Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue

Abstract

Lightweight materials that are both highly compressible and resilient under large cyclic strains can be used in a variety of applications1,2,3,4,5,6,7,8. Carbon nanotubes offer a combination of elasticity, mechanical resilience and low density9, and these properties have been exploited in nanotube-based foams10,11,12,13,14 and aerogels15,16. However, all nanotube-based foams and aerogels developed so far undergo structural collapse15 or significant plastic deformation with a reduction in compressive strength10,11,13,14 when they are subjected to cyclic strain. Here, we show that an inelastic aerogel made of single-walled carbon nanotubes can be transformed into a superelastic material by coating it with between one and five layers of graphene nanoplates. The graphene-coated aerogel exhibits no change in mechanical properties after more than 1 × 106 compressive cycles, and its original shape can be recovered quickly after compression release. Moreover, the coating does not affect the structural integrity of the nanotubes or the compressibility and porosity of the nanotube network. The coating also increases Young's modulus and energy storage modulus by a factor of 6, and the loss modulus by a factor of 3. We attribute the superelasticity and complete fatigue resistance to the graphene coating strengthening the existing crosslinking points or ‘nodes’ in the aerogel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microstructure of graphene-coated single-walled carbon nanotube aerogels.
Figure 2: Reorganization of graphene-coated nanotubes under compression.
Figure 3: Mechanical properties of graphene-coated aerogels.
Figure 4: Graphene does not lubricate the nodes between nanotubes.

Similar content being viewed by others

References

  1. Nesterenko, V. F. Dynamics of Heterogeneous Materials (Springer, 2001).

    Book  Google Scholar 

  2. Hilyard, N. C. & Cunningham, A. Low Density Cellular Plastics: Physical Basis of Behavior (Chapman and Hall, 1994).

    Book  Google Scholar 

  3. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties (Pergamon, 1997).

    Book  Google Scholar 

  4. Kong, X. & Qiao, Y. Improvement of recoverability of a nanoporous energy absorption system by using chemical admixture. Appl. Phys. Lett. 86, 151919 (2005).

    Article  Google Scholar 

  5. Gibson, L. J. Mechanical behavior of metallic foams. Annu. Rev. Mater. Sci. 30, 191–227 (2000).

    Article  CAS  Google Scholar 

  6. Fernández, J. A. et al. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 175, 675–679 (2008).

    Article  Google Scholar 

  7. Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    Article  CAS  Google Scholar 

  8. He, X. & Antonelli, D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. Angew. Chem. Int. Ed. 41, 214–229 (2002).

    Article  CAS  Google Scholar 

  9. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, 2001).

    Book  Google Scholar 

  10. Cao, A., Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N. & Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005).

    Article  CAS  Google Scholar 

  11. Suhr, J. et al. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nature Nanotech. 2, 417–421 (2007).

    Article  CAS  Google Scholar 

  12. Aliev, A. E. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323, 1575–1578 (2009).

    Article  CAS  Google Scholar 

  13. Gui, X. et al. Carbon nanotube sponges. Adv. Mater. 22, 617–621 (2010).

    Article  CAS  Google Scholar 

  14. Xu, M., Futaba, D. N., Yamada, T., Yumura, M. & Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from –196 °C to 1000 °C. Science 330, 1364–1368 (2010).

    Article  CAS  Google Scholar 

  15. Bryning, M. B. et al. Carbon nanotube aerogels. Adv. Mater. 19, 661–664 (2007).

    Article  CAS  Google Scholar 

  16. Kim, K. H., Vural, M. & Islam, M. F. Single wall carbon nanotube aerogel-based elastic conductors. Adv. Mater. 23, 2865–2869 (2011).

    Article  CAS  Google Scholar 

  17. Hough, L. A., Islam, M. F., Janmey, P. A. & Yodh, A. G. Viscoelasticty of single wall carbon nanotube suspensions. Phys. Rev. Lett. 93, 168102 (2004).

    Article  CAS  Google Scholar 

  18. Hough, L. A., Islam, M. F., Hammouda, B., Yodh, A. G. & Heiney, P. A. Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett. 6, 313–317 (2006).

    Article  CAS  Google Scholar 

  19. Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T. & Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003).

    Article  CAS  Google Scholar 

  20. Frank, O. et al. Raman 2D-band splitting in graphene: theory and experiment. ACS Nano 5, 2231–2239 (2011).

    Article  CAS  Google Scholar 

  21. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010).

    Article  CAS  Google Scholar 

  22. Fitzer, E., Frohs, W. & Heine, M. Optimization of stabilization and carbonization treatment of pan fibres and structural characterization of the resulting carbon fibres. Carbon 24, 387–395 (1986).

    Article  CAS  Google Scholar 

  23. Faugeras, C. et al. Few-layer graphene on SiC, pyrolitic graphite, and graphene: a Raman scattering study. Appl. Phys. Lett. 92, 011914 (2008).

    Article  Google Scholar 

  24. Robinson, J. A. et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale. Nano Lett. 9, 2873–2876 (2009).

    Article  CAS  Google Scholar 

  25. Dato, A. & Frenklach, M. Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors. New J. Phys. 12, 125013 (2010).

    Article  Google Scholar 

  26. Klug, H. & Alexander, L. E. X-Ray Diffraction Procedures (Wiley, 1974).

    Google Scholar 

  27. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Kowalewski and M. Zhong for providing polyacrylonitrile polymer, and W. Goldberg, K. N. Dahl, M. Widom, M. Deserno, A. Roy and V. Varshney for valuable discussions. This work was supported by the National Science Foundation (grant nos DMR-0645596, CBET-0933510 and DMR-0619424), the Sloan Foundation, the American Chemical Society Petroleum Research Fund and the Korea Institute of Energy Research.

Author information

Authors and Affiliations

Authors

Contributions

M.F.I. conceived the project. K.H.K., Y.O. and M.F.I. designed the experiments. K.H.K. and Y.O. synthesized the aerogels and performed the experiments. K.H.K., Y.O. and M.F.I. analysed the data. K.H.K., Y.O. and M.F.I. wrote the manuscript.

Corresponding author

Correspondence to M. F. Islam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 394 kb)

Supplementary movie

Supplementary movie (WMV 2736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Oh, Y. & Islam, M. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nature Nanotech 7, 562–566 (2012). https://doi.org/10.1038/nnano.2012.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing