Browse Articles

Filter By:

  • Catalysis is essential in the automotive and transportation sectors to target the United Nations sustainable development goals for climate change and the environment. To comply with both the ambitious United Nations goals and step-by-step stringent emission regulations, innovative and economically viable catalytic systems will be a key element in meeting these challenges.

    • Aiyong Wang
    • Louise Olsson
    Comment
  • For the foreseeable future, we will continue to rely on the internal combustion engine for mobility of people and goods. The ubiquitous three-way catalyst does not work below 350 °C, with appreciable O2, nor does it control soot. Low temperature catalysis, chemical trapping and filtration will grow in need, and represent research opportunities.

    • Christine K. Lambert
    Comment
  • The transportation sector represents a vibrant area of application for researchers in the catalysis community. This Insight presents a selection of topical articles showcasing the potential of catalysis research in an area of crucial societal relevance.

    Editorial
  • CO oxidation is an important reaction in automotive catalysis which has been extensively studied since the 1970s. In this Review, Higashi and Beniya examine the development of state-of-the-art catalysts, in particular focusing on CO oxidation pathways for single-atom and few-atom cluster catalysis.

    • Atsushi Beniya
    • Shougo Higashi
    Review Article
  • Proton exchange membrane fuel cells can efficiently provide clean power for electric vehicles, although more efficient and economic cathode catalysts are still required. This Review highlights recent breakthroughs, challenges and future research directions for Pt group metal (PGM) and PGM-free oxygen reduction catalysts.

    • Xiao Xia Wang
    • Mark T. Swihart
    • Gang Wu
    Review Article
  • Solid oxide fuel cells have been identified as a promising technology to decarbonize the transportation sector. This perspective describes recent advances in the area and identifies those crucial aspects that still require development in order to favour the practical application of this technology.

    • Paul Boldrin
    • Nigel P. Brandon
    Perspective
  • Catalysis has been crucial for the transportation sector, as it has enabled the treatment of automotive exhausts over the years in agreement with evolving environmental regulations. This review details the most important milestones in automotive catalysis, while looking at the future of the field.

    • Robert J. Farrauto
    • Michel Deeba
    • Saeed Alerasool
    Review Article
  • S-adenosylmethionine (SAM)-dependent methyltransferase enzymes have significant synthetic potential, but their utility as biocatalysts has been limited by the availability of SAM. An elegant and simple method addressing this long-standing problem has now been developed using a halide methyltransferase (HMT) enzyme for SAM regeneration in vitro.

    • Jason Micklefield
    News & Views
  • Electrochemical carbon dioxide reduction is an attractive approach for obtaining fuels and chemical feedstocks using renewable energy. In this Review, the authors describe progress so far, identify mechanistic questions and performance metrics, and discuss design principles for improved activity and selectivity.

    • Michael B. Ross
    • Phil De Luna
    • Edward H. Sargent
    Review Article
  • Biocompatibility plays a crucial role for the development of artificial metalloenzymes (ArMs) for therapeutic applications. This work presents an ArM with a ruthenium catalyst that is protected from physiological glutathione and accumulates in cancer cell lines for metathesis-mediated prodrug activation.

    • Shohei Eda
    • Igor Nasibullin
    • Katsunori Tanaka
    Article
  • The synthesis of ethanol via CO2 hydrogenation is a challenging process, often hampered by low selectivity. This work reports a Zr12 cluster-based metal–organic framework as support for cooperative Cu(i) sites that catalyse CO2 hydrogenation to ethanol with remarkable selectivity upon promotion with caesium. Credit: Cloud background, CC0 1.0 Universal Public Domain Dedication.

    • Bing An
    • Zhe Li
    • Wenbin Lin
    Article
  • First-principles-based multiscale models provide mechanistic insight and allow screening of large materials spaces to find promising new catalysts. In this Review, Reuter and co-workers discuss methodological cornerstones of existing approaches and highlight successes and ongoing developments in the field.

    • Albert Bruix
    • Johannes T. Margraf
    • Karsten Reuter
    Review Article
  • The fleeting nature of transition state ensembles of protein motions has precluded their experimental observation. This work provides an atomistic insight into the rate-determining structural transition of adenylate kinase during catalysis by high-pressure NMR and molecular dynamics simulations.

    • John B. Stiller
    • S. Jordan Kerns
    • Dorothee Kern
    Article
  • Combining enzymatic and heterogeneous catalysts is challenging due to different reaction requirements. Here, a method is presented constructing single protein–polymer nanoconjugates as nanoreactors for the in situ synthesis of enzyme–metal nanohybrids with high activity at ambient conditions.

    • Xiaoyang Li
    • Yufei Cao
    • Richard N. Zare
    Article
  • Understanding the nature of active sites in carbon electrocatalysis remains a subject of dispute and a great scientific challenge. Convincing new evidence supports the fact that, for oxygen reduction, defects present in carbon materials are more powerful catalytic sites than nitrogenated sites.

    • Magdalena Titirici
    News & Views