Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform

Abstract

The anticancer agent docetaxel shows significant inter-individual variation in its pharmacokinetic and toxicity profile. Thalidomide is an active anticancer agent and also shows wide pharmacological variation. Past pharmacogenetic research has not explained this variation. Patients with prostate cancer enrolled in a randomized phase II trial using docetaxel and thalidomide versus docetaxel alone were genotyped using the Affymetrix DMET 1.0 platform, which tests for 1256 genetic variations in 170 drug disposition genes. Genetic polymorphisms were analyzed for associations with clinical response and toxicity. In all, 10 single-nucleotide polymorphisms (SNPs) in three genes were potentially associated with response to therapy: peroxisome proliferator-activated receptor-δ (PPAR-δ), sulfotransferase family, cytosolic, 1C, member 2 (SULT1C2) and carbohydrate (chondroitin 6) sulfotransferase 3 (CHST3). In addition, 11 SNPs in eight genes were associated with toxicities to treatment: spastic paraplegia 7 (pure and complicated autosomal recessive) (SPG7), CHST3, cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6), N-acetyltransferase 2 (arylamine N-acetyltransferase) (NAT2), ATP-binding cassette, sub-family C (CFTR/MRP), member 6 (ABCC6), ATPase, Cu++ transporting, alpha polypeptide (ATP7A), cytochrome P450, family 4, subfamily B, polypeptide 1 (CYP4B1) and solute carrier family 10 (sodium/bile acid cotransporter family), member 2 (SLC10A2). Genotyping results between drug metabolizing enzymes and transporters (DMET) and direct sequencing showed >96% of concordance. These findings highlight the role that non-CYP450 metabolizing enzymes and transporters may have in the pharmacology of docetaxel and thalidomide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

CRPC:

castrate-resistant prostate cancer

DMET:

drug-metabolizing enzymes and transporters

SNP:

single-nucleotide polymorphism

References

  1. Deeken J, Figg W, Bates SE, Sparreboom A . Toward individualized treatment: prediction of anticancer drug disposition and toxicity with pharmacogenetics. Anticancer Drugs 2007; 18: 111–126.

    Article  CAS  PubMed  Google Scholar 

  2. Sparreboom A, Van Tellingen O, Scherrenburg EJ, Boesen JJ, Huizing MT, Nooijen WJ et al. Isolation, purification and biological activity of major docetaxel metabolites from human feces. Drug Metab Dispos 1996; 24: 655–668.

    CAS  PubMed  Google Scholar 

  3. Marre F, Sanderink GJ, de Sousa G, Gaillard C, Martinet M, Rahmani R . Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 1996; 56: 1296–1302.

    CAS  PubMed  Google Scholar 

  4. Shou M, Martinet M, Korzekwa KR, Krausz KW, Gonzalez FJ, Gelboin HV . Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 1998; 8: 391–401.

    Article  CAS  PubMed  Google Scholar 

  5. Clarke SJ, Rivory LP . Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 1999; 36: 99–114.

    Article  CAS  PubMed  Google Scholar 

  6. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH . The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 2000; 6: 1255–1268.

    CAS  PubMed  Google Scholar 

  7. Goh BC, Lee SC, Wang LZ, Fan L, Guo JY, Lamba J et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 2002; 20: 3683–3690.

    Article  CAS  PubMed  Google Scholar 

  8. Engels FK, Ten Tije AJ, Baker SD, Lee CK, Loos WJ, Vulto AG et al. Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin Pharmacol Ther 2004; 75: 448–454.

    Article  CAS  PubMed  Google Scholar 

  9. Puisset F, Chatelut E, Dalenc F, Busi F, Cresteil T, Azéma J et al. Dexamethasone as a probe for docetaxel clearance. Cancer Chemother Pharmacol 2004; 54: 265–272.

    Article  CAS  PubMed  Google Scholar 

  10. Engels FK, Mathot RA, Loos WJ, van Schaik RH, Verweij J . Influence of high-dose ketoconazole on the pharmacokinetics of docetaxel. Cancer Biol Ther 2006; 5: 833–839.

    Article  CAS  PubMed  Google Scholar 

  11. Bosch TM, Huitema AD, Doodeman VD, Jansen R, Witteveen E, Smit WM et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 2006; 12: 5786–5793.

    Article  CAS  PubMed  Google Scholar 

  12. Park JS, Yamamoto W, Sekikawa T, Matsukawa M, Okamoto R, Sasaki M et al. Cellular sensitivity determinants to docetaxel in human gastrointestinal cancers. Int J Oncol 2002; 20: 333–338.

    CAS  PubMed  Google Scholar 

  13. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 2005; 23: 422–431.

    Article  CAS  PubMed  Google Scholar 

  14. Tran A, Jullien V, Alexandre J, Rey E, Rabillon F, Girre V et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 2006; 79: 570–580.

    Article  CAS  PubMed  Google Scholar 

  15. Figg WD, Chau CH . Heterogeneity in drug disposition determines interindividual variability of docetaxel pharmacokinetics. Cancer Biol Ther 2006; 5: 840–851.

    Article  CAS  PubMed  Google Scholar 

  16. Schumacher H, Smith RL, Williams RT . The metabolism of thalidomide: the spontaneous hydrolysis of thalidomide in solution. Br J Pharmacol Chemother 1965; 25: 324–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun AG, Weinreb SL . Teratogen metabolism: spontaneous decay products of thalidomide and thalidomide analogues are not bioactivated by liver microsomes. Teratog Carcinog Mutagen 1985; 5: 149158.

    Article  Google Scholar 

  18. Price DK, Ando Y, Kruger EA, Weiss M, Figg WD . 5′-OH-thalidomide, a metabolite of thalidomide, inhibits angiogenesis. Ther Drug Monit 2002; 24: 104–110.

    Article  CAS  PubMed  Google Scholar 

  19. Lepper ER, Smith NF, Cox MC, Scripture CD, Figg WD . Thalidomide metabolism and hydrolysis: mechanisms and implications. Curr Drug Metab 2006; 7: 677–685.

    Article  CAS  PubMed  Google Scholar 

  20. Ando Y, Fuse E, Figg WD . Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res 2002; 8: 1964–1973.

    CAS  PubMed  Google Scholar 

  21. Miyata M, Tamura E, Motoki K, Nagata K, Yamazoe Y . Thalidomide-induced suppression of embryo fibroblast proliferation requires CYP1A1-mediated activation. Drug Metab Dispos 2003; 31: 469–475.

    Article  CAS  PubMed  Google Scholar 

  22. Lu J, Helsby N, Palmer BD, Tingle M, Baguley BC, Kestell P et al. Metabolism of thalidomide in liver microsomes of mice, rabbits, and humans. J Pharmacol Exp Ther 2004; 310: 571–577.

    Article  CAS  PubMed  Google Scholar 

  23. Ando Y, Price DK, Dahut WL, Cox MC, Reed E, Figg WD . Pharmacogenetic associations of CYP2C19 genotype with in vivo metabolisms and pharmacological effects of thalidomide. Cancer Biol Ther 2002; 1: 669–673.

    Article  CAS  PubMed  Google Scholar 

  24. Dumaual C, Miao X, Daly TM, Bruckner C, Njau R, Fu DJ et al. Comprehensive assessment of metabolic enzyme and transporter genes using the Affymetrix targeted genotyping system. Pharmacogenomics 2007; 8: 293–305.

    Article  CAS  PubMed  Google Scholar 

  25. Dahut WL, Gulley JL, Arlen PM, Liu Y, Fedenko KM, Steinberg SM et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol 2004; 22: 2532–2539.

    Article  CAS  PubMed  Google Scholar 

  26. Bruno R, Hille D, Riva A, Vivier N, ten Bokkel Huinnink WW, van Oosterom AT et al. Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 1998; 16: 187–196.

    Article  CAS  PubMed  Google Scholar 

  27. Bruno R, Vivier N, Veyrat-Follet C, Montay G, Rhodes GR . Population pharmacokinetics and pharmacokinetic-pharmacodynamic relationships for docetaxel. Invest New Drugs 2001; 19: 163–169.

    Article  CAS  PubMed  Google Scholar 

  28. Bruno R, Olivares R, Berille J, Chaikin P, Vivier N, Hammershaimb L et al. Alpha-1-acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin Cancer Res 2003; 9: 1077–1082.

    CAS  PubMed  Google Scholar 

  29. Hamada A, Danesi R, Price DK, Sissung T, Chau C, Venzon D et al. Association of a CYP17 polymorphism with overall survival in Caucasian patients with androgen-independent prostate cancer. Urology 2007; 70: 217–220.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gardner ER, Burger H, van Schaik RH, van Oosterom AT, de Bruijn EA, Guetens G et al. Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 2006; 80: 192–201.

    Article  CAS  PubMed  Google Scholar 

  31. Sissung TM, Danesi R, Price DK, Steinberg SM, de Wit R, Zahid M et al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther 2008; 7: 19–26.

    Article  CAS  PubMed  Google Scholar 

  32. Lepper ER, Baker SD, Permenter M, Ries N, van Schaik RH, Schenk PW et al. Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients. Clin Cancer Res 2005; 11: 7398–7404.

    Article  CAS  PubMed  Google Scholar 

  33. Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 2008; 14: 4543–4549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Honjo Y, Morisaki K, Huff LM, Robey RW, Hung J, Dean M et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 2002; 1: 696–702.

    Article  CAS  PubMed  Google Scholar 

  35. Mehta CR, Patel NR . A network algorithm for performing Fisher's exact test in r × c contingency tables. J Am Stat Assoc 1983; 78: 427–434.

    Google Scholar 

  36. Krämer DK, Al-Khalili L, Guigas B, Leng Y, Garcia-Roves PM, Krook A . Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J Biol Chem 2007; 282: 19313–19320.

    Article  PubMed  Google Scholar 

  37. Skogsberg J, Kannisto K, Cassel TN, Hamsten A, Eriksson P, Ehrenborg E . Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol 2003; 23: 637–643.

    Article  CAS  PubMed  Google Scholar 

  38. Vänttinen M, Nuutila P, Kuulasmaa T, Pihlajamäki J, Hällsten K, Virtanen KA et al. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes 2005; 54: 3587–3591.

    Article  PubMed  Google Scholar 

  39. Zandi PP, Belmonte PL, Willour VL, Goes FS, Badner JA, Simpson SG et al. Association study of Wnt signaling pathway genes in bipolar disorder. Arch Gen Psychiatry 2008; 65: 785–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burch LR, Zhou K, Donnelly LA, Doney AS, Brady J, Goddard C et al. A single nucleotide polymorphism on exon-4 of the gene encoding PPAR{delta} is associated with reduced height in adults and children. J Clin Endocrinol Metab 2009; 94: 2587–2593.

    Article  CAS  PubMed  Google Scholar 

  41. Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P et al. Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 2007; 104: 12890–12895.

    Article  CAS  PubMed  Google Scholar 

  42. Nordgard SH, Johansen FE, Alnaes GI, Bucher E, Syvänen AC, Naume B et al. Genome-wide analysis identifies 16q deletion associated with survival, molecular subtypes, mRNA expression, and germline haplotypes in breast cancer patients. Genes Chromosomes Cancer 2008; 47: 680–696.

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Tu L, Murphy PG, Kadono T, Steeber DA, Tedder TF . CHST1 and CHST2 sulfotransferase expression by vascular endothelial cells regulates shear-resistant leukocyte rolling via L-selectin. J Leukoc Biol 2001; 69: 565–574.

    CAS  PubMed  Google Scholar 

  44. Nishimura M, Imai T, Morioka Y, Kuribayashi S, Kamataki T, Naito S . Effects of NO-1886 (Ibrolipim), a lipoprotein lipase-promoting agent, on gene induction of cytochrome P450s, carboxylesterases, and sulfotransferases in primary cultures of human hepatocytes. Drug Metab Pharmacokinet 2004; 19: 422–429.

    Article  CAS  PubMed  Google Scholar 

  45. Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K et al. Catalog of 77 single-nucleotide polymorphisms (SNPs) in the carbohydrate sulfotransferase 1 (CHST1) and carbohydrate sulfotransferase 3 (CHST3) genes. J Hum Genet 2002; 47: 14–19.

    Article  CAS  PubMed  Google Scholar 

  46. Xiangrong L, Jöhnk C, Hartmann D, Schestag F, Krömer W, Gieselmann V . Enzymatic properties, tissue-specific expression, and lysosomal location of two highly homologous rat SULT1C2 sulfotransferases. Biochem Biophys Res Commun 2000; 272: 242–250.

    Article  CAS  PubMed  Google Scholar 

  47. Tamura HO, Taniguchi K, Hayashi E, Hiyoshi Y, Nagai F . Expression profiling of sulfotransferases in human cell lines derived from extra-hepatic tissues. Biol Pharm Bull 2001; 24: 1258–1262.

    Article  CAS  PubMed  Google Scholar 

  48. Hildebrandt MA, Carrington DP, Thomae BA, Eckloff BW, Schaid DJ, Yee VC et al. Genetic diversity and function in the human cytosolic sulfotransferases. Pharmacogenomics J 2007; 7: 133–143.

    Article  CAS  PubMed  Google Scholar 

  49. Aust S, Obrist P, Klimpfinger M, Tucek G, Jäger W, Thalhammer T . Altered expression of the hormone- and xenobiotic-metabolizing sulfotransferase enzymes 1A2 and 1C1 in malignant breast tissue. Int J Oncol 2005; 26: 1079–1085.

    CAS  PubMed  Google Scholar 

  50. Stanley EL, Hume R, Coughtrie MW . Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Mol Cell Endocrinol 2005; 240: 32–42.

    Article  CAS  PubMed  Google Scholar 

  51. Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93: 973–983.

    Article  CAS  Google Scholar 

  52. Goytain A, Hines RM, El-Husseini A, Quamme GA . NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem 2007; 282: 8060–8068.

    Article  CAS  PubMed  Google Scholar 

  53. Royer I, Monsarrat B, Sonnier M, Wright M, Cresteil T . Metabolism of docetaxel by human cytochromes P450: interactions with paclitaxel and other antineoplastic drugs. Cancer Res 1996; 56: 58–65.

    CAS  PubMed  Google Scholar 

  54. Teo SK, Sabourin PJ, O'Brien K, Kook KA, Thomas SD . Metabolism of thalidomide in human microsomes, cloned human cytochrome P-450 isozymes, and Hansen's disease patients. J Biochem Mol Toxicol 2000; 14: 140–147.

    Article  CAS  PubMed  Google Scholar 

  55. McKeown-Eyssen G, Baines C, Cole DE, Riley N, Tyndale RF, Marshall L et al. Case-control study of genotypes in multiple chemical sensitivity: CYP2D6, NAT1, NAT2, PON1, PON2 and MTHFR. Int J Epidemiol 2004; 33: 971–978.

    Article  PubMed  Google Scholar 

  56. Sabbagh N, Delaporte E, Marez D, Lo-Guidice JM, Piette F, Broly F . NAT2 genotyping and efficacy of sulfasalazine in patients with chronic discoid lupus erythematosus. Pharmacogenetics 1997; 7: 131–135.

    Article  CAS  PubMed  Google Scholar 

  57. Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 1997; 155: 1717–1722.

    Article  CAS  PubMed  Google Scholar 

  58. Belinsky MG, Chen ZS, Shchaveleva I, Zeng H, Kruh GD . Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 2002; 62: 6172–6177.

    CAS  PubMed  Google Scholar 

  59. Safaei R, Howell SB . Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol 2005; 53: 13–23.

    Article  PubMed  Google Scholar 

  60. Trauner M, Boyer JL . Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83: 633–671.

    Article  CAS  PubMed  Google Scholar 

  61. Maitland ML, Ratain MJ, Cox NJ . Interpreting P values in pharmacogenetic studies: a call for process and perspective. J Clin Oncol 2007; 25: 4513–4515.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA. Partial findings contained in this article were initially presented at the 2007 Annual Convention of the American Society of Clinical Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F Deeken.

Ethics declarations

Competing interests

TC, KT and XM are employees of Affymetrix, the manufacturer of the DMET platform. JFD serves as a consultant to Sanofi-Aventis, the manufacturer of docetaxel.

Additional information

Disclaimer

The content of this paper does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeken, J., Cormier, T., Price, D. et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 10, 191–199 (2010). https://doi.org/10.1038/tpj.2009.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.57

Keywords

This article is cited by

Search

Quick links