Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia

Abstract

The notion that schizophrenia is a neurodevelopmental disorder in which neuropathologies evolve gradually over the developmental course indicates a potential therapeutic window during which pathophysiological processes may be modified to halt disease progression or reduce its severity. Here we used a neurodevelopmental maternal immune stimulation (MIS) rat model of schizophrenia to test whether early targeted modulatory intervention would affect schizophrenia’s neurodevelopmental course. We applied deep brain stimulation (DBS) or sham stimulation to the medial prefrontal cortex (mPFC) of adolescent MIS rats and respective controls, and investigated its behavioral, biochemical, brain-structural and -metabolic effects in adulthood. We found that mPFC-DBS successfully prevented the emergence of deficits in sensorimotor gating, attentional selectivity and executive function in adulthood, as well as the enlargement of lateral ventricle volumes and mal-development of dopaminergic and serotonergic transmission. These data suggest that the mPFC may be a valuable target for effective preventive treatments. This may have significant translational value, suggesting that targeting the mPFC before the onset of psychosis via less invasive neuromodulation approaches may be a viable preventive strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fatemi SH, Reutiman TJ, Folsom TD, Huang H, Oishi K, Mori S et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res 2008; 99: 56–70.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  PubMed  Google Scholar 

  3. Hadar R, Soto-Montenegro ML, Gotz T, Wieske F, Sohr R, Desco M et al. Using a maternal immune stimulation model of schizophrenia to study behavioral and neurobiological alterations over the developmental course. Schizophr Res 2015; 166: 238–247.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zuckerman L, Rehavi M, Nachman R, Weiner I . Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 2003; 28: 1778–1789.

    Article  CAS  PubMed  Google Scholar 

  5. Piontkewitz Y, Arad M, Weiner I . Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry 2011; 70: 842–851.

    Article  PubMed  Google Scholar 

  6. Woods SW, Breier A, Zipursky RB, Perkins DO, Addington J, Miller TJ et al. Randomized trial of olanzapine versus placebo in the symptomatic acute treatment of the schizophrenic prodrome. Biol Psychiatry 2003; 54: 453–464.

    Article  CAS  PubMed  Google Scholar 

  7. McGlashan TH, Zipursky RB, Perkins D, Addington J, Miller T, Woods SW et al. Randomized, double-blind trial of olanzapine versus placebo in patients prodromally symptomatic for psychosis. Am J Psychiatry 2006; 163: 790–799.

    Article  PubMed  Google Scholar 

  8. Meyer U, Knuesel I, Nyffeler M, Feldon J . Chronic clozapine treatment improves prenatal infection-induced working memory deficits without influencing adult hippocampal neurogenesis. Psychopharmacology 2010; 208: 531–543.

    Article  CAS  PubMed  Google Scholar 

  9. Piontkewitz Y, Arad M, Weiner I . Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia. Schizophr Bull 2011; 37: 1257–1269.

    Article  PubMed  Google Scholar 

  10. Piontkewitz Y, Assaf Y, Weiner I . Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia. Biol Psychiatry 2009; 66: 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  11. Meyer U, Spoerri E, Yee BK, Schwarz MJ, Feldon J . Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia. Schizophr Bull 2010; 36: 607–623.

    Article  PubMed  Google Scholar 

  12. Barch DM . The cognitive neuroscience of schizophrenia. Annu Rev Clin Psychol 2005; 1: 321–353.

    Article  PubMed  Google Scholar 

  13. Selemon LD, Zecevic N . Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry 2015; 5: e623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lewis DA . Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 1997; 16: 385–398.

    Article  CAS  PubMed  Google Scholar 

  15. Klein J, Hadar R, Gotz T, Manner A, Eberhardt C, Baldassarri J et al. Mapping brain regions in which deep brain stimulation affects schizophrenia-like behavior in two rat models of schizophrenia. Brain Stimul 2013; 6: 490–499.

    Article  PubMed  Google Scholar 

  16. Bikovsky L, Hadar R, Soto-Montenegro ML, Klein J, Weiner I, Desco M et al. Deep brain stimulation improves behavior and modulates neural circuits in a rodent model of schizophrenia. Exp Neurol 2016; 283: 142–150.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Academic Press: San Diego, 1998.

    Google Scholar 

  18. Ewing SG, Lipski WJ, Grace AA, Winter C . An inexpensive, charge-balanced rodent deep brain stimulation device: a step-by-step guide to its procurement and construction. J Neurosci Methods 2013; 219: 324–330.

    Article  PubMed  Google Scholar 

  19. Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL . Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 2008; 199: 331–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mattei D, Djodari-Irani A, Hadar R, Pelz A, de Cossio LF, Goetz T et al. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun 2014; 38: 175–184.

    Article  CAS  PubMed  Google Scholar 

  21. Spano MS, Fadda P, Frau R, Fattore L, Fratta W . Cannabinoid self-administration attenuates PCP-induced schizophrenia-like symptoms in adult rats 2010; 20: 25–36.

  22. Weiner I . The "two-headed" latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 2003; 169: 257–297.

    Article  CAS  PubMed  Google Scholar 

  23. Zuckerman L, Weiner I . Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatric Res 2005; 39: 311–323.

    Article  Google Scholar 

  24. Voget M, Rummel J, Avchalumov Y, Sohr R, Haumesser JK, Rea E et al. Altered local field potential activity and serotonergic neurotransmission are further characteristics of the Flinders sensitive line rat model of depression. Behav Brain Res 2015; 291: 299–305.

    Article  CAS  PubMed  Google Scholar 

  25. Winter C, Djodari-Irani A, Sohr R, Morgenstern R, Feldon J, Juckel G et al. Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 2009; 12: 513–524.

    Article  CAS  PubMed  Google Scholar 

  26. Simson EL, Jones AP, Gold RM . Horizontal stereotaxic atlas of the albino rat brain. Brain Res Bull 1981; 6: 297–326.

    Article  CAS  PubMed  Google Scholar 

  27. Pascau J, Gispert JD, Michaelides M, Thanos PK, Volkow ND, Vaquero JJ et al. Automated method for small-animal PET image registration with intrinsic validation. Mol Imaging Biol 2009; 11: 107–113.

    Article  PubMed  Google Scholar 

  28. Romero A, Rojas S, Cabanero D, Gispert JD, Herance JR, Campillo A et al. A (1)(8)F-fluorodeoxyglucose MicroPET imaging study to assess changes in brain glucose metabolism in a rat model of surgery-induced latent pain sensitization. Anesthesiology 2011; 115: 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  29. Soto-Montenegro ML, Pascau J, Desco M . Response to deep brain stimulation in the lateral hypothalamic area in a rat model of obesity: in vivo assessment of brain glucose metabolism. Mol Imaging Biol 2014; 16: 830–837.

    Article  PubMed  Google Scholar 

  30. Piontkewitz Y, Arad M, Weiner I . Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 2012; 62: 1273–1289.

    Article  CAS  PubMed  Google Scholar 

  31. Jaaro-Peled H, Ayhan Y, Pletnikov MV, Sawa A . Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongeneticmodels. Schizophr Bull 2010; 36: 301–313.

    Article  PubMed  Google Scholar 

  32. Ragozzino ME, Detrick S, Kesner RP . Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 1999; 19: 4585–4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ragozzino ME . The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 2007; 1121: 355–375.

    Article  PubMed  Google Scholar 

  34. Piantadosi PT, Floresco SB . Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia. Neuropsychopharmacology 2014; 39: 2473–2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. George DN, Duffaud AM, Pothuizen HH, Haddon JE, Killcross S . Lesions to the ventral, but not the dorsal, medial prefrontal cortex enhance latent inhibition. Eur J Neurosci 2010; 31: 1474–1482.

    Article  PubMed  Google Scholar 

  36. Graybeal C, Feyder M, Schulman E, Saksida LM, Bussey TJ, Brigman JL et al. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat Neurosci 2011; 14: 1507–1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McAllister KA, Mar AC, Theobald DE, Saksida LM, Bussey TJ . Comparing the effects of subchronic phencyclidine and medial prefrontal cortex dysfunction on cognitive tests relevant to schizophrenia. Psychopharmacology 2015; 232: 3883–3897.

    Article  CAS  PubMed  Google Scholar 

  38. Bubser M, Koch M . Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology 1994; 113: 487–492.

    Article  CAS  PubMed  Google Scholar 

  39. Valsamis B, Chang M, Typlt M, Schmid S . Activation of mGluR2/3 receptors in the ventro-rostral prefrontal cortex reverses sensorimotor gating deficits induced by systemic NMDA receptor antagonists. Int J Neuropsychopharmacol 2014; 17: 303–312.

    Article  CAS  PubMed  Google Scholar 

  40. Swerdlow NR, Geyer MA, Braff DL . Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 2001; 156: 194–215.

    Article  CAS  PubMed  Google Scholar 

  41. Abi-Dargham A, Moore H . Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 2003; 9: 404–416.

    Article  CAS  PubMed  Google Scholar 

  42. Winterer G, Weinberger DR . Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004; 27: 683–690.

    Article  CAS  PubMed  Google Scholar 

  43. Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J . The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 1997; 9: 1–17.

    Article  CAS  PubMed  Google Scholar 

  44. Toda M, Abi-Dargham A . Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 2007; 9: 329–336.

    Article  PubMed  Google Scholar 

  45. Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F et al. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry 2010; 67: 117–124.

    Article  PubMed  Google Scholar 

  46. Varatharajan R, Joseph K, Neto SC, Hofmann UG, Moser A, Tronnier V . Electrical high frequency stimulation modulates GABAergic activity in the nucleus accumbens of freely moving rats. Neurochem Int 2015; 90: 255–260.

    Article  CAS  PubMed  Google Scholar 

  47. Rummel J, Voget M, Hadar R, Ewing S, Sohr R, Klein J et al. Testing different paradigms to optimize antidepressant deep brain stimulation in different rat models of depression. J Psychiatric Res 2016; 81: 36–45.

    Article  Google Scholar 

  48. Vuillermot S, Weber L, Feldon J, Meyer U . A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 2010; 30: 1270–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsuo T, Izumi Y, Wakita S, Kume T, Takada-Takatori Y, Sawada H et al. Haloperidol, spiperone, pimozide and aripiprazole reduce intracellular dopamine content in PC12 cells and rat mesencephalic cultures: Implication of inhibition of vesicular transport. Eur J Pharmacol 2010; 640: 68–74.

    Article  CAS  PubMed  Google Scholar 

  50. Kusumi I, Boku S, Takahashi Y . Psychopharmacology of atypical antipsychotic drugs: from the receptor binding profile to neuroprotection and neurogenesis. Psychiatry Clin Neurosci 2015; 69: 243–258.

    Article  CAS  PubMed  Google Scholar 

  51. Herrington TM, Cheng JJ, Eskandar EN . Mechanisms of deep brain stimulation. J Neurophysiol 2016; 115: 19–38.

    Article  CAS  PubMed  Google Scholar 

  52. Bhandari A, Voineskos D, Daskalakis ZJ, Rajji TK, Blumberger DM . A review of impaired neuroplasticity in schizophrenia investigated with non-invasive brain stimulation. Front Psychiatry 2016; 7: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MA, Blokland A et al. Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res 2006; 1120: 100–105.

    Article  CAS  PubMed  Google Scholar 

  54. Maesawa S, Kaneoke Y, Kajita Y, Usui N, Misawa N, Nakayama A et al. Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J Neurosurg 2004; 100: 679–687.

    Article  CAS  PubMed  Google Scholar 

  55. Spieles-Engemann AL, Behbehani MM, Collier TJ, Wohlgenant SL, Steece-Collier K, Paumier K et al. Stimulation of the rat subthalamic nucleus is neuroprotective following significant nigral dopamine neuron loss. Neurobiol Dis 2010; 39: 105–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wallace BA, Ashkan K, Heise CE, Foote KD, Torres N, Mitrofanis J et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 2007; 130 (Pt 8): 2129–2145.

    Article  PubMed  Google Scholar 

  57. Spieles-Engemann AL, Steece-Collier K, Behbehani MM, Collier TJ, Wohlgenant SL, Kemp CJ et al. Subthalamic nucleus stimulation increases brain derived neurotrophic factor in the nigrostriatal system and primary motor cortex. J Parkinson Dis 2011; 1: 123–136.

    CAS  Google Scholar 

  58. Ho DX, Tan YC, Tan J, Too HP, Ng WH . High-frequency stimulation of the globus pallidus interna nucleus modulates GFRalpha1 gene expression in the basal ganglia. J Clin Neurosci 2014; 21: 657–660.

    Article  CAS  PubMed  Google Scholar 

  59. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM . The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 2008; 108: 132–138.

    Article  PubMed  Google Scholar 

  60. Shen KZ, Zhu ZT, Munhall A, Johnson SW . Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse 2003; 50: 314–319.

    Article  CAS  PubMed  Google Scholar 

  61. Sakurai T, Gamo NJ, Hikida T, Kim SH, Murai T, Tomoda T et al. Converging models of schizophrenia - network alterations of prefrontal cortex underlying cognitive impairments. Prog Neurobiol 2015; 134: 178–201.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Volk DW, Lewis DA . Early developmental disturbances of cortical inhibitory neurons: contribution to cognitive deficits in schizophrenia. Schizophr Bull 2014; 40: 952–957.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Palm U, Keeser D, Hasan A, Kupka MJ, Blautzik J, Sarubin N et al. Prefrontal transcranial direct current stimulation for treatment of schizophrenia with predominant negative symptoms: a double-blind, sham-controlled proof-of-concept study. Schizophr Bull 2016; 42: 1253–1261.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Renate Winter, Doris Zschaber and Roselies Pickert for excellent technical assistance. This research was conducted under the EraNet Neuron framework (DBS_F20rat) and supported by the BMBF, Germany (B01EW1103, 01EE1403A), Fundación Mapfre, Comunidad de Madrid and the Ministry of Economy and Competitiveness ISCIII-FIS grants (PI14/00860, CPII/00005) co-financed by ERDF (FEDER) Funds from the European Commission, ‘A way of making Europe’, Spain (PI14/00860, CPII/00005, MV1500002), the CSO-MOH, Israel (3-8580) and the Canadian Institutes of Health Research, Canada (CIHR, 110068), and co-financed by the DFG, Germany (WI 2140/1-1/2; WI 2140/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Winter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadar, R., Bikovski, L., Soto-Montenegro, M. et al. Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia. Mol Psychiatry 23, 943–951 (2018). https://doi.org/10.1038/mp.2017.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.52

This article is cited by

Search

Quick links