Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment

An Erratum to this article was published on 29 March 2011

Abstract

Interferon-β (IFN-β) is one of the major drugs for multiple sclerosis (MS) treatment. The purpose of this study was to characterize the transcriptional effects induced by intramuscular IFN-β-1a therapy in patients with relapsing–remitting form of MS. By using Affymetrix DNA microarrays, we obtained genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-β administration. We identified 121 genes that were significantly up- or downregulated compared with baseline, with stronger changed expression at 1 week after start of therapy. Eleven transcription factor-binding sites (TFBS) are overrepresented in the regulatory regions of these genes, including those of IFN regulatory factors and NF-κB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene expression data and TFBS information, to reconstruct the underlying network of molecular interactions. An NF-κB-centered sub-network of genes was highly expressed in patients with IFN-β-related side effects. Expression alterations were confirmed by real-time PCR and literature mining was applied to evaluate network inference accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Weiner HL . The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol 2009; 65: 239–248.

    Article  CAS  Google Scholar 

  2. Compston A, Coles A . Multiple sclerosis. Lancet 2008; 372: 1502–1517.

    Article  CAS  Google Scholar 

  3. Bradl M, Lassmann H . Progressive multiple sclerosis. Semin Immunopathol 2009; 31: 455–465.

    Article  CAS  Google Scholar 

  4. Sospedra M, Martin R . Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683–747.

    Article  CAS  Google Scholar 

  5. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 1996; 39: 285–294.

    Article  CAS  Google Scholar 

  6. Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. N Engl J Med 2000; 343: 898–904.

    Article  CAS  Google Scholar 

  7. Limmroth V, Malessa R, Zettl UK, Koehler J, Japp G, Haller P et al. Quality Assessment in Multiple Sclerosis Therapy (QUASIMS): a comparison of interferon beta therapies for relapsing-remitting multiple sclerosis. J Neurol 2007; 254: 67–77.

    Article  CAS  Google Scholar 

  8. Stark GR . How cells respond to interferons revisited: from early history to current complexity. Cytokine Growth Factor Rev 2007; 18: 419–423.

    Article  CAS  Google Scholar 

  9. Gilli F, Marnetto F, Caldano M, Sala A, Malucchi S, Di Sapio A et al. Biological responsiveness to first injections of interferon-beta in patients with multiple sclerosis. J Neuroimmunol 2005; 158: 195–203.

    Article  CAS  Google Scholar 

  10. Santos R, Weinstock-Guttman B, Tamaño-Blanco M, Badgett D, Zivadinov R, Justinger T et al. Dynamics of interferon-beta modulated mRNA biomarkers in multiple sclerosis patients with anti-interferon-beta neutralizing antibodies. J Neuroimmunol 2006; 176: 125–133.

    Article  CAS  Google Scholar 

  11. Weinstock-Guttman B, Bhasi K, Badgett D, Tamaño-Blanco M, Minhas M, Feichter J et al. Genomic effects of once-weekly, intramuscular interferon-beta1a treatment after the first dose and on chronic dosing: Relationships to 5-year clinical outcomes in multiple sclerosis patients. J Neuroimmunol 2008; 205: 113–125.

    Article  CAS  Google Scholar 

  12. Weinstock-Guttman B, Badgett D, Patrick K, Hartrich L, Santos R, Hall D et al. Genomic effects of IFN-beta in multiple sclerosis patients. J Immunol 2003; 171: 2694–2702.

    Article  CAS  Google Scholar 

  13. Waubant E, Vukusic S, Gignoux L, Dubief FD, Achiti I, Blanc S et al. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 2003; 61: 184–189.

    Article  CAS  Google Scholar 

  14. Kappos L, Clanet M, Sandberg-Wollheim M, Radue EW, Hartung HP, Hohlfeld R et al. Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology 2005; 65: 40–47.

    Article  CAS  Google Scholar 

  15. Goertsches RH, Hecker M, Zettl UK . Monitoring of multiple sclerosis immunotherapy: from single candidates to biomarker networks. J Neurol 2008; 255 (Suppl 6): 48–57.

    Article  CAS  Google Scholar 

  16. Comabella M, Martin R . Genomics in multiple sclerosis - current state and future directions. J Neuroimmunol 2007; 187: 1–8.

    Article  CAS  Google Scholar 

  17. Hesse D, Krakauer M, Lund H, Søndergaard HB, Limborg SJ, Soelberg Sørensen P et al. Disease protection and interleukin-10 induction by endogenous interferon-beta in multiple sclerosis? Eur J Neurol 2010; e-pub ahead of print 15 June 2010; doi:10.1111/j.1468-1331.2010.03116.x.

  18. Sellebjerg F, Krakauer M, Hesse D, Ryder LP, Alsing I, Jensen PE et al. Identification of new sensitive biomarkers for the in vivo response to interferon-beta treatment in multiple sclerosis using DNA-array evaluation. Eur J Neurol 2009; 16: 1291–1298.

    Article  CAS  Google Scholar 

  19. Singh MK, Scott TF, LaFramboise WA, Hu FZ, Post JC, Ehrlich GD . Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing beta-interferon therapy. J Neurol Sci 2007; 258: 52–59.

    Article  CAS  Google Scholar 

  20. Fernald GH, Knott S, Pachner A, Caillier SJ, Narayan K, Oksenberg JR et al. Genome-wide network analysis reveals the global properties of IFN-beta immediate transcriptional effects in humans. J Immunol 2007; 178: 5076–5085.

    Article  CAS  Google Scholar 

  21. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R . Gene regulatory network inference: data integration in dynamic models - a review. Biosystems 2009; 96: 86–103.

    Article  CAS  Google Scholar 

  22. Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, Kim J . Reverse engineering of gene regulatory networks. IET Syst Biol 2007; 1: 149–163.

    Article  CAS  Google Scholar 

  23. Ross AP . Tolerability, adherence, and patient outcomes. Neurology 2008; 71 (24 Suppl 3): S21–S23.

    Article  Google Scholar 

  24. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  Google Scholar 

  25. Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M et al. Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinformatics 2007; 8: 446.

    Article  Google Scholar 

  26. Hecker M, Goertsches RH, Engelmann R, Thiesen HJ, Guthke R . Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinformatics 2009; 10: 262.

    Article  Google Scholar 

  27. Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S et al. Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol 2002; 3: research0062.

    PubMed  PubMed Central  Google Scholar 

  28. Falcon S, Gentleman R . Using GOstats to test gene lists for GO term association. Bioinformatics 2007; 23: 257–258.

    Article  CAS  Google Scholar 

  29. Mahony S, Benos PV . STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 2007; 35 (Web Server issue): W253–W258.

    Article  Google Scholar 

  30. Efron B, Hastie T, Johnstone I, Tibshirani R . Least angle regression. Ann Statist 2004; 32: 407–499.

    Article  Google Scholar 

  31. Killcoyne S, Carter GW, Smith J, Boyle J . Cytoscape: a community-based framework for network modeling. Methods Mol Biol 2009; 563: 219–239.

    Article  CAS  Google Scholar 

  32. Clauset A, Shalizi CR, Newman MEJ . Power-law distributions in empirical data. SIAM Review 2009; 51: 661–703.

    Article  Google Scholar 

  33. Melchjorsen J, Kristiansen H, Christiansen R, Rintahaka J, Matikainen S, Paludan SR et al. Differential Regulation of the OASL and OAS1 Genes in Response to Viral Infections. J Interferon Cytokine Res 2009; 29: 199–208.

    Article  CAS  Google Scholar 

  34. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S . Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 1998; 244: 268–274.

    Article  CAS  Google Scholar 

  35. Kraft S, Kinet JP . New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007; 7: 365–378.

    Article  CAS  Google Scholar 

  36. Giorelli M, Livrea P, Defazio G, Iacovelli L, Capobianco L, Picascia A et al. Interferon beta-1a counteracts effects of activation on the expression of G-protein-coupled receptor kinases 2 and 3, beta-arrestin-1, and regulators of G-protein signalling 2 and 16 in human mononuclear leukocytes. Cell Signal 2002; 14: 673–678.

    Article  CAS  Google Scholar 

  37. Hamilton JA . CSF-1 signal transduction. J Leukoc Biol 1997; 62: 145–155.

    Article  CAS  Google Scholar 

  38. Huang W-X, Huang MP, Gomes MA, Hillert J . Apoptosis mediators fasL and TRAIL are upregulated in peripheral blood mononuclear cells in MS. Neurology 2000; 55: 928–934.

    Article  CAS  Google Scholar 

  39. Wandinger KP, Lünemann JD, Wengert O, Bellmann-Strobl J, Aktas O, Weber A et al. TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet 2003; 361: 2036–2043.

    Article  CAS  Google Scholar 

  40. Kimberley FC, Screaton GR . Following a TRAIL: update on a ligand and its five receptors. Cell Res 2004; 14: 359–372.

    Article  CAS  Google Scholar 

  41. Tanaka N, Kawakami T, Taniguchi T . Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol Cell Biol 1993; 13: 4531–4538.

    Article  CAS  Google Scholar 

  42. Mizugishi K, Aruga J, Nakata K, Mikoshiba K . Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem 2001; 276: 2180–2188.

    Article  CAS  Google Scholar 

  43. Stürzebecher S, Maibauer R, Heuner A, Beckmann K, Aufdembrinke B . Pharmacodynamic comparison of single doses of IFN-beta1a and IFN-beta1b in healthy volunteers. J Interferon Cytokine Res 1999; 19: 1257–1264.

    Article  Google Scholar 

  44. Buchwalder PA, Buclin T, Trinchard I, Munafo A, Biollaz J . Pharmacokinetics and pharmacodynamics of IFN-beta 1a in healthy volunteers. J Interferon Cytokine Res 2000; 20: 857–866.

    Article  CAS  Google Scholar 

  45. Stürzebecher S, Wandinger KP, Rosenwald A, Sathyamoorthy M, Tzou A, Mattar P et al. Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis. Brain 2003; 126 (Part 6): 1419–1429.

    Article  Google Scholar 

  46. Annibali V, Di Giovanni S, Cannoni S, Giugni E, Bomprezzi R, Mattei C et al. Gene expression profiles reveal homeostatic dynamics during interferon-beta therapy in multiple sclerosis. Autoimmunity 2007; 40: 16–22.

    Article  CAS  Google Scholar 

  47. Goertsches RH, Hecker M, Koczan D, Serrano-Fernandez P, Moeller S, Thiesen HJ et al. Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS. Pharmacogenomics 2010; 11: 147–161.

    Article  CAS  Google Scholar 

  48. Kraus J, Bauer R, Chatzimanolis N, Engelhardt B, Tofighi J, Bregenzer T et al. Interferon-beta 1b leads to a short-term increase of soluble but long-term stabilisation of cell surface bound adhesion molecules in multiple sclerosis. J Neurol 2004; 251: 464–472.

    Article  CAS  Google Scholar 

  49. Floris S, Ruuls SR, Wierinckx A, van der Pol SM, Döpp E, van der Meide PH et al. Interferon-beta directly influences monocyte infiltration into the central nervous system. J Neuroimmunol 2002; 127: 69–79.

    Article  CAS  Google Scholar 

  50. Calvete JJ . On the structure and function of platelet integrin alpha IIb beta 3, the fibrinogen receptor. Proc Soc Exp Biol Med 1995; 208: 346–360.

    Article  CAS  Google Scholar 

  51. Stalker TJ, Wu J, Morgans A, Traxler EA, Wang L, Chatterjee MS et al. Endothelial cell specific adhesion molecule (ESAM) localizes to platelet-platelet contacts and regulates thrombus formation in vivo. J Thromb Haemost 2009; 7: 1886–1896.

    Article  CAS  Google Scholar 

  52. Ishida T, Kundu RK, Yang E, Hirata K, Ho YD, Quertermous T . Targeted disruption of endothelial cell-selective adhesion molecule inhibits angiogenic processes in vitro and in vivo. J Biol Chem 2003; 278: 34598–34604.

    Article  CAS  Google Scholar 

  53. Weber C, Fraemohs L, Dejana E . The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 2007; 7: 467–477.

    Article  CAS  Google Scholar 

  54. Montalban X, Durán I, Río J, Sáez-Torres I, Tintoré M, Martínez-Cáceres EM . Can we predict flu-like symptoms in patients with multiple sclerosis treated with interferon-beta? J Neurol 2000; 247: 259–262.

    Article  CAS  Google Scholar 

  55. Nie D, Tang K, Diglio C, Honn KV . Eicosanoid regulation of angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood 2000; 95: 2304–2311.

    CAS  PubMed  Google Scholar 

  56. Pidgeon GP, Tang K, Cai YL, Piasentin E, Honn KV . Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Res 2003; 63: 4258–4267.

    CAS  PubMed  Google Scholar 

  57. Shelhamer JH, Marom Z, Kaliner M, Sun F, Bach MK . The effects of arachinoids and leukotrienes on the release of mucus from human airways. Chest 1982; 81: 36S–37S.

    Article  Google Scholar 

  58. Emerson MR, LeVine SM . Experimental allergic encephalomyelitis is exacerbated in mice deficient for 12/15-lipoxygenase or 5-lipoxygenase. Brain Res 2004; 1021: 140–145.

    Article  CAS  Google Scholar 

  59. Wang X, Newkirk RF, Carre W, Ghose P, Igobudia B, Townsel JG et al. Regulation of ANKRD9 expression by lipid metabolic perturbations. BMB Rep 2009; 42: 568–573.

    Article  CAS  Google Scholar 

  60. Tamura K, Makino A, Hullin-Matsuda F, Kobayashi T, Furihata M, Chung S et al. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res 2009; 69: 8133–8140.

    Article  CAS  Google Scholar 

  61. Tremlett H, Oger J . Hepatic injury, liver monitoring and the beta-interferons for multiple sclerosis. J Neurol 2004; 251: 1297–1303.

    Article  Google Scholar 

  62. Comabella M, Lünemann JD, Río J, Sánchez A, López C, Julià E et al. A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain 2009; 132 (Part 12): 3353–3365.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We deeply thank Peter Lorenz for helpful discussions and our lab assistants Gabriele Gillwaldt, Silvia Dilk, Ina Schröder and Ildikó Tóth for their help in performing the experiments. We are also grateful to study nurse Christa Tiffert for her invaluable contribution. This study was supported by grants from the German Federal Ministry of Education and Research (BMBF, BioChancePlus, 0313692D), and partially funded by Biogen Idec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hecker.

Ethics declarations

Competing interests

Professor Dr Zettl has received research support, as well as speaking fees from Bayer, Biogen Idec, Merck Serono, Sanofi Aventis and Teva. Mr Hecker, Dr Goertsches, Mr Fatum, Dr Koczan, Prof Dr Thiesen and Dr Guthke declare no potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecker, M., Goertsches, R., Fatum, C. et al. Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment. Pharmacogenomics J 12, 134–146 (2012). https://doi.org/10.1038/tpj.2010.77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.77

Keywords

This article is cited by

Search

Quick links