Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is there a common molecular pathway for addiction?

Abstract

Drugs of abuse have very different acute mechanisms of action but converge on the brain's reward pathways by producing a series of common functional effects after both acute and chronic administration. Some similar actions occur for natural rewards as well. Researchers are making progress in understanding the molecular and cellular basis of these common effects. A major goal for future research is to determine whether such common underpinnings of addiction can be exploited for the development of more effective treatments for a wide range of addictive disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Highly simplified scheme of converging acute actions of drugs of abuse on the VTA-NAc.
Figure 2: Highly simplified scheme of some common, chronic actions of drugs of abuse on the VTA-NAc.

Ann Thomson

Similar content being viewed by others

References

  1. Koob, G.F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    Article  CAS  Google Scholar 

  2. Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128 (2001).

    Article  CAS  Google Scholar 

  3. Di Chiara, G. et al. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47 (suppl.) 227–241 (2004).

    Article  CAS  Google Scholar 

  4. Volkow, N.D., Fowler, J.S., Wang, G.J. & Swanson, J.M. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol. Psychiatry 9, 557–569 (2004).

    Article  CAS  Google Scholar 

  5. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  Google Scholar 

  6. Boehm, S.L., II et al. gamma-Aminobutyric acid A receptor subunit mutant mice: new perspectives on alcohol actions. Biochem. Pharmacol. 68, 1581–1602 (2004).

    Article  CAS  Google Scholar 

  7. Dani, J.A., Ji, D. & Zhou, F.M. Synaptic plasticity and nicotine addiction. Neuron 31, 349–352 (2001).

    Article  CAS  Google Scholar 

  8. Howlett, A.C. et al. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 47 (suppl.) 345–358 (2004).

    Article  CAS  Google Scholar 

  9. Everitt, B.J. & Wolf, M.E. Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312–3320 (2002).

    Article  CAS  Google Scholar 

  10. Robinson, T.E. & Berridge, K.C. Addiction. Annu. Rev. Psychol. 54, 25–53 (2003).

    Article  Google Scholar 

  11. Hyman, S.E. & Malenka, R.C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703 (2001).

    Article  CAS  Google Scholar 

  12. Everitt, B.J., Cardinal, R.N., Parkinson, J.A. & Robbins, T.W. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann. NY Acad. Sci. 985, 233–250 (2003).

    Article  Google Scholar 

  13. Kalivas, P.W. Glutamate systems in cocaine addiction. Curr. Opin. Pharmacol. 4, 23–29 (2004).

    Article  CAS  Google Scholar 

  14. Kelley, A.E. & Berridge, K.C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).

    Article  CAS  Google Scholar 

  15. Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    Article  CAS  Google Scholar 

  16. Avena, N.M. & Hoebel, B.G. A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 122, 17–20 (2003).

    Article  CAS  Google Scholar 

  17. Heinrichs, S.C. & Koob, G.F. Corticotropin-releasing factor in brain: a role in activation, arousal and affect regulation. J. Pharmacol. Exp. Ther. 311, 427–440 (2004).

    Article  CAS  Google Scholar 

  18. Kalivas, P.W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45, 647–650 (2005).

    Article  CAS  Google Scholar 

  19. Saal, D., Dong, Y., Bonci, A. & Malenka, R.C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003).

    Article  CAS  Google Scholar 

  20. Borgland, S.L., Malenka, R.C. & Bonci, A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J. Neurosci. 24, 7482–7490 (2004).

    Article  CAS  Google Scholar 

  21. Thomas, M.J. & Malenka, R.C. Synaptic plasticity in the mesolimbic dopamine system. Phil. Trans. R. Soc. Lond. B Biol. Sci. 358, 815–819 (2003).

    Article  CAS  Google Scholar 

  22. Kauer, J.A. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol. 66, 447–475 (2004).

    Article  CAS  Google Scholar 

  23. Carlezon, W.A., Jr. & Nestler, E.J. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci. 25, 610–615 (2002).

    Article  CAS  Google Scholar 

  24. Bonci, A. & Williams, J.T. Increased probability of GABA release during withdrawal from morphine. J. Neurosci. 17, 796–803 (1997).

    Article  CAS  Google Scholar 

  25. Nestler, E.J. Molecular mechanisms of drug addiction. J. Neurosci. 12, 2439–2450 (1992).

    Article  CAS  Google Scholar 

  26. Lu, L., Grimm, J.W., Shaham, Y. & Hope, B.T. Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. J. Neurochem. 85, 1604–1613 (2003).

    Article  CAS  Google Scholar 

  27. Olson, V.G. et al. Regulation of drug reward by CREB: Evidence for two functionally distinct subregions of the ventral tegmental area. J. Neurosci. 25, 5553–5562 (2005).

    Article  CAS  Google Scholar 

  28. Walters, C.L., Godfrey, M., Li, X. & Blendy, J.A. Alterations in morphine-induced reward, locomotor activity, and thermoregulation in CREB-deficient mice. Brain Res. 1032, 193–199 (2005).

    Article  CAS  Google Scholar 

  29. Walters, C.L., Cleck, J.N., Kuo, Y.C. & Blendy, J.A. mu-Opioid receptor and CREB activation are required for nicotine reward. Neuron 46, 933–943 (2005).

    Article  CAS  Google Scholar 

  30. Bolanos, C.A. & Nestler, E.J. Neurotrophic mechanisms in drug addiction. Neuromol. Med. 5, 69–83 (2004).

    Article  CAS  Google Scholar 

  31. Pierce, R.C. & Bari, A.A. The role of neurotrophic factors in psychostimulant-induced behavioral and neuronal plasticity. Rev. Neurosci. 12, 95–110 (2001).

    Article  CAS  Google Scholar 

  32. Lu, L. et al. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci. 24, 1604–1611 (2004).

    Article  CAS  Google Scholar 

  33. Hall, F.S., Drgonova, J., Goeb, M. & Uhl, G.R. Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28, 1485–1490 (2003).

    Article  CAS  Google Scholar 

  34. Nestler, E.J., Barrot, M. & Self, D.W. ΔFosB: A molecular switch for addiction. Proc. Natl. Acad. Sci. USA 98, 11042–11046 (2001).

    Article  CAS  Google Scholar 

  35. McClung, C.A. et al. ΔFosB: A molecular switch for long-term adaptation. Mol. Brain Res. 132, 146–154 (2004).

    Article  CAS  Google Scholar 

  36. McClung, C.A. & Nestler, E.J. Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nat. Neurosci. 6, 1208–1215 (2003).

    Article  CAS  Google Scholar 

  37. Shaw-Lutchman, T.Z. et al. Regional and cellular mapping of CRE-mediated transcription during naltrexone-precipitated morphine withdrawal. J. Neurosci. 22, 3663–3672 (2002).

    Article  CAS  Google Scholar 

  38. Shaw-Lutchman, T.Z., Impey, S., Storm, D. & Nestler, E.J. Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse 48, 10–17 (2003).

    Article  CAS  Google Scholar 

  39. Barrot, M. et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA 99, 11435–11440 (2002).

    Article  CAS  Google Scholar 

  40. Brunzell, D.H., Russell, D.S. & Picciotto, M.R. In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J. Neurochem. 84, 1431–1441 (2003).

    Article  CAS  Google Scholar 

  41. Pandey, S.C., Roy, A., Zhang, H. & Xu, T. Partial deletion of the cAMP response element-binding protein gene promotes alcohol-drinking behaviors. J. Neurosci. 24, 5022–5030 (2004).

    Article  CAS  Google Scholar 

  42. Constantinescu, A., Wu, M., Asher, O. & Diamond, I. CAMP-dependent protein kinase type I regulates ethanol-induced cAMP response element-mediated gene expression via activation of CREB-binding protein and inhibition of MAPK. J. Biol. Chem. 279, 43321–43329 (2004).

    Article  CAS  Google Scholar 

  43. Walters, C.L. & Blendy, J.A. Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J. Neurosci. 21, 9438–9444 (2001).

    Article  CAS  Google Scholar 

  44. Carlezon, W.A., Jr., Duman, R.S. & Nestler, E.J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).

    Article  CAS  Google Scholar 

  45. Self, D.W. et al. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J. Neurosci. 18, 1848–1859 (1998).

    Article  CAS  Google Scholar 

  46. Kreek, M.J. Drug addictions. Molecular and cellular endpoints. Ann. NY Acad. Sci. 937, 27–49 (2001).

    Article  CAS  Google Scholar 

  47. Yao, W.D. et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41, 625–638 (2004).

    Article  CAS  Google Scholar 

  48. Eisch, A.J. Adult neurogenesis: implications for psychiatry. Prog. Brain Res. 138, 315–342 (2002).

    Article  Google Scholar 

  49. Robinson, T.E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47 (suppl.) 33–46 (2004).

    Article  CAS  Google Scholar 

  50. Littleton, J. & Zieglgansberger, W. Pharmacological mechanisms of naltrexone and acamprosate in the prevention of relapse in alcohol dependence. Am. J. Addict. 12 (suppl.) S3–S11 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

Preparation of this review was supported by the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestler, E. Is there a common molecular pathway for addiction?. Nat Neurosci 8, 1445–1449 (2005). https://doi.org/10.1038/nn1578

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing