Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The dawn of the particle astronomy era in ultra-high-energy cosmic rays

Abstract

Cosmic rays are charged particles arriving at the Earth from space. Those at the highest energies are particularly interesting because the physical processes that could create or accelerate them are at the limit of our present knowledge. They also open the window to particle astronomy, as the magnetic fields along their paths are not strong enough to deflect their trajectories much from a straight line. The Pierre Auger Observatory is the largest cosmic-ray detector on Earth, and as such is beginning to resolve past observational disagreements regarding the origin and propagation of these particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of an extensive air-shower.
Figure 2: UHECR data from different experiments.
Figure 3: The Pierre Auger Southern Observatory.
Figure 4: Hillas diagram.

Similar content being viewed by others

References

  1. Auger, P. & Maze, R. Extensive cosmic showers in the atmosphere. C.R. Acad. Sci. II 207, 228–229 (1938)

    CAS  Google Scholar 

  2. Auger, P., Ehrenfest, P., Maze, R., Daudin, J. & Robley, A. F. Extensive cosmic-ray showers. Rev. Mod. Phys. 11, 288–291 (1939)

    Article  ADS  CAS  Google Scholar 

  3. Biermann, P. & Sigl, G. Introduction to cosmic rays. Lect. Notes Phys. 576, 1–26 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Biermann, P., Gaisser, T. & Stanev, T. The origin of galactic cosmic rays. Phys. Rev. D 51, 3450–3454 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Greisen, K. End to the cosmic ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966)

    Article  ADS  CAS  Google Scholar 

  6. Zatsepin, G. T. & Kuzmin, V. A. Upper limit of the spectrum of cosmic rays. Zh. Eksp. Teor. Fiz. Pisma Red. 4, 114–117 (1966)

    ADS  CAS  Google Scholar 

  7. Abbasi, R. et al. First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett. 100, 101101 (2008)First observation of the cosmic-ray flux suppression at the highest energies.

    Article  ADS  CAS  Google Scholar 

  8. Sakaki, N. et al. in Proc. 27th Int. Cosmic Ray Conf. (ICRC 2001) (eds Kampert, K. H., Hainzelmann, G. & Spierling G.) 333–336 (Copernicus Gesellschaft, 2001)

    Google Scholar 

  9. Sokolsky, P. & Thomson, G. B. Highest energy cosmic rays and results from the HiRes experiment. Preprint at 〈http://arXiv.org/abs/0706.1248v1〉 (2007)

  10. Watson, A. Recent results from the Pierre Auger Observatory – Including comparisons with data from AGASA and HiRes. Nucl. Instrum. Meth. A 588, 221–226 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Abraham, J. et al. Observation of the suppression of the flux of cosmic rays above 4×1019eV. Phys. Rev. Lett. 101, 061101 (2008)Confirmation of the cosmic-ray flux suppression at the highest energies.

    Article  ADS  CAS  Google Scholar 

  12. Abraham, J. et al. Correlation of the highest energy cosmic rays with nearby extragalactic objects. Science 318, 938–943 (2007)Discovery of cosmic-ray arrival direction anisotropy.

    Article  ADS  CAS  Google Scholar 

  13. Chiba, N. et al. Akeno giant air shower array (AGASA) covering 100-km2 area. Nucl. Instrum. Meth. A 311, 338–349 (1992)

    Article  ADS  Google Scholar 

  14. Pilkington, A. et al. in Proc. XVI Int. Workshop on Deep-Inelastic Scattering and Related Topics (DIS 2008) (eds Devenish, R. & Ferrando, J.) 10.3360/dis.2008.50 (Science Wise Publishing, 2008)

    Google Scholar 

  15. Abu-Zayyad, T. et al. The prototype high-resolution Fly's Eye cosmic ray detector. Nucl. Instrum. Meth. A 450, 253–269 (2000)

    Article  ADS  CAS  Google Scholar 

  16. De Marco, D., Blasi, P. & Olinto, A. V. On the statistical significance of the GZK feature in the spectrum of ultra high energy cosmic rays. Astropart. Phys. 20, 53–65 (2003)

    Article  ADS  Google Scholar 

  17. Takeda, M. et al. Energy determination in the Akeno giant air shower array experiment. Astropart. Phys. 19, 447–462 (2003)

    Article  ADS  Google Scholar 

  18. Kachelriess, M., Semikoz, D. V. & Tortola, M. A. New hadrons as ultra-high energy cosmic rays. Phys. Rev. D 68, 043005 (2003)

    Article  ADS  Google Scholar 

  19. Gibilisco, M. Monopolonium decay as a source of ultrahigh energy cosmic rays. Nucl. Phys. Proc. 100 (Suppl.). 357–359 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Deligny, O., Letessier-Selvon, A. & Parizot, E. Magnetic horizons of UHECR sources and the GZK feature. Astropart. Phys. 21, 609–615 (2004)

    Article  ADS  Google Scholar 

  21. Teshima, M. et al. in Proc. 28th Int. Cosmic Ray Conf. (ICRC 2003) (eds Kajita, T., Asaoka, Y., Kawachi, A., Matsubara, Y. & Sasaki, M.) 437–440 (Universal Academy, 2003)

    Google Scholar 

  22. Bellido, J. et al. in Proc. 28th Int. Cosmic Ray Conf. (ICRC 2003) (eds Kajita, T., Asaoka, Y., Kawachi, A., Matsubara, Y. & Sasaki, M.) 425–428 (Universal Academy, 2003)

    Google Scholar 

  23. Abbasi, R. U. et al. Search for cross-correlations of ultra-high-energy cosmic rays with BL Lacertae objects. Astrophys. J. 636, 680–684 (2006)

    Article  ADS  Google Scholar 

  24. Uchihori, Y. et al. Cluster analysis of extremely high energy cosmic rays in the northern sky. Astropart. Phys. 13, 151–160 (2000)

    Article  ADS  Google Scholar 

  25. Berezinsky, V. On transition from galactic to extragalactic cosmic rays. J. Phys. Conf. Ser. 47, 142–153 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Stanev, T. The transition from galactic to extragalactic cosmic rays. Nucl. Phys. Proc. 168 (Suppl.). 252–257 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Abraham, J. et al. Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Meth. A 523, 50–95 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Abraham, J. et al. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188–204 (2008)

    Article  ADS  Google Scholar 

  29. Sommers, P. in Proc. 29th Int. Cosmic Ray Conf. (ICRC 2005) Vol. 7 (eds Sripathi Acharya, B. et al.) 387–390 (Tata Institute of Fundamental Research, 2005)

    Google Scholar 

  30. Newton, D. in Proc. 30th Int. Cosmic Ray Conf. (ICRC 2007) (eds Caballero, R. et al.) 323–325 (Universidad Nacional Autonoma de Mexico, 2007)

    Google Scholar 

  31. Kampert, K. H. Ultra high-energy cosmic ray observations. J. Phys. Conf. Ser. 120, 062002 (2008)

    Article  Google Scholar 

  32. Veron-Cetty, M. et al. A catalogue of quasars and active nuclei: 12th edition. Astron. Astrophys. 455, 773–776 (2006)

    Article  ADS  Google Scholar 

  33. George, M. et al. On active galactic nuclei as sources of ultra-high energy cosmic rays. Mon. Not. R. Astron. Soc. 388, L59–L63 (2008)

    Article  ADS  Google Scholar 

  34. Ghisellini, G. et al. Ultra-high energy cosmic rays, spiral galaxies and magnetars. Preprint at 〈http://arxiv.org/abs/0806.2393〉 (2008)

  35. Abbassi, R. U. et al. Search for correlations between HiRes stereo events and active galactic nuclei. Preprint at 〈http://arXiv.org/abs/0804.0382〉 (2008)

  36. LHC. 2008. 〈http://lhc2008.web.cern.ch/lhc2008〉 (2008)

  37. Kawai, H. et al. Telescope array experiment. Nucl. Phys. Proc. 175–176 (Suppl.). 221–226 (2008)

    Article  ADS  Google Scholar 

  38. Ebisuzaki, T. et al. The JEM-EUSO project: Observing extremely high energy cosmic rays and neutrinos from the International Space Station. Nucl. Phys. Proc. 175–176 (Suppl.). 237–240 (2008)

    Article  ADS  Google Scholar 

  39. Orbiting wide-angle light-collectors (OWL). 〈http://owl.gsfc.nasa.gov〉 (2004)

  40. Falcke, H. et al. Detection and imaging of atmospheric radio flashes from cosmic ray air showers. Nature 435, 313–316 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to many people, too many to mention individually, in the AMANDA and Auger Collaborations, who guided us through the cosmic-ray world over the years. We especially thank our mentor A. Filevich, whom introduced us to cosmic-ray physics and the scientific world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Bauleo.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauleo, P., Martino, J. The dawn of the particle astronomy era in ultra-high-energy cosmic rays. Nature 458, 847–851 (2009). https://doi.org/10.1038/nature07948

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07948

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing