Articles in 2022

Filter By:

  • Neural networks have become a useful approach for predicting biological function from large-scale DNA and protein sequence data; however, researchers are often unable to understand which features in an input sequence are important for a given model, making it difficult to explain predictions in terms of known biology. The authors introduce scrambler networks, a feature attribution method tailor-made for discrete sequence inputs.

    • Johannes Linder
    • Alyssa La Fleur
    • Georg Seelig
    Article
  • In artificial neural networks, a typical neuron generally performs a simple summation of inputs. Using computational and electrophysiological data, the authors show that a single neuron predicts its future activity. Neurons that predict their own future responses are a potential mechanism for learning in the brain and neural networks.

    • Artur Luczak
    • Bruce L. McNaughton
    • Yoshimasa Kubo
    ArticleOpen Access
  • For a third year in a row, we followed up with authors of several recent Comments and Perspectives in Nature Machine Intelligence about what happened after their article was published: how did the topic they wrote about develop, did they gain new insights, and what are their hopes and expectations for AI in 2022?

    • Cameron Buckner
    • Risto Miikkulainen
    • Vidushi Marda
    Feature
  • Although artificial reinforcement learning agents do well when rules are rigid, such as games, they fare poorly in real-world scenarios where small changes in the environment or the required actions can impair performance. The authors provide an overview of the cognitive foundations of hierarchical problem-solving, and propose steps to integrate biologically inspired hierarchical mechanisms to enable problem-solving skills in artificial agents.

    • Manfred Eppe
    • Christian Gumbsch
    • Stefan Wermter
    Perspective
  • Routine eye clinic imaging could help screen patients with cardiovascular risk as studies indicate strong associations between biomarkers in the retina and the heart. This potential is supported by a multimodal study, employing a deep learning model, that can infer cardiac functional indices based on retinal images and demographic data.

    • Andres Diaz-Pinto
    • Nishant Ravikumar
    • Alejandro F. Frangi
    Article
  • Reinforcement learning has shown remarkable success in areas such as game-playing and protein folding, but it has not been extensively explored in modelling cell behaviour. The authors develop an approach that uses deep reinforcement learning to uncover collective cell behaviours and the underlying mechanism of cell migration from 3D time-lapse images of tissues.

    • Zi Wang
    • Yichi Xu
    • Zhirong Bao
    Article