Collection |

Plasma Physics

Plasma exists in a mixed form of electrons, positive ions and neutral atoms or molecules and plays an important role in many processes; from astrophysical solar flares to nuclear fusion devices for energy applications. There is a strong research interest both in theory and experiment to understand how the plasma energy is transferred into other forms and how plasma behaves in different environments. Investigating these processes under extreme conditions in a table-top setting has become feasible due to the availability of high-power lasers.

In this collection we highlight a selection of recent experimental and theoretical research papers published on this multidisciplinary topic in Nature Communications. These articles feature research on fundamental plasma processes that are relevant to astrophysical events, energy transfer from laser to the particles during their acceleration, material development for plasma confinement and nuclear reactions in plasma fusion devices. This collection showcases the variety of research that different communities can bring together to better understand the ubiquitous processes in plasma.

Understanding the role of magnetic turbulence in the atmosphere is difficult as direct access is limited, but latest laser technology can enable such studies in the lab. Here the authors probe the evolution of such turbulence in laser-generated plasma with its implications to astrophysical environments.

Article | Open Access | | Nature Communications

Since the 1970s space missions have observed `equatorial noise' — noise-like plasma waves closely confined to the magnetic equatorial region of Earth s magnetosphere. Here, the authors uncover their structured and periodic frequency pattern, revealing that they are generated by proton distributions.

Article | Open Access | | Nature Communications

Alfvén waves are fundamental plasma modes that provide a mechanism for the transfer of energy between particles and fields. Here the authors confirm experimentally the conservative energy exchange between Alfvén wave fields and plasma particles via high-resolution MMS observations of Earth’s magnetosphere.

Article | Open Access | | Nature Communications

Alfvénic waves are oscillations that occur in a plasma threaded by a magnetic field and their propagation, reflection and dissipation is believed to be partly responsible for the solar wind. Here, the authors observe the counter-propagating Alfvénic waves that most models require for solar-wind acceleration.

Article | Open Access | | Nature Communications

Although magnetic reconnection is recognized as the dominant mode for solar wind plasma to enter the magnetosphere, Kelvin–Helmholtz waves (KHW) have been suggested to also be involved. Here, the authors use 7 years of THEMIS data to show that KHW occur 19% of the time, and may be important for plasma transport.

Article | Open Access | | Nature Communications

Plasma releases magnetic energy by magnetic reconnection but the clear evidence of this phenomenon in relativistic regime is still lacking. Here the authors present a scheme for laboratory observation of the relativistic magnetic reconnection driven by laser-produced energetic electrons in the plasma.

Article | Open Access | | Nature Communications