Browse Articles

Filter By:

  • Solvents are used pervasively in catalytic studies to enhance kinetics and selectivities. Now, the analysis of biomass upgrading has been remarkably simplified by elucidating the solvation effects of dehydration for key compounds with solvent-enabled control of reactivity.

    • Hu Li
    • Richard L. Smith Jr
    News & Views
  • In situ studies are very important to advance our comprehension of catalytic reactions and are expected to be boosted by the development of more powerful analytical tools.

    Editorial
  • Fluctuations in the composition of reactant gas mixtures often lead to activity and selectivity variations in automotive catalysts. Now, time-resolved operando spectroscopy sheds light on the transient changes of surface species for a commercially applied catalyst and leads to process optimization.

    • Feng Gao
    • János Szanyi
    News & Views
  • Lyases are enzymes that catalyse the breaking of chemical bonds. Now, reversing this reaction towards carbon–nitrogen bond formation allows for the synthesis of various chiral aminocarboxylic acids such as the potential antibiotic co-drug aspergillomarasmine A.

    • Romas J. Kazlauskas
    News & Views
  • Ammonia synthesis is an energy-intensive process due to the high activation barrier for N2 dissociation, which is the rate-determining step on conventional catalysts. Now, a ternary intermetallic catalyst is reported to be capable of catalysing this reaction through an alternative pathway.

    • Malte Behrens
    News & Views
  • For practical applications, water-oxidation catalysts should be inexpensive, active and stable. Here, Cronin and co-workers dope molybdenum into the Weakley sandwich-type polyoxometalate, showing that this dramatically lowers the overpotential for the oxygen evolution reaction while maintaining the stability against oxidation.

    • Mercè Martin-Sabi
    • Joaquín Soriano-López
    • Leroy Cronin
    Article
  • Selective catalytic reduction is employed at the exhaust of diesel vehicles to abate nitrogen oxide emissions. Now, guided by time-resolved X-ray absorption spectroscopy and transient experiments using Cu-SSZ-13 as the catalyst, the authors unravel important features of the reaction mechanism that allow the performance of the catalyst to be improved.

    • Adrian Marberger
    • Andrey W. Petrov
    • Davide Ferri
    Article
  • Single-atom catalysts are of growing importance, but the nature of their structure and reactivity remains under debate. Here, Sykes and co-workers show that single Pt atoms on a well-defined Cu2O surface are capable of performing low-temperature CO oxidation, and provide data on the binding site and electronic structure of the Pt atoms.

    • Andrew J. Therrien
    • Alyssa J. R. Hensley
    • E. Charles H. Sykes
    Article
  • Small metal nanoclusters often display high catalytic activity, but also low stability due to aggregation. Here, Xu and co-workers show that subnanometre Pd clusters can be contained within porous organic cages. Not only do the particles retain high catalytic activity, they also show excellent solubility and stability.

    • Xinchun Yang
    • Jian-Ke Sun
    • Qiang Xu
    Article
  • The choice of solvent system has important implications regarding the catalytic upgrading of carbohydrate-containing biomass. Here, Dumesic and co-workers study solvation effects in organic solvent/water mixtures and employ the obtained information to control the rate and selectivity of the acid-catalysed dehydration of fructose.

    • Max A. Mellmer
    • Chotitath Sanpitakseree
    • James A. Dumesic
    Article
  • Converting carbon dioxide to more useful — and less harmful — chemicals is a key challenge of our time, and one in which catalysis needs to play a key role.

    Editorial
  • Understanding the fundamentals of a catalytic process remains an intellectual challenge. Now, a method has been developed that can discriminate mass transport phenomena from reaction kinetics at the single-molecule and single-particle levels.

    • Bert M. Weckhuysen
    News & Views
  • While methods for arylation of amines are well established, alkylation is a less well-developed process. Here, Hu and co-workers report amine alkylation using redox-active esters, using a combination of photoredox catalysis to generate the active electrophile and copper catalysis for the cross-coupling.

    • Runze Mao
    • Adrian Frey
    • Xile Hu
    Article
  • Selective, electrochemical transformation of carbon dioxide into industrially relevant C2+ products has remained a challenge. Now, a copper-based ‘nanoneedle’ electrocatalyst has been used to selectively convert carbon dioxide to ethylene at extremely high current density.

    • Douglas R. Kauffman
    • Dominic Alfonso
    News & Views
  • Given the abundance of amines in pharmaceutical substances, new strategies for the formation of C–N bonds are highly sought after. Now, using a dual photoredox–copper catalysis system, a method for amine synthesis has been developed.

    • Joyann S. Barber
    • Francesca M. Ippoliti
    • Neil K. Garg
    News & Views