Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders

Abstract

The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells — microglia — have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglia influence a number of neurodevelopmental processes.
Fig. 2: AIM2 inflammasome signalling contributes to CNS cell dieback.
Fig. 3: Phagocytic signalling underlies synaptic pruning.
Fig. 4: Maternal immune activation promotes abnormal brain development and autism-like behaviours.

Similar content being viewed by others

References

  1. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    CAS  PubMed  Google Scholar 

  2. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 36, 209–217 (2013).

    CAS  PubMed  Google Scholar 

  4. Ueno, M. & Yamashita, T. Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Curr. Opin. Neurobiol. 27, 8–15 (2014).

    CAS  PubMed  Google Scholar 

  5. Kioussis, D. & Pachnis, V. Immune and nervous systems: more than just a superficial similarity? Immunity 31, 705–710 (2009).

    CAS  PubMed  Google Scholar 

  6. Morimoto, K. & Nakajima, K. Role of the immune system in the development of the central nervous system. Front. Neurosci. 13, 916 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Boulanger, L. M. Immune proteins in brain development and synaptic plasticity. Neuron 64, 93–109 (2009).

    CAS  PubMed  Google Scholar 

  8. Schafer, D. P., Lehrman, E. K. & Stevens, B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61, 24–36 (2013).

    PubMed  Google Scholar 

  9. Knuesel, I. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10, 643–660 (2014).

    CAS  PubMed  Google Scholar 

  10. Estes, M. L. & McAllister, A. K. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Azevedo, F. A. C. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009).

    PubMed  Google Scholar 

  12. von Bartheld, C. S., Bahney, J. & Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

    Google Scholar 

  13. Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Ransohoff, R. M. & Cardona, A. E. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

    CAS  PubMed  Google Scholar 

  15. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    CAS  PubMed  Google Scholar 

  16. Yamaguchi, Y. & Miura, M. Programmed cell death in neurodevelopment. Dev. Cell 32, 478–490 (2015).

    CAS  PubMed  Google Scholar 

  17. Stoner, R. et al. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med. 370, 1209–1219 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang, W.-Q. et al. Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Rep. 9, 1635–1643 (2014).

    CAS  PubMed  Google Scholar 

  19. Lammert, C. R. et al. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580, 647–652 (2020). This study identifies a key role for AIM2 inflammasome activation in the purging of genetically compromised neural cells and reports that defects in this pathway can lead to behavioural abnormalities.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    CAS  PubMed  Google Scholar 

  21. Korin, B. et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 20, 1300–1309 (2017).

    CAS  PubMed  Google Scholar 

  22. Bulloch, K. et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J. Comp. Neurol. 508, 687–710 (2008).

    PubMed  Google Scholar 

  23. Tanabe, S. & Yamashita, T. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat. Neurosci. 21, 506–516 (2018).

    CAS  PubMed  Google Scholar 

  24. Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e24 (2020). This work illustrates that CD4 T cells are present in the adult brain and that MHC II-deficient mice have transcriptionally immature microglia and altered synapse functionality.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Silver, R. & Curley, J. P. Mast cells on the mind: new insights and opportunities. Trends Neurosci. 36, 513–521 (2013).

    CAS  PubMed  Google Scholar 

  26. Lenz, K. M. et al. Mast cells in the developing brain determine adult sexual behavior. J. Neurosci. 38, 8044–8059 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lenz, K. M. & Nelson, L. H. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front. Immunol. 9, 698 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 (2019).

    CAS  PubMed  Google Scholar 

  29. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016). In this study, microglia were isolated throughout development and bulk and single-cell RNA-seq, ATAC-seq and ChIP-seq were conducted, together identifying three distinct stages of microglial development.

    PubMed  Google Scholar 

  30. Hanamsagar, R. et al. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 65, 1504–1520 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rymo, S. F. et al. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS ONE 6, e15846 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marı́n-Teva, J. L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004). This study provides evidence that microglia may contribute to the developmental pruning of Purkinje cells via the production of superoxide ions.

    PubMed  Google Scholar 

  34. Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Frade, J. M. & Barde, Y.-A. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20, 35–41 (1998).

    CAS  PubMed  Google Scholar 

  36. Sedel, F., Béchade, C., Vyas, S. & Triller, A. Macrophage-derived tumor necrosis factor α, an early developmental signal for motoneuron death. J. Neurosci. 24, 2236–2246 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J. E., Sekino, Y. & Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 34, 2231–2243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013). This work finds that inactivating or transiently ablating microglia during development leads to a higher rate of cortical neuron apoptosis in a manner partially dependent on CX3CR1 signalling and IGF1 secretion.

    CAS  PubMed  Google Scholar 

  39. Pang, Y. et al. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav. 3, 503–514 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Nakanishi, M. et al. Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur. J. Neurosci. 25, 649–658 (2007).

    PubMed  Google Scholar 

  41. Reemst, K., Noctor, S. C., Lucassen, P. J. & Hol, E. M. The indispensable roles of microglia and astrocytes during brain development. Front. Hum. Neurosci. 10, 566 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Peri, F. & Nüsslein-Volhard, C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133, 916–927 (2008).

    CAS  PubMed  Google Scholar 

  43. Cunningham, C. L., Martínez-Cerdeño, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013). This work finds that microglia colonize proliferative zones during neurogenesis and phagocytose neural precursor cells, demonstrating that microglia contribute to the size of the progenitor pool.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020). This study identifies a role for microglia in eliminating myelin sheaths and finds that neuronal activity levels regulate microglia–neuron interactions and myelin engulfment by microglia.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nemes-Baran, A. D., White, D. R. & DeSilva, T. M. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 32, 108047 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014). Here, the authors find that the depletion of microglia promotes the outgrowth of dopaminergic axons and leads to abnormal cortical interneuron positioning.

    CAS  PubMed  Google Scholar 

  48. Pont-Lezica, L. et al. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur. J. Neurosci. 39, 1551–1557 (2014).

    PubMed  Google Scholar 

  49. Lim, S.-H. et al. Neuronal synapse formation induced by microglia and interleukin 10. PLoS ONE 8, e81218 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, 12540 (2016). Using in vivo live imaging, the authors of this study observe that microglial contact with dendrites induces filopodia formation, whereas ablation of microglia decreases spine density and alters synaptic function.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Basilico, B. et al. Microglia shape presynaptic properties at developing glutamatergic synapses. Glia 67, 53–67 (2019).

    PubMed  Google Scholar 

  52. Weinhard, L. et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9, 1228 (2018). This study uses a combination of confocal and electron microscopy approaches to study microglia–synapse interactions and finds that microglia ‘nibble’ pre-synaptic and post-synaptic structures and that their contact induces filopodia formation on neuronal spines.

    PubMed  PubMed Central  Google Scholar 

  53. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012). This work reports that microglia engulf pieces of presynaptic elements in a manner that matches the synaptic pruning stage of visual system development and requires complement signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011). This study finds synaptic elements internalized in microglia and also analyses Cx3cr1-knockout mice (which lack microglia) and reports alterations in spine density and synaptic function.

    CAS  PubMed  Google Scholar 

  55. Filipello, F. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48, 979–991 (2018).

    CAS  PubMed  Google Scholar 

  56. Bialas, A. R. & Stevens, B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773–1782 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Park, J., Jung, E., Lee, S.-H. & Chung, W.-S. CDC50A dependent phosphatidylserine exposure induces inhibitory post-synapse elimination by microglia. Preprint at bioRxiv https://doi.org/10.1101/2020.04.25.060616 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020). The authors herein report that microglia can engulf synaptic elements via phosphatidylserine–TREM2 signalling and that phosphatidylserine is exposed at higher rates during periods of synaptic pruning in the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, T. et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 39, e104136 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheadle, L. et al. Sensory experience engages microglia to shape neural connectivity through a non-phagocytic mechanism. Neuron 108, 451–468.e9 (2020). This study reports an independent mechanism of microglia-regulated spine elimination that does not depend on complement or phagocytosis, but instead involves microglial TWEAK and neuronal FN14 signalling, which induces spine loss following sensory experience.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hammond, T. R., Robinton, D. & Stevens, B. Microglia and the brain: complementary partners in development and disease. Annu. Rev. Cell Dev. Biol. 34, 523–544 (2018).

    CAS  PubMed  Google Scholar 

  62. Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: new roles for the synaptic stripper. Neuron 77, 10–18 (2013).

    CAS  PubMed  Google Scholar 

  63. Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Rojo, R. et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10, 3215 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Han, J., Harris, R. A. & Zhang, X.-M. An updated assessment of microglia depletion: current concepts and future directions. Mol. Brain 10, 25 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Dubbelaar, M. L., Kracht, L., Eggen, B. J. L. & Boddeke, E. W. G. M. The kaleidoscope of microglial phenotypes. Front. Immunol. 9, 1753 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Petrelli, F., Pucci, L. & Bezzi, P. Astrocytes and microglia and their potential link with autism spectrum disorders. Front. Cell. Neurosci. 10, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018). This study reports an association between ASD and the upregulation of microglia-related and complement-related genes in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W. & Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005).

    CAS  PubMed  Google Scholar 

  70. Suzuki, K. et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 70, 49–58 (2013).

    PubMed  Google Scholar 

  71. Morgan, J. T. et al. Abnormal microglial–neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res. 1456, 72–81 (2012).

    CAS  PubMed  Google Scholar 

  72. Edmonson, C., Ziats, M. N. & Rennert, O. M. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol. Autism 5, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Morgan, J. T. et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68, 368–376 (2010).

    PubMed  Google Scholar 

  74. Radewicz, K., Garey, L. J., Gentleman, S. M. & Reynolds, R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J. Neuropathol. Exp. Neurol. 59, 137–150 (2000).

    CAS  PubMed  Google Scholar 

  75. Bayer, T. A., Buslei, R., Havas, L. & Falkai, P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci. Lett. 271, 126–128 (1999).

    CAS  PubMed  Google Scholar 

  76. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    CAS  PubMed  Google Scholar 

  77. Chen, S.-K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. VanRyzin, J. W., Yu, S. J., Perez-Pouchoulen, M. & McCarthy, M. M. Temporary depletion of microglia during the early postnatal period induces lasting sex-dependent and sex-independent effects on behavior in rats. eNeuro 3, ENEURO.0297-16.2016 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Xu, Z.-X. et al. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat. Commun. 11, 1797 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ben-Yehuda, H. et al. Maternal type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol. Psychiatry 25, 1050–1067 (2020).

    CAS  PubMed  Google Scholar 

  81. Ikezu, S. et al. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioural abnormalities. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0671-2 (2020). This study finds that depleting and subsequently repopulating microglia following MIA is sufficient to correct autism-like behaviours, layer V cortical neuron electrophysiologic dysfunction, microglia–neuron interaction frequency and spine density.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Delpech, J.-C. et al. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav. Immun. 57, 79–93 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Bolton, J. L. et al. Gestational exposure to air pollution alters cortical volume, microglial morphology, and microglia-neuron interactions in a sex-specific manner. Front. Synaptic Neurosci. 9, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Sanagi, T. et al. Segmented Iba1-positive processes of microglia in autism model marmosets. Front. Cell. Neurosci. 13, 344 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sellgren, C. M. et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22, 374–385 (2019). This work illustrates that microglia-like cells derived from patients with schizophrenia have a higher rate of engulfing synaptic structures that corresponds with an increased rate of C3 deposition on neurons, suggesting that excessive complement-mediated microglial synapse engulfment may contribute to schizophrenia aetiology.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Okun, E., Griffioen, K. J. & Mattson, M. P. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 34, 269–281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Barak, B., Feldman, N. & Okun, E. Toll-like receptors as developmental tools that regulate neurogenesis during development: an update. Front. Neurosci. 8, 272 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Chen, C.-Y., Shih, Y.-C., Hung, Y.-F. & Hsueh, Y.-P. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J. Biomed. Sci. 26, 90 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hanke, M. L. & Kielian, T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin. Sci. 121, 367–387 (2011).

    CAS  Google Scholar 

  90. Liu, H.-Y., Chen, C.-Y. & Hsueh, Y.-P. Innate immune responses regulate morphogenesis and degeneration: roles of Toll-like receptors and Sarm1 in neurons. Neurosci. Bull. 30, 645–654 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Kaul, D. et al. Expression of Toll-like receptors in the developing brain. PLoS ONE 7, e37767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bsibsi, M., Ravid, R., Gveric, D. & van Noort, J. M. Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013–1021 (2002).

    CAS  PubMed  Google Scholar 

  94. Olson, J. K. & Miller, S. D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916–3924 (2004).

    CAS  PubMed  Google Scholar 

  95. Park, S. J. et al. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci. Rep. 5, 8502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shechter, R. et al. Hypothalamic neuronal toll-like receptor 2 protects against age-induced obesity. Sci. Rep. 3, 1254 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Okun, E. et al. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc. Natl Acad. Sci. USA 107, 15625–15630 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ritchie, L. et al. Toll-like receptor 3 activation impairs excitability and synaptic activity via TRIF signalling in immature rat and human neurons. Neuropharmacology 135, 1–10 (2018).

    CAS  PubMed  Google Scholar 

  99. Okun, E. et al. Evidence for a developmental role for TLR4 in learning and memory. PLoS ONE 7, e47522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kashima, D. T. & Grueter, B. A. Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior. Proc. Natl Acad. Sci. USA 114, 8865–8870 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, H.-Y. et al. TLR7 negatively regulates dendrite outgrowth through the Myd88–c-Fos–IL-6 pathway. J. Neurosci. 33, 11479–11493 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hung, Y.-F., Chen, C.-Y., Li, W.-C., Wang, T.-F. & Hsueh, Y.-P. Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain Behav. Immun. 72, 101–113 (2018).

    CAS  PubMed  Google Scholar 

  103. Khariv, V. et al. Toll-like receptor 9 deficiency impacts sensory and motor behaviors. Brain Behav. Immun. 32, 164–172 (2013).

    CAS  PubMed  Google Scholar 

  104. Lin, C.-W. & Hsueh, Y.-P. Sarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice. Brain Behav. Immun. 37, 142–151 (2014).

    CAS  PubMed  Google Scholar 

  105. Missig, G. et al. Sex-dependent neurobiological features of prenatal immune activation via TLR7. Mol. Psychiatry 25, 2330–2341 (2020).

    CAS  PubMed  Google Scholar 

  106. Chen, C.-Y., Liu, H.-Y. & Hsueh, Y.-P. TLR3 downregulates expression of schizophrenia gene Disc1 via MYD88 to control neuronal morphology. EMBO Rep. 18, 169–183 (2017).

    CAS  PubMed  Google Scholar 

  107. Patterson, P. H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res. 204, 313–321 (2009).

    CAS  PubMed  Google Scholar 

  108. Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J. & Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun. 26, 607–616 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

    CAS  PubMed  Google Scholar 

  110. Kennedy, R. H. & Silver, R. in Neuroscience in the 21st Century (eds Pfaff, D. W. & Volkow, N. D.) 1–41 (Springer, 2016).

  111. Borsini, A., Zunszain, P. A., Thuret, S. & Pariante, C. M. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 38, 145–157 (2015).

    CAS  PubMed  Google Scholar 

  112. Filiano, A. J., Gadani, S. P. & Kipnis, J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat. Rev. Neurosci. 18, 375–384 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zheng, C., Zhou, X.-W. & Wang, J.-Z. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl. Neurodegener. 5, 7 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Allan, S. M. & Rothwell, N. J. Cytokines and acute neurodegeneration. Nat. Rev. Neurosci. 2, 734–744 (2001).

    CAS  PubMed  Google Scholar 

  115. Arvin, B., Neville, L. F., Barone, F. C. & Feuerstein, G. Z. The role of inflammation and cytokines in brain injury. Neurosci. Biobehav. Rev. 20, 445–452 (1996).

    CAS  PubMed  Google Scholar 

  116. Carpentier, P. A. & Palmer, T. D. Immune influence on adult neural stem cell regulation and function. Neuron 64, 79–92 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron 64, 61–78 (2009).

    CAS  PubMed  Google Scholar 

  118. Sims, J. E. & Smith, D. E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102 (2010).

    CAS  PubMed  Google Scholar 

  119. Park, S.-Y., Kang, M.-J. & Han, J.-S. Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Mol. Brain 11, 39 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. de la Mano, A. et al. Role of interleukin-1β in the control of neuroepithelial proliferation and differentiation of the spinal cord during development. Cytokine 37, 128–137 (2007).

    PubMed  Google Scholar 

  121. Gougeon, P.-Y. et al. The pro-inflammatory cytokines IL-1β and TNFα are neurotrophic for enteric neurons. J. Neurosci. 33, 3339–3351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu, M. D., Montgomery, S. L., Rivera-Escalera, F., Olschowka, J. A. & O’Banion, M. K. Sustained IL-1β expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin+ neural precursor cells. Brain Behav. Immun. 32, 9–18 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Garber, C. et al. Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat. Immunol. 19, 151–161 (2018). This study provides evidence that IL-1β production during viral infection has the capacity to drive defects in adult neurogenesis and cognitive impairments.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, X. et al. Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol. Cell. Neurosci. 36, 343–354 (2007).

    PubMed  Google Scholar 

  125. McPherson, C. A., Aoyama, M. & Harry, G. J. Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with hippocampal injury: differential regulatory pathways in the subgranular zone (SGZ) of the adolescent and mature mouse brain. Brain Behav. Immun. 25, 850–862 (2011).

    CAS  PubMed  Google Scholar 

  126. Zunszain, P. A. et al. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37, 939–949 (2012).

    CAS  PubMed  Google Scholar 

  127. Zhang, K., Xu, H., Cao, L., Li, K. & Huang, Q. Interleukin-1β inhibits the differentiation of hippocampal neural precursor cells into serotonergic neurons. Brain Res. 1490, 193–201 (2013).

    CAS  PubMed  Google Scholar 

  128. Crampton, S. J., Collins, L. M., Toulouse, A., Nolan, Y. M. & O’Keeffe, G. W. Exposure of foetal neural progenitor cells to IL-1β impairs their proliferation and alters their differentiation – a role for maternal inflammation? J. Neurochem. 120, 964–973 (2012).

    CAS  PubMed  Google Scholar 

  129. Ling, Z. D., Potter, E. D., Lipton, J. W. & Carvey, P. M. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol. 149, 411–423 (1998).

    CAS  PubMed  Google Scholar 

  130. Greco, S. J. & Rameshwar, P. Enhancing effect of IL-1α on neurogenesis from adult human mesenchymal stem cells: implication for inflammatory mediators in regenerative medicine. J. Immunol. 179, 3342–3350 (2007).

    CAS  PubMed  Google Scholar 

  131. Ajmone-Cat, M. A., Cacci, E., Ragazzoni, Y., Minghetti, L. & Biagioni, S. Pro-gliogenic effect of IL-1α in the differentiation of embryonic neural precursor cells in vitro. J. Neurochem. 113, 1060–1072 (2010).

    PubMed  Google Scholar 

  132. Giulian, D., Young, D. G., Woodward, J., Brown, D. C. & Lachman, L. B. Interleukin-1 is an astroglial growth factor in the developing brain. J. Neurosci. 8, 709–714 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Nolan, A. M., Nolan, Y. M. & O’Keeffe, G. W. IL-1β inhibits axonal growth of developing sympathetic neurons. Mol. Cell. Neurosci. 48, 142–150 (2011).

    CAS  PubMed  Google Scholar 

  134. Boato, F. et al. Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J. Neuroinflammation 8, 183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma, L. et al. Interleukin-1 beta guides the migration of cortical neurons. J. Neuroinflammation 11, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Gilmore, J. H., Fredrik Jarskog, L., Vadlamudi, S. & Lauder, J. M. Prenatal infection and risk for schizophrenia: IL-1 β, IL-6, and TNF α inhibit cortical neuron dendrite development. Neuropsychopharmacology 29, 1221–1229 (2004).

    CAS  PubMed  Google Scholar 

  137. Yoshida, T. et al. IL-1 receptor accessory protein-like 1 associated with mental retardation and Autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J. Neurosci. 31, 13485–13499 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yoshida, T. et al. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J. Neurosci. 32, 2588–2600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pavlowsky, A. et al. A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr. Biol. 20, 103–115 (2010).

    CAS  PubMed  Google Scholar 

  140. Piton, A. et al. Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum. Mol. Genet. 17, 3965–3974 (2008).

    CAS  PubMed  Google Scholar 

  141. Carrié, A. et al. A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat. Genet. 23, 25–31 (1999). This study identifies mutations in an IL-1RAP-related gene in patients with mental retardation.

    PubMed  Google Scholar 

  142. Gambino, F. et al. IL1RAPL1 controls inhibitory networks during cerebellar development in mice. Eur. J. Neurosci. 30, 1476–1486 (2009).

    PubMed  Google Scholar 

  143. Houbaert, X. et al. Target-specific vulnerability of excitatory synapses leads to deficits in associative memory in a model of intellectual disorder. J. Neurosci. 33, 13805–13819 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Molofsky, A. B., Savage, A. K. & Locksley, R. M. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42, 1005–1019 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gadani, S. P., Walsh, J. T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85, 703–709 (2015).

    CAS  PubMed  Google Scholar 

  146. Pomeshchik, Y. et al. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav. Immun. 44, 68–81 (2015).

    CAS  PubMed  Google Scholar 

  147. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018). This study illustrates that IL-33–ST2 signalling between astrocytes and microglia contributes to microglial synapse elimination during development.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Dohi, E. et al. Behavioral changes in mice lacking interleukin-33. eNeuro 4, ENEURO.0147-17.2017 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wiktor-Jedrzejczak, W. et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl Acad. Sci. USA 87, 4828–4832 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Dai, X.-M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    CAS  PubMed  Google Scholar 

  152. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012). Together with Wang et al. (2012), this study identifies IL-34 as an alternative ligand for CSF1R and shows that, whereas the canonical CSF1R ligand, CSF1, is necessary for microglial development, neuronally derived IL-34 is necessary for maintenance of the adult microglia population.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Luzina, I. G. et al. Regulation of inflammation by interleukin-4: a review of “alternatives”. J. Leukoc. Biol. 92, 753–764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gadani, S. P., Cronk, J. C., Norris, G. T. & Kipnis, J. IL-4 in the brain: a cytokine to remember. J. Immunol. 189, 4213–4219 (2012).

    CAS  PubMed  Google Scholar 

  156. Zhang, J. et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Preprint at bioRxiv https://doi.org/10.1101/2020.02.01.929646 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bhattarai, P. et al. IL4/STAT6 signaling activates neural stem cell proliferation and neurogenesis upon amyloid-β42 aggregation in adult zebrafish brain. Cell Rep. 17, 941–948 (2016).

    CAS  PubMed  Google Scholar 

  158. Wolf, S. A. et al. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB J. 23, 3121–3128 (2009).

    CAS  PubMed  Google Scholar 

  159. Wolf, S. A. et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 182, 3979–3984 (2009).

    CAS  PubMed  Google Scholar 

  160. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006). This study reports that the induction of neuronal activity in the hippocampus leads to T cell recruitment and microglial activation and that immune-deficient mice have impairments in adult hippocampal neurogenesis and memory, providing evidence that immune cells contribute to proper brain function.

    CAS  PubMed  Google Scholar 

  161. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010). This work demonstrates that IL-4-producing T cells contribute to proper cognitive function.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, J. et al. IL-9 and Th9 cells in health and diseases — from tolerance to immunopathology. Cytokine Growth Factor Rev. 37, 47–55 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Fontaine, R. H. et al. IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ. 15, 1542–1552 (2008).

    CAS  PubMed  Google Scholar 

  164. Mehler, M. F., Rozental, R., Dougherty, M., Spray, D. C. & Kessler, J. A. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 362, 62–65 (1993).

    CAS  PubMed  Google Scholar 

  165. Mesples, B., Fontaine, R. H., Lelievre, V., Launay, J.-M. & Gressens, P. Neuronal TGF-β1 mediates IL-9/mast cell interaction and exacerbates excitotoxicity in newborn mice. Neurobiol. Dis. 18, 193–205 (2005).

    CAS  PubMed  Google Scholar 

  166. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    CAS  PubMed  Google Scholar 

  167. Walsh, J. G., Muruve, D. A. & Power, C. Inflammasomes in the CNS. Nat. Rev. Neurosci. 15, 84–97 (2014).

    CAS  PubMed  Google Scholar 

  168. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).

    CAS  PubMed  Google Scholar 

  169. McKinnon, P. J. Maintaining genome stability in the nervous system. Nat. Neurosci. 16, 1523–1529 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. McKinnon, P. J. Genome integrity and disease prevention in the nervous system. Genes Dev. 31, 1180–1194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wu, P.-J., Liu, H.-Y., Huang, T.-N. & Hsueh, Y.-P. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Sci. Rep. 6, 32405 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Noris, M. & Remuzzi, G. Overview of complement activation and regulation. Semin. Nephrol. 33, 479–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Mastellos, D. C., DeAngelis, R. A. & Lambris, J. D. Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis. Semin. Immunol. 25, 29–38 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Veerhuis, R., Nielsen, H. M. & Tenner, A. J. Complement in the brain. Mol. Immunol. 48, 1592–1603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Rutkowski, M. J. et al. Complement and the central nervous system: emerging roles in development, protection and regeneration. Immunol. Cell Biol. 88, 781–786 (2010).

    CAS  PubMed  Google Scholar 

  177. Lubbers, R., van Essen, M. F., van Kooten, C. & Trouw, L. A. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 188, 183–194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    CAS  PubMed  Google Scholar 

  179. Gasque, P., Fontaine, M. & Morgan, B. P. Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J. Immunol. 154, 4726–4733 (1995).

    CAS  PubMed  Google Scholar 

  180. Walker, D. G. & McGeer, P. L. Complement gene expression in human brain: comparison between normal and Alzheimer disease cases. Mol. Brain Res. 14, 109–116 (1992).

    CAS  PubMed  Google Scholar 

  181. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This study finds C1q deposition on neurons during the synaptic pruning period and reports visual system synaptic pruning defects in C1q-deficient and C3-deficient mice, suggesting that the complement cascade tags unnecessary synapses for elimination.

    CAS  PubMed  Google Scholar 

  182. Chung, W.-S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013). Here, the authors illustrate that astrocytes can engulf synaptic elements and express MEGF10 and MERTK; moreover, they find synaptic pruning defects in MEGF10-deficient and MERTK-deficient mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Iram, T. et al. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. J. Neurosci. 36, 5185–5192 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Györffy, B. A. et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc. Natl Acad. Sci. USA 115, 6303–6308 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Martin, S. J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556 (1995).

    CAS  PubMed  Google Scholar 

  186. Segawa, K. & Nagata, S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015).

    CAS  PubMed  Google Scholar 

  187. Scott-Hewitt, N. J. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Barclay, A. N. & Brown, M. H. The SIRP family of receptors and immune regulation. Nat. Rev. Immunol. 6, 457–464 (2006).

    CAS  PubMed  Google Scholar 

  189. Toth, A. B. et al. Synapse maturation by activity-dependent ectodomain shedding of SIRPα. Nat. Neurosci. 16, 1417–1425 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Lehrman, E. K. et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100, 120–134 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Cong, Q., Soteros, B. M., Wollet, M., Kim, J. H. & Sia, G.-M. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat. Neurosci. 23, 1067–1078 (2020). This study finds that SRPX2 can directly bind C1q and that SRPX2-deficient mice have higher levels of C3 deposition and synapse engulfment by microglia, suggesting that SRPX2 acts antagonistically to complement to limit synapse elimination.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016). This work identifies schizophrenia-linked C4 mutations that lead to heightened levels of C4A expression, with C4 localizing to neurons, providing further evidence for excessive complement activity leading to synapse loss in cases of neurological dysfunction.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Håvik, B. et al. The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia. Biol. Psychiatry 70, 35–42 (2011).

    PubMed  Google Scholar 

  194. Fang, C., Garbuzova-Davis, S., Tan, J. & Obregon, D. C1q as a regulator of brain development: implications for autism spectrum disorders. Brain Disord. Ther. 4, 1 (2015).

    CAS  Google Scholar 

  195. Corbett, B. A. et al. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol. Psychiatry 12, 292–306 (2007).

    CAS  PubMed  Google Scholar 

  196. Warren, R. P., Yonk, J., Burger, R. W., Odell, D. & Warren, W. L. DR-positive T cells in autism: association with decreased plasma levels of the complement C4B protein. Neuropsychobiology 31, 53–57 (1995).

    CAS  PubMed  Google Scholar 

  197. Odell, D. et al. Confirmation of the association of the C4B null allelle in autism. Hum. Immunol. 66, 140–145 (2005).

    CAS  PubMed  Google Scholar 

  198. Warren, R. P., Burger, R. A., Odell, D., Torres, A. R. & Warren, W. L. Decreased plasma concentrations of the C4B complement protein in autism. Arch. Pediatr. Adolesc. Med. 148, 180–183 (1994).

    CAS  PubMed  Google Scholar 

  199. Mednick, S. A., Machon, R. A., Huttunen, M. O. & Bonett, D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45, 189–192 (1988).

    CAS  PubMed  Google Scholar 

  200. Brown, A. S. et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch. Gen. Psychiatry 61, 774–780 (2004).

    PubMed  Google Scholar 

  201. Chess, S. Autism in children with congenital rubella. J. Autism Child. Schizophr. 1, 33–47 (1971).

    CAS  PubMed  Google Scholar 

  202. Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 24, 881–897 (2010).

    PubMed  Google Scholar 

  203. Solek, C. M., Farooqi, N., Verly, M., Lim, T. K. & Ruthazer, E. S. Maternal immune activation in neurodevelopmental disorders. Dev. Dyn. 247, 588–619 (2018).

    PubMed  Google Scholar 

  204. Estes, M. L. & McAllister, A. K. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat. Rev. Neurosci. 16, 469–486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Bilbo, S. D., Block, C. L., Bolton, J. L., Hanamsagar, R. & Tran, P. K. Beyond infection - maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp. Neurol. 299, 241–251 (2018).

    CAS  PubMed  Google Scholar 

  206. Khandaker, G. M. et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2, 258–270 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Careaga, M., Van de Water, J. & Ashwood, P. Immune dysfunction in autism: a pathway to treatment. Neurotherapeutics 7, 283–292 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Pardo, C. A., Vargas, D. L. & Zimmerman, A. W. Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry 17, 485–495 (2005).

    PubMed  Google Scholar 

  209. Meyer, U. Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol. Psychiatry 75, 307–315 (2014).

    CAS  PubMed  Google Scholar 

  210. Afroz, K. F. & Alviña, K. Maternal elevated salt consumption and the development of autism spectrum disorder in the offspring. J. Neuroinflammation 16, 265 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Bolton, J. L. et al. Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice. Environ. Health Perspect. 121, 1075–1082 (2013).

    PubMed  PubMed Central  Google Scholar 

  212. McCullough, L. E. et al. Maternal inflammatory diet and adverse pregnancy outcomes: circulating cytokines and genomic imprinting as potential regulators? Epigenetics 12, 688–697 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Giovanoli, S. et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339, 1095–1099 (2013). This study illustrates that both MIA and peripubertal stress give rise to adult behavioural abnormalities and pathological neurochemistry and further finds that a second hit of peripubertal stress in MIA offspring induces microgliosis not seen with either one of the environmental stressors alone.

    CAS  PubMed  Google Scholar 

  214. Lauritsen, M. B. Autism spectrum disorders. Eur. Child. Adolesc. Psychiatry 22, 37–42 (2013).

    Google Scholar 

  215. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013).

  216. Garbett, K. et al. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 30, 303–311 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Jyonouchi, H., Geng, L., Streck, D. L. & Toruner, G. A. Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes. J. Neuroimmunol. 238, 73–80 (2011).

    CAS  PubMed  Google Scholar 

  218. Chez, M. G., Dowling, T., Patel, P. B., Khanna, P. & Kominsky, M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr. Neurol. 36, 361–365 (2007).

    PubMed  Google Scholar 

  219. Estes, M. L. et al. Baseline immunoreactivity before pregnancy and poly(I:C) dose combine to dictate susceptibility and resilience of offspring to maternal immune activation. Brain Behav. Immun. 88, 619–630 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Lammert, C. R. et al. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol. 201, 845–850 (2018).

    CAS  PubMed  Google Scholar 

  221. Estes, M. L., Elmer, B. M., Carter, C. C. & McAllister, A. K. Maternal immune activation causes age-specific changes in cytokine receptor expression in offspring throughout development. Preprint at bioRxiv https://doi.org/10.1101/490466 (2018).

    Article  Google Scholar 

  222. Garay, P. A., Hsiao, E. Y., Patterson, P. H. & McAllister, A. K. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun. 31, 54–68 (2013).

    CAS  PubMed  Google Scholar 

  223. Smith, S. E. P., Li, J., Garbett, K., Mirnics, K. & Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702 (2007). This study identifies that IL-6 is both necessary and sufficient for the behavioural abnormalities observed in offspring of mothers exposed to poly(I:C).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Wu, W.-L., Hsiao, E. Y., Yan, Z., Mazmanian, S. K. & Patterson, P. H. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav. Immun. 62, 11–23 (2017).

    CAS  PubMed  Google Scholar 

  225. Smith, S. E. P., Elliott, R. M. & Anderson, M. P. Maternal immune activation increases neonatal mouse cortex thickness and cell density. J. Neuroimmune Pharmacol. 7, 529–532 (2012).

    PubMed  PubMed Central  Google Scholar 

  226. Ben-Reuven, L. & Reiner, O. Dynamics of cortical progenitors and production of subcerebral neurons are altered in embryos of a maternal inflammation model for autism. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0594-y (2019).

    Article  PubMed  Google Scholar 

  227. Rudolph, M. D. et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci. 21, 765–772 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016). This study identifies IL-17A as another cytokine in addition to IL-6 that is both necessary and sufficient for the cortical and behavioural abnormalities seen in offspring of mothers exposed to poly(I:C); moreover, through injection of IL-17A into the fetal brain, this work demonstrates that IL-17A signalling can act in the developing brain to modulate brain maturation and promote the development of autism-related behaviours.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  230. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  PubMed  Google Scholar 

  231. Parracho, H. M., Bingham, M. O., Gibson, G. R. & McCartney, A. L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991 (2005).

    PubMed  Google Scholar 

  232. Finegold, S. M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses 77, 270–274 (2011).

    PubMed  Google Scholar 

  233. Coury, D. L. et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 130, 160–168 (2012).

    Google Scholar 

  234. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013). This study reports that MIA offspring have gastrointestinal barrier defects and dysbiosis of gut microbiota, and that treatment of MIA offspring with a single bacterial species or key metabolites is sufficient to ameliorate behavioural abnormalities.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017). This work, together with Lammert et al. (2018), identifies that maternal gut microbiota which promote TH17 cell differentiation lend to a heightened susceptibility of the offspring to altered neurodevelopment and behavioural abnormalities following MIA.

    PubMed  PubMed Central  Google Scholar 

  236. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017). This study finds that maternal poly(I:C) exposure leads to cortical hyperactivity in offspring and that modulation of this circuitry explains some of the autism-like behaviours observed in the adult offspring.

    PubMed  Google Scholar 

  237. Grzadzinski, R., Lord, C., Sanders, S. J., Werling, D. & Bal, V. H. Children with autism spectrum disorder who improve with fever: insights from the Simons Simplex Collection. Autism Res. 11, 175–184 (2018).

    PubMed  Google Scholar 

  238. Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577, 249–253 (2020).

    CAS  PubMed  Google Scholar 

  239. Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose work could not be referenced in this review due to space limitations. We thank members of the Lukens lab and the Center for Brain Immunology and Glia (BIG) for valuable discussions. This work was supported by The National Institutes of Health/National Institute of Neurological Disorders and Stroke (R01NS106383; awarded to J.R.L.), The National Institutes of Health/National Institute of Mental Health (R21MH120412-01; awarded to J.R.L.), The Simons Foundation Autism Research Initiative (Pilot Award 515305 to J.R.L.), and The Owens Family Foundation (Awarded to J.R.L.). K.E.Z. was supported by a Cell and Molecular Biology Training Grant (T32GM008136).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing, review and editing of the manuscript.

Corresponding authors

Correspondence to Kristine E. Zengeler or John R. Lukens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information

Nature Reviews Immunology thanks A. Molofsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Axon tract fasciculation

Collective axon growth in a bundle that will eventually constitute a nerve tract.

Segmented filamentous bacteria

A group of commensal bacteria that attach to the ileal epithelium of mice and promote T helper 17 cell development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zengeler, K.E., Lukens, J.R. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 21, 454–468 (2021). https://doi.org/10.1038/s41577-020-00487-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-00487-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing