Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenetic study of long-term response to interferon-β treatment in multiple sclerosis

Subjects

Abstract

The aim of the study is the identification of genetic factors that influence the long-term response to interferon-β (IFNβ) (4-year follow-up). We performed a genome-wide association study in 337 IFNβ-treated Italian multiple sclerosis patients at the extreme of treatment response, and we meta-analyzed association effects, integrating results with pathway analysis, gene-expression profiling of IFNβ-stimulated peripheral blood mononuclear cells from 20 healthy controls (HC) and expression quantitative locus (eQTL) analyses. From meta-analysis, 43 markers were associated at P<10−4, and two of them (rs7298096 and rs4726460) pointed to two genes, NINJ2 and TBXAS1, that were significantly downregulated after IFNβ stimulation in HC (P=3.1 × 10−9 and 5.6 × 10−10). We also observed an eQTL effect for the allele associated with favorable treatment response (rs4726460A); moreover, TBXAS1 appeared downregulated upon IFNβ administration (β=−0.39; P=0.02). Finally, we found an enrichment of pathways related to inflammatory processes and presynaptic membrane, the latter with involvement of genes related to glutamatergic system (GRM3 and GRIK2), confirming its potential role in the response to IFNβ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pugliatti M, Rosati G, Carton H, Riise T, Drulovic J, Vécsei L et al. The epidemiology of multiple sclerosis in Europe. Eur J Neurol 2006; 13: 700–722.

    Article  CAS  PubMed  Google Scholar 

  2. Koch-Henriksen N, Sorensen PS . The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 2010; 9: 520–532.

    Article  PubMed  Google Scholar 

  3. Paty DW, Li DK . Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI study group and the IFNB multiple sclerosis study group. Neurology 1993; 43: 662–667.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 1996; 39: 285–294.

    Article  CAS  PubMed  Google Scholar 

  5. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352: 1498–1504.

    Article  Google Scholar 

  6. Río J, Comabella M, Montalban X . Predicting responders to therapies for multiple sclerosis. Nat Rev Neurol 2009; 5: 553–560.

    Article  PubMed  Google Scholar 

  7. Sorensen PS . New management algorithms in multiple sclerosis. Curr Opin Neurol 2014; 27: 246–259.

    Article  PubMed  Google Scholar 

  8. Mahurkar S, Suppiah V, O'Doherty C . Pharmacogenomics of interferon beta and glatiramer acetate response: A review of the literature. Autoimmun Rev 2014; 39: 178–186.

    Article  Google Scholar 

  9. Byun E, Caillier SJ, Montalban X, Villoslada P, Fernández O, Brassat D et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 2008; 65: 337–344.

    Article  PubMed  Google Scholar 

  10. Comabella M, Craig DW, Morcillo-Suárez C, Río J, Navarro A, Fernández M et al. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch Neurol 2009; 66: 972–978.

    Article  PubMed  Google Scholar 

  11. Esposito F, Sorosina M, Ottoboni L, Lim ET, Replogle JM, Raj T et al. A pharmacogenetic study implicates SLC9a9 in multiple sclerosis disease activity. Ann Neurol 2015; 78: 115–127.

    Article  CAS  PubMed  Google Scholar 

  12. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227–231.

    Article  CAS  PubMed  Google Scholar 

  13. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FB et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  PubMed  Google Scholar 

  14. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005; 58: 840–846.

    Article  Google Scholar 

  15. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69: 292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sormani MP, Rio J, Tintorè M, Signori A, Li D, Cornelisse P et al. Scoring treatment response in patients with relapsing multiple sclerosis. Mult Scler 2013; 19: 605–612.

    Article  CAS  PubMed  Google Scholar 

  17. International Multiple Sclerosis Genetics Consortium. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011; 10: 214–219.

    Google Scholar 

  18. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Willer CJ, Scheet P, Ding J, Abecasis GR . MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010; 34: 816–834.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR . Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 2012; 44: 955–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP et al. Locus Zoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010; 26: 2336–2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet 2010; 87: 139–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C et al. Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 2009; 33: 419–431.

    Article  PubMed  Google Scholar 

  24. Falcon S, Gentleman R . Using GOstats to test gene lists for GO term association. Bioinformatics 2007; 23: 257–258.

    Article  CAS  PubMed  Google Scholar 

  25. Shabalin AA . Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012; 10: 1353–1358.

    Article  Google Scholar 

  26. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng PC, Henikoff S . SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31: 3812–3814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hecker M, Hartmann C, Kandulski O, Paap BK, Koczan D, Thiesen HJ et al. Interferon-beta therapy in multiple sclerosis: the short-term and long-term effects on the patients’ individual gene expression in peripheral blood. Mol Neurobiol 2013; 48: 737–756.

    Article  CAS  PubMed  Google Scholar 

  29. Croze E, Yamaguchi KD, Knappertz V, Reder AT, Salamon H . Interferon-beta-1b-induced short- and long-term signatures of treatment activity in multiple sclerosis. Pharmacogenomics J 2013; 13: 443–451.

    Article  CAS  PubMed  Google Scholar 

  30. Prosperini L, Gallo V, Petsas N, Borriello G, Pozzilli C, One-year MRI . scan predicts clinical response to interferon β in multiple sclerosis. Eur J Neurol 2009; 16: 1202–1209.

    Article  CAS  PubMed  Google Scholar 

  31. Romeo M . Rio Score and Modified Rio Score validation in an Italian cohort of relapsing–remitting multiple sclerosis patients (abstract P549). Presented at the 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, 10–13 October 2012.

  32. Tomassini V, Paolillo A, Russo P, Giugni E, Prosperini L, Gasperini C et al. Predictors of long-term clinical response to interferon beta therapy in relapsing multiple sclerosis. J Neurol 2006; 253: 287–293.

    Article  CAS  PubMed  Google Scholar 

  33. Wu C, MacLeod I, Su AI . BioGPS and MyGene.info: organizing online, gene-entric information. Nucl Acids Res 2013; 41: 561–565.

    Article  Google Scholar 

  34. Araki T, Milbrandt J . Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci 2000; 20: 187–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dimou L, Schnell L, Montani L, Duncan C, Simonen M, Schneider R et al. Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration. J Neurosci 2006; 26: 5591–5603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ifergan I, Kebir H, Terouz S, Alvarez JI, Lécuyer MA, Gendron S et al. Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 2011; 70: 751–763.

    Article  CAS  PubMed  Google Scholar 

  37. Hata M, Takahara S, Tsuzaki H, Ishii Y, Nakata K, Akagawa KS et al. Expression of Th2-skewed pathology mediators in monocyte-derived type 2 of dendritic cells (DC2). Immunol Lett 2009; 126: 29–36.

    Article  CAS  PubMed  Google Scholar 

  38. Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol 2003; 4: 694–701.

    Article  CAS  PubMed  Google Scholar 

  39. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z et al. Foxp3+CD25+CD4+natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212: 8–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all the patients and healthy controls for their participation in this study. We thank the International Multiple Sclerosis Genetic Consortium and the Wellcome Trust Case Control Consortium 2 for sharing genotype data of part of the recruited MS patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Martinelli-Boneschi.

Ethics declarations

Competing interests

FE received honoraria from Serono Symposia International Foundation. FMB received honoraria for consulting, research grant and travel expenses from TEVA neuroscience, Biogen IDEC, Merck Serono. LM received honoraria for speaking from Sanofi-Aventis, Merck Serono and Biogen Idec. VM received honoraria for speaking, consultancy or support for participation to National and International Congresses from Bayer-Schering, Biogen-Dompè, Merck Serono, Novartis, Sanofi-Aventis and TEVA Pharmaceutical. GC has received consulting fees for participating on advisory boards and lecture fees from Novartis, Teva Pharmaceutical, Sanofi-Aventis, Genzyme, Merck Serono, Biogen, Bayer-Schering, Serono Symposia International Foundation, Excemed, Almirall, Chugai, Receptors. The remaining authors state no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clarelli, F., Liberatore, G., Sorosina, M. et al. Pharmacogenetic study of long-term response to interferon-β treatment in multiple sclerosis. Pharmacogenomics J 17, 84–91 (2017). https://doi.org/10.1038/tpj.2015.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.85

This article is cited by

Search

Quick links