News & Comment

Filter By:

  • Lithium-ion batteries suffer from declining performance when the electrolyte decomposes. Now, low-dosage cryogenic transmission electron microscopy (cryo-TEM) visualizes how the common solid electrolyte interface component lithium carbonate decomposes and how additives stabilize the interface.

    • Teresa S. Ortner
    Research HighlightOpen Access
  • Permanent magnets constructed from metal ions and organic linkers using molecular design principles could bring transformative advances in areas such as energy conversion, transportation, and information storage. This comment highlights the recent discovery of a metal–organic magnet ordering at 242 °C, and discusses future research directions and possible applications involving such materials.

    • Ryan A. Murphy
    • Jeffrey R. Long
    • T. David Harris
    CommentOpen Access
  • Criegee intermediates are reactive intermediates formed in Earth’s atmosphere through ozonolysis of alkenes. Here the authors outline the fundamental chemistry that influences their highly conformer- and substituent-dependent unimolecular and bimolecular reactivity, and discuss open questions of fundamental and atmospheric interest.

    • Rebecca L. Caravan
    • Michael F. Vansco
    • Marsha I. Lester
    CommentOpen Access
  • Contact freezing of water is a very fast and common process that is still not well understood due to challenges in probing this microscopic phenomenon. Now, molecular dynamics simulations help to explain experimental data of contact freezing, showing a connection between water’s suspected propensity to undergo surface freezing and the kinetic enhancement during contact nucleation.

    • Teresa S. Ortner
    Research HighlightOpen Access
  • Molecular replication could offer insight into the fundamentals of evolution, but achieving controlled mutation is difficult. Now, a synthetic replicator that allows for simple control over its mutation rate has been reported.

    • Andrew J. Bissette
    Research HighlightOpen Access
  • Nanoscience has progressed tremendously in the exploration of new phenomena not seen in bulk materials, however, the transition between nanoscale and bulk properties is not yet fully understood. Here the authors identify and discuss remaining open questions that call for future efforts.

    • Rongchao Jin
    • Tatsuya Higaki
    CommentOpen Access
  • Carbon mineralization is a versatile and thermodynamically downhill process that can be harnessed for capturing, storing, and utilizing CO2 to synthesize products with enhanced properties. Here the author discusses the advances in and challenges of carbon mineralization, and concludes that tuning the chemical interactions involved will allow us to unlock its potential for advancing low carbon energy and resource conversion pathways.

    • Greeshma Gadikota
    CommentOpen Access
  • The chemical space of prebiotic chemistry is extremely large, while extant biochemistry uses only a few thousand interconnected molecules. Here we discuss how the connection between these two regimes can be investigated, and explore major outstanding questions in the origin of life.

    • Christopher J. Butch
    • Markus Meringer
    • H. James Cleaves II
    CommentOpen Access
  • Molecular knots are evolving from academic curiosities to a practically useful class of mechanically interlocked molecules, capable of performing unique tasks at the nanoscale. In this comment, the author discusses the properties of molecular knots, and highlights future challenges for chemical topology.

    • Fredrik Schaufelberger
    CommentOpen Access
  • The chemistry of carbon monoxide (CO) as a ligand has evolved significantly and transition-metal carbonyl complexes have been widely used as catalysts in many important catalytic processes. Here the authors comment on the recent progress of main-group element carbonyl complexes along with their future prospects.

    • Shiori Fujimori
    • Shigeyoshi Inoue
    CommentOpen Access
  • Understanding the biogeochemistry of radionuclides in the environment is essential for effective isolation of nuclear waste in repositories, management of contaminated sites, ensuring long-term protection of our ecosystems, and limiting impacts on human health. Here the authors discuss the extreme complexity of this multidimensional chemistry problem, highlighting the outstanding open questions for the next generations of environmental radiochemists.

    • Gauthier J.-P. Deblonde
    • Annie B. Kersting
    • Mavrik Zavarin
    CommentOpen Access
  • While sp2-hybridized carbon atoms in hydrocarbons typically contribute only one electron to their aromaticity, metals have more electrons from d or f orbitals available for participating in conjugation in organometallics, complicating the electron counting as well as analysis of their aromaticity. Here, the author comments on the challenges towards understanding aromaticity in organometallics and outlines several remaining questions that have yet to be answered.

    • Jun Zhu
    CommentOpen Access
  • The chemistry of stable low oxidation state group 2 metal compounds was initiated in 2007 and has since expanded rapidly, yielding many surprises. Here the author outlines advances in the field and discusses some of the open questions and challenges that remain to be answered in coming years.

    • Cameron Jones
    CommentOpen Access
  • Tight regulation of protein levels is so crucial for cellular function that mammalian cells have evolved two parallel degradation systems. This article discusses how these systems can be exploited to selectively target proteins of interest for therapeutic purposes.

    • Mohamed A. Eldeeb
    • Cornelia E. Zorca
    • Thomas Goiran
    CommentOpen Access
  • Controlling molecular conformation through macroscopic mechanical stimulus may have applications in chiroptical devices, but achieving this in a 3D material is challenging. Now, a quantitative relationship between stretching of an elastomer and reversible conformational changes of a crosslinked molecule has been established.

    • Andrew J. Bissette
    Research HighlightOpen Access
  • Polymorphs, crystals with different structure and properties but the same molecular composition, arise from the subtle interplay between thermodynamics and kinetics during crystallisation. In this opinion piece, the authors review the latest developments in the field of polymorphism and discuss standing open questions.

    • Aurora J. Cruz-Cabeza
    • Neil Feeder
    • Roger J. Davey
    CommentOpen Access
  • Organic materials are highly sensitive to electron beam irradiation and thus easily damaged upon imaging by electron microscopy. Now, low-dose aberration-corrected high resolution transmission electron microscopy allows for less invasive near-atomic-scale imaging of a two-dimensional polymer.

    • Victoria Richards
    Research HighlightOpen Access
  • The activation of very inert small molecules generally requires highly reactive activating species, but the high energy of these species makes their regeneration, and thus also catalytic turnover of the reaction, difficult to achieve. Here, the authors highlight the formidable challenge of overcoming the tradeoff between activating power and catalytic turnover in the context of main-group ambiphiles.

    • Rian D. Dewhurst
    • Marc-André Légaré
    • Holger Braunschweig
    CommentOpen Access