Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Influence of FMO1 and 3 polymorphisms on serum olanzapine and its N-oxide metabolite in psychiatric patients

Abstract

The widely used antipsychotic drug, olanzapine (OLA) shows large interindividual variability in metabolic clearance. Although the role of the enzymes CYP1A2, CYP2D6 and UGT1A4 has been extensively explored, little is known about the in vivo role of flavin-containing monooxygenases (FMOs) catalyzing the N-oxidation of OLA in vitro. We investigated the influence of FMO1 and 3 polymorphisms on the steady state serum concentrations of OLA and its N-oxide metabolite in 379 patients. The upstream FMO1*6 was associated with increased dose-adjusted serum OLA concentrations (C/Ds; P=0.008), an effect further enhanced by FMO1rs7877C>T in smokers. The influence of FMO3 polymorphisms was limited to variability in OLA N-oxide. Homozygous carriers of FMO3rs2266780A>G (p.E308G) displayed 50% lower C/D of OLA N-oxide compared with subjects homo- or heterozygous for the A-variant (P<0.003). Our data support the role of FMO3 in the N-oxidation of OLA and implicate for the first time the contribution of FMO1 and its functional *6 variant in OLA disposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  Google Scholar 

  2. Citrome L . A systematic review of meta-analyses of the efficacy of oral atypical antipsychotics for the treatment of adult patients with schizophrenia. Expert Opin Pharmacother 2011; 13: 1545–1573.

    Article  PubMed  Google Scholar 

  3. Perry PJ, Argo TR, Carnahan RM, Lund BC, Holman TL, Ellingrod VL et al. The association of weight gain and olanzapine plasma concentrations. J Clin Psychopharmacol 2005; 25: 250–254.

    Article  CAS  PubMed  Google Scholar 

  4. Melkersson KI, Dahl ML . Relationship between levels of insulin or triglycerides and serum concentrations of the atypical antipsychotics clozapine and olanzapine in patients on treatment with therapeutic doses. Psychopharmacology (Berl) 2003; 170: 157–166.

    Article  CAS  Google Scholar 

  5. Perry PJ, Lund BC, Sanger T, Beasley C . Olanzapine plasma concentrations and clinical response: acute phase results of the North American Olanzapine Trial. J Clin Psychopharmacol 2001; 21: 14–20.

    Article  CAS  PubMed  Google Scholar 

  6. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 2011; 44: 195–235.

    Article  PubMed  Google Scholar 

  7. Skogh E, Reis M, Dahl ML, Lundmark J, Bengtsson F . Therapeutic drug monitoring data on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther Drug Monit 2002; 24: 518–526.

    Article  CAS  PubMed  Google Scholar 

  8. Patel MX, Bowskill S, Couchman L, Lay V, Taylor D, Spencer EP et al. Plasma olanzapine in relation to prescribed dose and other factors data from a therapeutic drug monitoring service, 1999-2009. J Clin Psychopharmacol 2011; 31: 411–417.

    Article  CAS  PubMed  Google Scholar 

  9. Gex-Fabry M, Balant-Gorgia AE, Balant LP . Therapeutic drug monitoring of olanzapine: The combined effect of age, gender, smoking, and comedication. Ther Drug Monit 2003; 25: 46–53.

    Article  CAS  PubMed  Google Scholar 

  10. Olesen OV, Linnet K . Olanzapine serum concentrations in psychiatric patients given standard doses: the influence of comedication. Ther Drug Monit 1999; 21: 87–90.

    Article  CAS  PubMed  Google Scholar 

  11. Bergemann N, Kress KR, Abu-Tair F, Frick A, Kopitz J . Valproate lowers plasma concentration of olanzapine. J Clin Psychopharmacol 2006; 26: 432–434.

    Article  PubMed  Google Scholar 

  12. Spina E, DArrigo C, Santoro V, Muscatello MR, Pandolfo G, Zoccali R et al. Effect of valproate on olanzapine plasma concentrations in patients with bipolar or schizoaffective disorder. Ther Drug Monit 2009; 31: 758–763.

    Article  CAS  PubMed  Google Scholar 

  13. Skogh E, Sjodin I, Josefsson M, Dahl ML . High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. J Clin Psychopharmacol 2011; 31: 4–9.

    Article  CAS  PubMed  Google Scholar 

  14. Linnet K . Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomes. Hum Psychopharmacol 2002; 17: 233–238.

    Article  CAS  PubMed  Google Scholar 

  15. Ring BJ, Catlow J, Lindsay TJ, Gillespie T, Roskos LK, Cerimele BJ et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276: 658–666.

    CAS  PubMed  Google Scholar 

  16. Kassahun K, Mattiuz E, Nyhart E, Obermeyer B, Gillespie T, Murphy A et al. Disposition and biotransformation of the antipsychotic agent olanzapine in humans. Drug Metab Dispos 1997; 25: 81–93.

    CAS  PubMed  Google Scholar 

  17. Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM . Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet 1999; 37: 177–193.

    Article  CAS  PubMed  Google Scholar 

  18. Ghotbi R, Mannheimer B, Aklillu E, Suda A, Bertilsson L, Eliasson E et al. Carriers of the UGT1A4 142 T&gt;G gene variant are predisposed to reduced olanzapine exposure—an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol 2010; 66: 465–474.

    Article  CAS  PubMed  Google Scholar 

  19. Laika B, Leucht S, Heres S, Schneider H, Steimer W . Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J 2010; 10: 20–29.

    Article  CAS  PubMed  Google Scholar 

  20. Carrillo JA, Herraiz AG, Ramos SI, Gervasini G, Vizcaino S, Benitez J . Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23: 119–127.

    Article  CAS  PubMed  Google Scholar 

  21. Mao M, Skogh E, Scordo MG, Dahl M . Interindividual variation in olanzapine concentration influenced by UGT1A4 L48V polymorphism in serum and upstream FMO polymorphisms in cerebrospinal fluid. J Clin Psychopharmacol 2012; 32: 287–289.

    Article  PubMed  Google Scholar 

  22. Hägg S, Spigset O, Lakso HA, Dahlqvist R . Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur J Clin Pharmacol 2001; 57: 493–497.

    Article  PubMed  Google Scholar 

  23. Bigos KL, Bies RR, Pollock BG, Lowy JJ, Zhang F, Weinberger DR . Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Mol Psychiatry 2011; 16: 620–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bickel MH . The pharmacology and biochemistry of N-oxides. Pharmacol Rev 1969; 21: 325–355.

    CAS  PubMed  Google Scholar 

  25. Bickel MH . Liver metabolic reactions: Tertiary amine N-dealkylation, tertiary amine N-oxidation, N-oxide reduction, and N-oxide N-dealkylation: I. Tricyclic tertiary amine drugs. Arch Biochem Biophys 1972; 148: 54–62.

    Article  CAS  PubMed  Google Scholar 

  26. Cashman JR . Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem Res Toxicol 1995; 8: 166–181.

    Article  CAS  PubMed  Google Scholar 

  27. Overby LH, Carver GC, Philpot RM . Quantitation and kinetic properties of hepatic microsomal and recombinant flavin-containing monooxygenases 3 and 5 from humans. Chem Biol Interact 1997; 106: 29–45.

    Article  CAS  PubMed  Google Scholar 

  28. Yeung CK, Lang DH, Thummel KE, Rettie AE . Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Disposition 2000; 28: 1107–1111.

    CAS  Google Scholar 

  29. Bhagwat SV, Bhamre S, Boyd MR, Ravindranath V . Cerebral metabolism of imipramine and a purified flavin-containing monooxygenase from human brain. Neuropsychopharmacology 1996; 15: 133–142.

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen SS, McKean-Cowdin R, Farin FM, Holly EA, Preston-Martin S, Mueller BA . Childhood brain tumors, residential insecticide exposure, and pesticide metabolism genes. Environ Health Perspect 2010; 118: 144–149.

    Article  CAS  Google Scholar 

  31. Hinrichs AL, Murphy SE, Wang JC, Saccone S, Saccone N, Steinbach JH et al. Common polymorphisms in FMO1 are associated with nicotine dependence. Pharmacogenet Genomics 2011; 21: 397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koukouritaki SB, Hines RN . Flavin-containing monooxygenase genetic polymorphism: Impact on chemical metabolism and drug development. Pharmacogenomics 2005; 6: 807–822.

    Article  CAS  PubMed  Google Scholar 

  33. Haslemo T, Loryan I, Ueda N, Mannheimer B, Bertilsson L, Ingelman-Sundberg M et al. UGT1A4*3 encodes significantly increased glucuronidation of olanzapine in patients on maintenance treatment and in recombinant systems. Clin Pharmacol Ther 2012; 92: 221–227.

    Article  CAS  PubMed  Google Scholar 

  34. Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL et al. Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 2003; 68: 69–78.

    Article  CAS  PubMed  Google Scholar 

  35. Hines RN, Luo Z, Hopp KA, Cabacungan ET, Koukouritaki SB, McCarver DG . Genetic variability at the human FMO1 locus: significance of a basal promoter yin yang 1 element polymorphism (FMO1*6). J Pharmacol Exp Ther 2003; 306: 1210–1218.

    Article  CAS  PubMed  Google Scholar 

  36. Lemoine A, Johann M, Cresteil T . Evidence for the presence of distinct flavin-containing monooxygenases in human tissues. Arch Biochem Biophys 1990; 276: 336–342.

    Article  CAS  PubMed  Google Scholar 

  37. Novick RM, Mitzey AM, Brownfield MS, Elfarra AA . Differential localization of flavin-containing monooxygenase (FMO) isoforms 1, 3, and 4 in rat liver and kidney and evidence for expression of FMO4 in mouse, rat, and human liver and kidney microsomes. J Pharmacol Exp Ther 2009; 329: 1148–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parte P, Kupfer D . Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab Disposition 2005; 33: 1446–1452.

    Article  CAS  Google Scholar 

  39. Pirmohamed M, Williams D, Madden S, Templeton E, Park BK . Metabolism and bioactivation of clozapine by human liver in-vitro. J Pharmacol Exp Ther 1995; 272: 984–990.

    CAS  PubMed  Google Scholar 

  40. Calligaro DO, Fairhurst J, Hotten TM, Moore NA, Tupper DE . The synthesis and biological activity of some known and putative metabolites of the atypical antipsychotic agent olanzapine (LY170053). Bioorg Med Chem Lett 1997; 7: 25–30.

    Article  CAS  Google Scholar 

  41. Hernandez D, Janmohamed A, Chandan P, Omar BA, Phillips IR, Shephard EA . Deletion of the mouse Fmo1 gene results in enhanced pharmacological behavioural responses to imipramine. Pharmacogenet Genomics 2009; 19: 289–299.

    Article  CAS  PubMed  Google Scholar 

  42. Mao M, Matimba A, Scordo MG, Gunes A, Zengil H, Yasui-Furukori N et al. Flavin-containing monooxygenase 3 polymorphisms in 13 ethnic populations from Europe, East Asia and sub-Saharan Africa: frequency and linkage analysis. Pharmacogenomics 2009; 10: 1447–1455.

    Article  CAS  PubMed  Google Scholar 

  43. Park CS, Kang JH, Chung WG, Yi HG, Pie JE, Park DK et al. Ethnic differences in allelic frequency of two flavin-containing monooxygenase 3 (FMO3) polymorphisms: linkage and effects on in vivo and in vitro FMO activities. Pharmacogenetics 2002; 12: 77–80.

    Article  CAS  PubMed  Google Scholar 

  44. Hisamuddin IM, Wehbi MA, Schmotzer B, Easley KA, Hylind LM, Giardiello FM et al. Genetic polymorphisms of flavin monooxygenase 3 in sulindac-induced regression of colorectal adenomas in familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 2005; 14: 2366–2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Phillips IR, Shephard EA . Flavin-containing monooxygenases: mutations, disease and drug response. Trends Pharmacol Sci 2008; 29: 294–301.

    Article  CAS  PubMed  Google Scholar 

  46. Nagashima S, Shimizu M, Yano H, Murayama N, Kumai T, Kobayashi S et al. Inter-individual variation in flavin-containing monooxygenase 3 in livers from Japanese: correlation with hepatic transcription factors. Drug Metab Pharmacokinet 2009; 24: 218–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Celius T, Pansoy A, Matthews J, Okey AB, Henderson MC, Krueger SK et al. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicol Appl Pharmacol 2010; 247: 60–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nozawa M, Ohnuma T, Matsubara Y, Sakai Y, Hatano T, Hanzawa R et al. The relationship between the response of clinical symptoms and plasma olanzapine concentration, based on pharmacogenetics: Juntendo University Schizophrenia Projects (JUSP). Ther Drug Monit 2008; 30: 35–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Hilde Lunde at Center for Psychopharmacology Diakonhjemmet Hospital for assistance regarding re-analysis of OLA N-oxide concentrations in the TDM samples, Tomas Axelsson and the staff at The SNP&SEQ Technology Platform for their assistance with genotyping, and Maria Gabriella Scordo for helpful discussions on this manuscript.

Funding: The study was financially supported by the Swedish Research Council. The SNP&SEQ Technology Platform in Uppsala is supported by Uppsala University, Uppsala University hospital, the Swedish Council for Research Infrastructure and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Söderberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderberg, M., Haslemo, T., Molden, E. et al. Influence of FMO1 and 3 polymorphisms on serum olanzapine and its N-oxide metabolite in psychiatric patients. Pharmacogenomics J 13, 544–550 (2013). https://doi.org/10.1038/tpj.2012.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.47

Keywords

This article is cited by

Search

Quick links