Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms

Subjects

Abstract

To identify potential candidate genes for future pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we used gene expression arrays to analyze changes induced by risperidone in mice strains with different susceptibility to EPS. We proposed a systems biology analytical approach that combined the identification of gene co-expression modules related to AP treatment, the construction of protein–protein interaction networks with genes included in identified modules and finally, gene set enrichment analysis of constructed networks. In response to risperidone, mice strain with susceptibility to develop EPS showed downregulation of genes involved in the mammalian target of rapamycin (mTOR) pathway and biological processes related to this pathway. Moreover, we also showed differences in the phosphorylation pattern of the ribosomal protein S6 (rpS6), which is a major downstream effector of mTOR. The present study provides new evidence of the involvement of the mTOR pathway in AP-induced EPS and offers new and valuable markers for pharmacogenetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Divac N, Prostran M, Jakovcevski I, Cerovac N . Second-generation antipsychotics and extrapyramidal adverse effects. Biomed Res Int 2014; 2014: 656370.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Crowley JJ, Kim Y, Szatkiewicz JP, Pratt AL, Quackenbush CR, Adkins DE et al. Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice. Mamm Genome 2012; 23: 322–335.

    Article  CAS  PubMed  Google Scholar 

  3. Greenbaum L, Strous RD, Kanyas K, Merbl Y, Horowitz A, Karni O et al. Association of the RGS2 gene with extrapyramidal symptoms induced by treatment with antipsychotic medication. Pharmacogenet Genomics 2007; 17: 519–528.

    Article  CAS  PubMed  Google Scholar 

  4. Gassó P, Mas S, Bernardo M, Alvarez S, Parellada E, Lafuente A . A common variant in DRD3 gene is associated with risperidone-induced extrapyramidal symptoms. Pharmacogenomics J 2009; 9: 404–410.

    Article  PubMed  Google Scholar 

  5. Gassó P, Mas S, Oliveira C, Bioque M, Parellada E, Bernardo M et al. Searching for functional SNPs or rare variants in exonic regions of DRD3 in risperidone-treated patients. Eur Neuropsychopharmacol 2011; 21: 294–299.

    Article  PubMed  Google Scholar 

  6. Crescenti A, Mas S, Gassó P, Parellada E, Bernardo M, Lafuente A . Cyp2d6*3, *4, *5 and *6 polymorphisms and antipsychotic-induced extrapyramidal side-effects in patients receiving antipsychotic therapy. Clin Exp Pharmacol Physiol 2008; 35: 807–811.

    Article  CAS  PubMed  Google Scholar 

  7. Mas S, Gassò P, Alvarez S, Parellada E, Bernardo M, Lafuente A . Intuitive pharmacogenetics: spontaneous risperidone dosage is related to CYP2D6, CYP3A5 and ABCB1 genotypes. Pharmacogenomics J 2012; 12: 255–259.

    Article  CAS  PubMed  Google Scholar 

  8. Lencz T, Malhotra AK . Pharmacogenetics of antipsychotic-induced side effects. Dialogues Clin Neurosci 2009; 11: 405–415.

    PubMed  PubMed Central  Google Scholar 

  9. Llerena A, Berecz R, Peñas-Lledó E, Süveges A, Fariñas H . Pharmacogenetics of clinical response to risperidone. Pharmacogenomics 2013; 14: 177–194.

    Article  CAS  PubMed  Google Scholar 

  10. Almoguera B, Riveiro-Alvarez R, Lopez-Castroman J, Dorado P, Vaquero-Lorenzo C, Fernandez-Piqueras J et al. CYP2D6 poor metabolizer status might be associated with better response to risperidone treatment. Pharmacogenet Genomics 2013; 23: 627–630.

    Article  CAS  PubMed  Google Scholar 

  11. Remington G, Kapur S . Atypical antipsychotics: are some more atypical than others? Psychopharmacology (Berl) 2000; 148: 3–15.

    Article  CAS  Google Scholar 

  12. Niculescu AB, Le-Niculescu H . Convergent Functional Genomics: what we have learned and can learn about genes, pathways, and mechanisms. Neuropsychopharmacology 2010; 35: 355–356.

    Article  PubMed  Google Scholar 

  13. Minguez P, Dopazo J . Functional genomics and networks: new approaches in the extraction of complex gene modules. Expert Rev Proteomics 2010; 7: 55–63.

    Article  CAS  PubMed  Google Scholar 

  14. Konradi C, Heckers S . Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 2001; 50: 729–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strand AD, Baquet ZC, Aragaki AK, Holmans P, Yang L, Cleren C et al. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 2007; 27: 11758–11768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korostynski M, Piechota M, Dzbek J, Mlynarski W, Szklarczyk K, Ziolkowska B et al. Novel drug-regulated transcriptional networks in brain reveal pharmacological properties of psychotropic drugs. BMC Genomics 2013; 14: 606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei C, Li J, Bumgarner RE . Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 2004; 5: 87.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Minguez P, Götz S, Montaner D, Al-Shahrour F, Dopazo J . SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks. Nucleic Acids Res 2009; 37: W109–W114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mas S, Gassó P, Parellada E, Bernardo M, Lafuente A . Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic induced extrapyramidal symptoms. Pharmacogenomics J, epub ahead of print 27 Jan 2015.10.1038/tpj.2014.84.

  21. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009; 25: 1091–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carretón O, Giralt A, Torres-Peraza JF, Brito V, Lucas JJ, Ginés S et al. Age-dependent decline of motor neocortex but not hippocampal performance in heterozygous BDNF mice correlates with a decrease of cortical PSD-95 but an increase of hippocampal TrkB levels. Exp Neurol 2012; 237: 335–345.

    Article  PubMed  Google Scholar 

  23. Giralt A, Carretón O, Lao-Peregrin C, Martín ED, Alberch J . Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction. Mol Neurodegener 2011; 6: 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hales EC, Taub JW, Matherly LH . New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 2014; 26: 149–161.

    Article  CAS  PubMed  Google Scholar 

  25. Laplante M, Sabatini DM . mTOR signaling at a glance. J Cell Sci 2009; 122: 3589–3594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mas S, Gassó P, Malagelada C, Bernardo M, Lafuente A . Pharmacogenetic predictor of extrapyramidal symptoms induced by antipsychotics: multilocus interaction in the mTOR pathway. Eur Neuropsychopharmacol 2014; 25: 51–59.

    Article  PubMed  Google Scholar 

  27. Schmidt RH, Jokinen JD, Massey VL, Falkner KC, Shi X, Yin X et al. Olanzapine activates hepatic mammalian target of rapamycin: new mechanistic insight into metabolic dysregulation with atypical antipsychotic drugs. J Pharmacol Exp Ther 2013; 347: 126–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG, Lim Y et al. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 2013; 34: 2080–2089.

    Article  CAS  PubMed  Google Scholar 

  29. Bonito-Oliva A, Pallottino S, Bertran-Gonzalez J, Girault JA, Valjent E, Fisone G . Haloperidol promotes mTORC1-dependent phosphorylation of ribosomal protein S6 via dopamine- and cAMP-regulated phosphoprotein of 32 kDa and inhibition of protein phosphatase-1. Neuropharmacology 2013; 72: 197–203.

    Article  CAS  PubMed  Google Scholar 

  30. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N . Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61: 10–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007; 282: 14056–14064.

    Article  CAS  PubMed  Google Scholar 

  32. Moore CE, Xie J, Gomez E, Herbert TP . Identification of cAMP-dependent kinase as a third in vivo ribosomal protein S6 kinase in pancreatic beta-cells. J Mol Biol 2009; 389: 480–494.

    Article  CAS  PubMed  Google Scholar 

  33. Valjent E, Bertran-Gonzalez J, Bowling H, Lopez S, Santini E, Matamales M et al. Haloperidol regulates the state of phosphorylation of ribosomal protein S6 via activation of PKA and phosphorylation of DARPP-32. Neuropsychopharmacology 2011; 36: 2561–2570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bowling H, Zhang G, Bhattacharya A, Pérez-Cuesta LM, Deinhardt K, Hoeffer CA et al. Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. Sci Signal 2014; 7: ra4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mannoury la Cour C, Salles MJ, Pasteau V, Millan MJ . Signaling pathways leading to phosphorylation of Akt and GSK-3β by activation of cloned human and rat cerebral D2 and D3 receptors. Mol Pharmacol 2011; 79: 91–105.

    Article  PubMed  Google Scholar 

  36. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG . An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122: 261–273.

    Article  CAS  PubMed  Google Scholar 

  37. Seo MS, Scarr E, Lai CY, Dean B . Potential molecular and cellular mechanism of psychotropic drugs. Clin Psychopharmacol Neurosci 2014; 12: 94–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dwivedi Y, Rizavi HS, Pandey GN . Differential effects of haloperidol and clozapine on [(3)H]cAMP binding, protein kinase A (PKA) activity, and mRNA and protein expression of selective regulatory and catalytic subunit isoforms of PKA in rat brain. J Pharmacol Exp Ther 2002; 301: 197–209.

    Article  CAS  PubMed  Google Scholar 

  39. Mas S, Gassó P, Bernardo M, Lafuente A . Functional analysis of gene expression in risperidone treated cells provide new insights in molecular mechanism and new candidate genes for pharmacogenetic studies. Eur Neuropsychopharmacol 2013; 23: 329–337.

    Article  CAS  PubMed  Google Scholar 

  40. Marder SR . Perspective: retreat from the radical. Nature 2014; 508: S18.

    Article  CAS  PubMed  Google Scholar 

  41. Hyman SE . Perspective: revealing molecular secrets. Nature 2014; 508: S20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish Ministry of Health, Instituto de Salud Carlos III (FIS, Fondo de Investigacion Sanitaria PI10/02430) and the Catalan Innovation, Universities and Enterprise Authority (Grants DURSI 2014SGR436 and 2014SGR441). We thank the Language Advisory Service of the University of Barcelona, Spain for manuscript revision. The authors also thank Ana Meseguer for sample collection assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lafuente.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mas, S., Gassó, P., Boloc, D. et al. Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms. Pharmacogenomics J 16, 293–300 (2016). https://doi.org/10.1038/tpj.2015.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.48

This article is cited by

Search

Quick links