952).

    Article  CAS  Google Scholar 

  15. Pilet, P. E., and Went, F. W., Am. J. Bot., 43, 190–198 (1956).

    Article  Google Scholar 

  16. Wilkins, H., Larqué-Saavedra, A., and Wain, R. L., Ann. appl. Biol., 78, 169–177 (1974).

    Article  CAS  Google Scholar 

  17. Wain, R. L., Intarakosit, P., and Taylor, H. F., Meded. Rijksfak. Landb. Wetenschappen Gent., 33, 1341–1346 (1968).

    CAS  Google Scholar 

  18. Wain, R. L., Taylor, H. F., Intarakosit, P., and Shannon, T. G. D., Nature, 217, 870–871 (1968).

    Article  ADS  CAS  Google Scholar 

  19. Larqué-Saavedra, A., Wilkins, H., and Wain, R. L., Planta, 126, 269–272 (1975).

    Article  Google Scholar 

  20. El-Karouri, M. O. H., thesis, Univ. London (1974).

  21. Robert, M. L., Taylor, H. F., and Wain, R. L., Planta, 126, 273–284 (1975).

    Article  CAS  Google Scholar 

  22. Cornforth, I. S., and Stevens, R. J., Pl. Soil, 38, 581–587 (1973).

    Article  CAS  Google Scholar 

  23. Kays, S. J., Nicklow, C. W., and Simons, D. H., Pl. Soil, 40, 565–571 (1974).

    Article  Google Scholar 

  24. Smith, K. A., Dowdell, R. J., Hall, K. C., and Crees, R., ARC Letcombe Laboratory Annual Report 1973, 35–36 (1974).

    Google Scholar 

  25. Eavis, B. W., Pl. Soil, 36, 613–622 (1972).

    Article  Google Scholar 

  26. Goeschl, J. D., Rappaport, L., and Pratt, H. K., Pl. Physiol. Lancaster, 41, 877–884 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WILKINS, S., WILKINS, H. & WAIN, R. Chemical treatment of soil alleviates effects of soil compaction on pea seedling growth. Nature 259, 392–394 (1976). https://doi.org/10.1038/259392a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259392a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing