Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 6 Issue 3, March 2024

Learning phenotypes from cardiac geometry

Understanding the genetic factors that underlie the normal variation in cardiac shape is of great interest. In this work, Bonazzola et al. apply unsupervised geometric deep learning to phenotype the left ventricle by using an MRI-derived three-dimensional mesh representation (as depicted on the cover). The authors show that this approach boosts genetic discovery and provides deeper insights into the genetic underpinnings of cardiac morphology.

See Bonazzola et al.

Image: Rodrigo Bonazzola, University of Leeds. Cover design: Amie Fernandez

Editorial

  • After several decades of developments in AI, has the inspiration that can be drawn from neuroscience been exhausted? Recent initiatives make the case for taking a fresh look at the intersection between the two fields.

    Editorial

    Advertisement

Top of page ⤴

Comment & Opinion

  • Can non-state multinational tech companies counteract the potential democratic deficit in the emerging global governance of AI? We argue that although they may strengthen core values of democracy such as accountability and transparency, they currently lack the right kind of authority to democratize global AI governance.

    • Eva Erman
    • Markus Furendal
    Comment
Top of page ⤴

News & Views

  • AI tools such as ChatGPT can provide responses to queries on any topic, but can such large language models accurately ‘write’ molecules as output to our specification? Results now show that models trained on general text can be tweaked with small amounts of chemical data to predict molecular properties, or to design molecules based on a target feature.

    • Glen M. Hocky
    News & Views
Top of page ⤴

Reviews

  • An emerging research area in AI is developing multi-agent capabilities with collections of interacting AI systems. Andrea Soltoggio and colleagues develop a vision for combining such approaches with current edge computing technology and lifelong learning advances. The envisioned network of AI agents could quickly learn new tasks in open-ended applications, with individual AI agents independently learning and contributing to and benefiting from collective knowledge.

    • Andrea Soltoggio
    • Eseoghene Ben-Iwhiwhu
    • Soheil Kolouri
    Perspective
  • As the impacts of AI on everyday life increase, guidelines are needed to ensure ethical deployment and use of this technology. This is even more pressing for technology that interacts with groups that need special protection, such as children. In this Perspective Wang et al. survey the existing AI ethics guidelines with a focus on children’s issues, and provide suggestions for further development.

    • Ge Wang
    • Jun Zhao
    • Nigel Shadbolt
    Perspective
Top of page ⤴

Research

  • A parameterized physical model that uses unpaired datasets for adaptive holographic imaging was published in Nature Machine Intelligence in 2023. Zhang and colleagues evaluate its performance and extend it to non-perfect optical systems by integrating specific optical response functions.

    • Yuhe Zhang
    • Tobias Ritschel
    • Pablo Villanueva-Perez
    Article Open Access
  • This Reusability Report examines a recently published deep learning method PENCIL by Ren et al. for identifying phenotype populations in single-cell data. Cao et al. reproduce here the main results, analyse the sensitivity of the method to model parameters and describe how the method can be used to create a signature for immunotherapy response markers.

    • Yingying Cao
    • Tian-Gen Chang
    • Eytan Ruppin
    Article
  • Deep learning generative approaches have been used in recent years to discover new molecules with drug-like properties. To improve the performance of such approaches, Yang et al. add chemical binding knowledge to a deep generative framework and demonstrate, including by wet-lab verification, that the method can find valid molecules that successfully bind to target proteins.

    • Yuanyuan Jiang
    • Guo Zhang
    • Shengyong Yang
    Article
  • Foundation models have transformed artificial intelligence by training on vast amounts of broad unlabelled data. Pai et al. present a foundation model leading to more accurate, efficient and robust cancer imaging biomarkers, especially in use cases with small training datasets.

    • Suraj Pai
    • Dennis Bontempi
    • Hugo J. W. L. Aerts
    Article Open Access
Top of page ⤴

Amendments & Corrections

Top of page ⤴

Search

Quick links