Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function

Abstract

Mutations in the LIS1 gene cause gross histological disorganization of the developing human brain, resulting in a brain surface that is almost smooth. Here we show that LIS1 protein co-immunoprecipitates with cytoplasmic dynein and dynactin, and localizes to the cell cortex and to mitotic kinetochores, which are known sites for binding of cytoplasmic dynein. Overexpression of LIS1 in cultured mammalian cells interferes with mitotic progression and leads to spindle misorientation. Injection of anti-LIS1 antibody interferes with attachment of chromosomes to the metaphase plate, and leads to chromosome loss. We conclude that LIS1 participates in a subset of dynein functions, and may regulate the division of neuronal progenitor cells in the developing brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-immunoprecipitation of cytoplasmic dynein and dynactin with LIS1.
Figure 2: Overexpression of LIS1 perturbs mitotic progression.
Figure 3: Phenotypic effects of LIS1 overexpression.
Figure 4: Effects of LIS1 overexpression on dynactin distribution.
Figure 5: Effects of anti-LIS1 antibody on the behaviour of mitotic chromosomes.
Figure 6: Subcellular localization of LIS1.
Figure 7: Overexpression of LIS1 displaces p150Glued from microtubule plus ends.
Figure 8: Potential functions of LIS1 in mitosis and brain development.

Similar content being viewed by others

References

  1. Dobyns, W. B., Reiner, O., Carrozzo, R. & Ledbetter, D. H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Soc. 270, 2838–2842 (1993).

    CAS  Google Scholar 

  2. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  3. Lo Nigro, C. et al. Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller–Dieker syndrome. Hum. Mol. Genet. 6, 157–164 (1997).

    Article  CAS  Google Scholar 

  4. Chong, S. S. et al. A revision of the lissencephaly and Miller–Dieker syndrome critical regions in chromosome 17p13.3. Hum. Mol. Genet. 6, 147–155 (1997).

    Article  CAS  Google Scholar 

  5. Mizuguchi, M., Takashima, S., Kakita, A., Yamada, M. & Ikeda, K. Lissencephaly gene product. Localization in the central nervous system and loss of immunoreactivity in Miller–Dieker syndrome. Am. J. Pathol. 147, 1142–1151 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fogli, A. et al. Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in patients with classical lissencephaly [see comments]. Ann. Neurol. 45, 154–161 (1999).

    Article  CAS  Google Scholar 

  7. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genet. 19, 333–339 (1998).

    Article  CAS  Google Scholar 

  8. Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. & Inoue, K. Miller–Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor. Nature 370, 216–218 (1994).

    Article  CAS  Google Scholar 

  9. Xiang, X., Osmani, A. H., Osmani, S. A., Xin, M. & Morris, N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310 (1995).

    Article  CAS  Google Scholar 

  10. Plamann, M., Minke, P. F., Tinsley, J. H. & Bruno, K. S. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J. Cell Biol. 127, 139–149 (1994).

    Article  CAS  Google Scholar 

  11. Xiang, X., Beckwith, S. M. & Morris, N. R. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).

    Article  CAS  Google Scholar 

  12. Morris, N. R. Nuclear migration. From fungi to the mammalian brain. J. Cell Biol. 148, 1097–1101 (2000).

    Article  CAS  Google Scholar 

  13. Geiser, J. R. et al. Saccaromyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol. Biol. Cell 8, 1035–1050 (1997).

    Article  CAS  Google Scholar 

  14. Swan, A., Nguyen, T. & Suter, B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449 (1999).

    Article  CAS  Google Scholar 

  15. Liu, Z., Xie, T. & Steward, R. Lis1, the Drosophila homolog of a human lissencephaly disease gene, is required for germline cell division and oocyte differentiation. Development 126, 4477–4488 (1999).

    CAS  PubMed  Google Scholar 

  16. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  Google Scholar 

  17. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  Google Scholar 

  18. Wolff, A. et al. Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur. J. Cell Biol. 59, 425–432 (1992).

    CAS  PubMed  Google Scholar 

  19. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).

    Article  CAS  Google Scholar 

  20. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641 (1997).

    Article  CAS  Google Scholar 

  21. Skop, A. R. & White, J. G. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol. 8, 1110–1116 (1998).

    Article  CAS  Google Scholar 

  22. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).

    Article  CAS  Google Scholar 

  23. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & De Mey, J. R. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 8, 541–544 (1998).

    Article  CAS  Google Scholar 

  24. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994).

    Article  CAS  Google Scholar 

  25. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 (1990).

    Article  CAS  Google Scholar 

  26. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263–265 (1990).

    Article  CAS  Google Scholar 

  27. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).

    Article  CAS  Google Scholar 

  28. Vallee, R. B. A taxol dependent procedure for the purification of microtubules and MAPs. J. Cell Biol. 92, 435–442 (1982).

    Article  CAS  Google Scholar 

  29. Sapir, T., Elbaun, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).

    Article  CAS  Google Scholar 

  30. Pierre, P., Scheel, J., Rickard, J. E. & Kreis, T. E. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900 (1992).

    Article  CAS  Google Scholar 

  31. Morrison, E. E., Wardleworth, B. N., Askham, J. M., Markham, A. F. & Meredith, D. M. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17, 3471–3477 (1998).

    Article  CAS  Google Scholar 

  32. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    Article  CAS  Google Scholar 

  33. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  Google Scholar 

  34. Vaughan, K. T., Hughes, S. H., Echeverri, C. J., Faulkner, N. F. & Vallee, R. B. Co-localization of dynactin and cytoplasmic dynein with CLIP-170 at microtubule distal ends. J. Cell Sci. 112, 1437–1447 (1999).

    CAS  Google Scholar 

  35. Berrueta, L., Tirnauer, J. S., Schuyler, S. C., Pellman, D. & Bierer, B. E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 9, 425–428 (1999).

    Article  CAS  Google Scholar 

  36. Paschal, B. M. et al. Characterization of 50 kD polypeptide in cytoplasmic dynein preparations reveals a complex with p150Glued and a novel actin. J. Biol. Chem. 268, 15318–15323 (1993).

    CAS  PubMed  Google Scholar 

  37. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  Google Scholar 

  38. Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539–1544 (1996).

    Article  CAS  Google Scholar 

  39. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998).

    Article  CAS  Google Scholar 

  40. Muhua, L., Adames, N. R., Murphy, M. D., Shields, C. R. & Cooper, J. A. A cytokinesis checkpoint requiring the yeast homologue of an APC- binding protein. Nature 393, 487–491 (1998).

    Article  CAS  Google Scholar 

  41. O'Connell, C. B. & Wang, Y. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765–1774 (2000).

    Article  CAS  Google Scholar 

  42. Hinchcliffe, E. H., Cassels, G. O., Rieder, C. L. & Sluder, G. The coordination of centrosome reproduction with nuclear events of the cell cycle in the sea urchin zygote. J. Cell Biol. 140, 1417–1426 (1998).

    Article  CAS  Google Scholar 

  43. Williams, B. C., Karr, T. L., Montgomery, J. M. & Goldberg, M. L. The Drosophila l(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J. Cell Biol. 118, 759–773 (1992).

    Article  CAS  Google Scholar 

  44. Vallee, R. B., Faulkner, N. E. & Tai, C. The role of cytoplasmic dynein in the human brain developmental disease lissencephaly. Biochim. Biophys. Acta 1496, 89–98 (2000).

    Article  CAS  Google Scholar 

  45. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    Article  CAS  Google Scholar 

  46. McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).

    Article  CAS  Google Scholar 

  47. Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516 (1995).

    Article  CAS  Google Scholar 

  48. Garces, J. A., Clark, I. B., Meyer, D. I. & Vallee, R. B. Interaction of the p62 subunit of dynactin with Arp1 and the cortical actin cytoskeleton. Curr. Biol. 9, 1497–1500 (1999).

    Article  CAS  Google Scholar 

  49. Gilbert, S. Developmental Biology, (Sinauer, Sunderland, Massachusetts, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank S. Lambert and E. Hinchcliffe for critical reading of the manuscript, and G. Sluder for helpful comments. We also thank O. Reiner, K. Pfister, H. Goodson, A. Mikami, D. Meyer and P. Denoulet for antibody reagents, D. Shima and G. Warren for GFP-N-acetyl glucosamine transferase cDNA, and J. De Mey for the MDCK cell line. This work was supported by NIH grants GM47434 and HD61982, the March of Dimes Birth Defects Foundation, the Human Frontier Science Program, and the H. Arthur Smith Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Vallee.

Supplementary information

Movie 1

Mitosis in control cells. Two control NRK cells, each injected with a pre-immune immunoglobulin G (IgG) fraction, were monitored as they progressed through mitosis. The sequence begins during early prometaphase.Mitosis proceeded rapidly and almost synchronously in the two cells. Times from nuclear-envelope breakdown (NEB) to anaphase onset are 21 min (left cell) and 15 min (right cell). Total elapsed time is 29 min. (MOV 172 kb)

Movie 2

Mitosis in an anti-LIS1-injected cell. The central cell was injected with anti-LIS1 antibody. The sequence begins at NEB. After formation of the metaphase plate, a prolonged delay is observed while several chromosomes remain unaligned. Time from NEB to anaphase onset is 48 min. Total elapsed time is 57 min. (MOV 768 kb)

Movie 3

Mitosis in an anti-LIS1-injected cell. The central cell was injected with anti-LIS1 antibody. The sequence begins at NEB. After a prolonged delay while individual chromosomes remain unaligned at metaphase plate, the cell proceeds through anaphase. The unattached chromosome remains behind and forms a micronucleus. Time from NEB to anaphase onset is 77 min. Total elapsed time is 100 min. (MOV 1497 kb)

Movie 4

Mitosis in an anti-LIS1-injected cell. Similar to Movie 3, except that the sequence begins during early prometaphase. Time from NEB to anaphase onset is 59 min. Total elapsed time is 73 min. A control mitotic cell can be seen on the left. (MOV 1721 kb)

Movie 5

Mitosis in a cell injected with antibody against cytoplasmic dynein. The upper-right cell was injected with an antibody against the cytoplasmic- dynein intermediate chain. The sequence begins at NEB. Note the repeated alignment and detechment of individual chromosomes during the prolonged delay. Time from NEB to anaphase onset is 90 min. Total elapsed time is 153 min. (MOV 1126 kb)

Five time-lapse sequences are shown of antibody-injected normal rat kidney (NRK) cells. Chromosomes were visualized by prestaining with Hoechst 33258, and were more easily observed in a darkened room.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, N., Dujardin, D., Tai, CY. et al. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2, 784–791 (2000). https://doi.org/10.1038/35041020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing