Review Articles in 2000

Filter By:

Article Type
Year
  • The phenomenal rate of increase in the integration density of silicon chips has been sustained in large part by advances in optical lithography — the process that patterns and guides the fabrication of the component semiconductor devices and circuitry. Although the introduction of shorter-wavelength light sources and resolution-enhancement techniques should help maintain the current rate of device miniaturization for several more years, a point will be reached where optical lithography can no longer attain the required feature sizes. Several alternative lithographic techniques under development have the capability to overcome these resolution limits but, at present, no obvious successor to optical lithography has emerged.

    • Takashi Ito
    • Shinji Okazaki
    Review Article
  • The silicon-based microelectronics industry is rapidly approaching a point where device fabrication can no longer be simply scaled to progressively smaller sizes. Technological decisions must now be made that will substantially alter the directions along which silicon devices continue to develop. One such challenge is the need for higher permittivity dielectrics to replace silicon dioxide, the properties of which have hitherto been instrumental to the industry's success. Considerable efforts have already been made to develop replacement dielectrics for dynamic random-access memories. These developments serve to illustrate the magnitude of the now urgent problem of identifying alternatives to silicon dioxide for the gate dielectric in logic devices, such as the ubiquitous field-effect transistor.

    • Angus I. Kingon
    • Jon-Paul Maria
    • S. K. Streiffer
    Review Article
  • Computers are physical systems: the laws of physics dictate what they can and cannot do. In particular, the speed with which a physical device can process information is limited by its energy and the amount of information that it can process is limited by the number of degrees of freedom it possesses. Here I explore the physical limits of computation as determined by the speed of light c, the quantum scale ℏ and the gravitational constant G. As an example, I put quantitative bounds to the computational power of an ‘ultimate laptop’ with a mass of one kilogram confined to a volume of one litre.

    • Seth Lloyd
    Review Article
  • Transistors have continuously reduced in size and increased in switching speed since their invention in 1947. The exponential pace of transistor evolution has led to a revolution in information acquisition, processing and communication technologies. And reigning over most digital applications is a single device structure — the field-effect transistor (FET). But as device dimensions approach the nanometre scale, quantum effects become increasingly important for device operation, and conceptually new transistor structures may need to be adopted. A notable example of such a structure is the single-electron transistor, or SET1,2,3,4. Although it is unlikely that SETs will replace FETs in conventional electronics, they should prove useful in ultra-low-noise analog applications. Moreover, because it is not affected by the same technological limitations as the FET, the SET can approach closely the quantum limit of sensitivity. It might also be a useful read-out device for a solid-state quantum computer.

    • Michel H. Devoret
    • Robert J. Schoelkopf
    Review Article