Focus |

Inorganic and physical chemistry

Jacilynn Brant: materials chemistry and functional materials.

Long Chen: photo- and heterogeneous catalysis.

Margherita Citroni: physical and analytical chemistry.

Ariane Vartanian: nanoscale and supramolecular chemistry.

Welcome to the Nature Communications Editors’ Highlights webpage on inorganic, nanoscale and physical chemistry. Each month our editors select a small number of Articles recently published in Nature Communications that they believe are particularly interesting or important.

The aim is to provide a snapshot of some of the most exciting work published in the area of inorganic, nanoscale and physical chemistry at Nature Communications.

Make sure to check the Editors' Highlights page each month for new featured articles.

The two-dimensional morphology of molybdenum oxycarbide (2D-Mo2COx) nanosheets dispersed on silica is found vital for the dry reforming of methane. Here the authors show that the specific activity of 2D-Mo2COx/SiO2 exceeds that of other Mo2C-based catalysts by ca. 3 orders of magnitude.

Article | Open Access | | Nature Communications

Characterizing individual catalyst nanoparticles at operando conditions is a cornerstone of catalysis research. Here the authors utilize plasmonic optical nanoimaging in a nanofluidic reactor to map the impact of reactor geometry on single Cu particle oxidation state dynamics and active phase during CO oxidation.

Article | Open Access | | Nature Communications

In situ tuning of the electronic structure of active sites is a long-standing challenge. Here, the authors report an approach to tune the electronic structure of cobalt species during the styrene epoxidation reaction by the introduction of controllable hydrogen spillover for enhanced selectivity.

Article | Open Access | | Nature Communications

Light-induced [2 + 2] cycloaddition is the most efficient way to generate cyclobutanes, while suffering from limitations of specific selectivity. Here the authors report a cage-confined photocatalytic [2 + 2] cycloaddition to enable the unusual production of syn-head-to-head cyclobutane derivatives selectively.

Article | Open Access | | Nature Communications

Developing non-noble-metal heterogeneous catalysts with high efficiency in HCOOH dehydrogenation is significant for the acquisition of hydrogen, but remains a great challenge. Here, the authors modulate oxygen coverage of Ti3C2Tx MXenes to boost the catalytic activity toward HCOOH dehydrogenation.

Article | Open Access | | Nature Communications