Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Individual size but not additional nitrogen regulates tree carbon sequestration in a subtropical forest

Abstract

Recent studies have indicated that tree carbon accumulation in subtropical forests has been negatively affected by global change phenomena such as warming and drought. However, the long-term effect of nitrogen addition on plant carbon storage remains poorly understood in these regions. In this study, we conducted a 10-year field experiment examining the effect of experimental N addition on plant growth and carbon storage in a subtropical Chinese fir forest. The N levels were 0 (control), 60, 120, and 240 kg ha−1 yr−1, and the N effects on tree carbon were divided into stand and individual levels. The results indicated that tree carbon storage at the stand scale was not affected by long-term N addition in the subtropical forest. By contrast, significant impacts of different tree size classes on carbon sequestration were found under different N treatments, which indicated that the amount of plant carbon sequestration was significantly enhanced with tree size class. Our findings highlight the importance of community structure and growth characteristics in Chinese fir forests, in which individual size but not additional N regulates tree carbon sequestration in this subtropical forest.

Introduction

Global atmospheric nitrogen (N) deposition has dramatically increased due to anthropogenic activities over the past century1. Along with continued fossil-fuel burning and artificial fertilizer application, N deposition has been predicted to increase further in many areas around the world2. In China, rapid economic development, such as industrialization and urbanization, has been accompanied by large amounts of N emission during recent decades3; annual reactive N inputs into the atmosphere have increased from 7.6 to 20 Tg from 1978 to 20104, and annual bulk N deposition has increased by approximately 8 kg N per hectare between the 1980s and the 2000s3. Therefore, increasing N deposition in China has caused great concern because of its potential effects on different ecosystems5,6.

One of the most interesting topics is how increased N deposition influences global carbon (C) cycling or atmospheric CO2 concentrations, particularly the effects of N deposition on forest carbon dynamics. Forest areas occupy nearly 4.0 billion ha of the Earth’s terrestrial surface7 and are considered to be a large C sink that is estimated to sequester 2.4 Pg C per year8. Many studies using models9,10 and meta-analysis11,12 have indicated that N deposition promotes forest carbon storage and plays an important role in mitigating anthropogenic CO2 emissions. At a regional scale, there have been reports indicating that N deposition promotes ecosystem carbon sequestration in temperate forests13,14,15. Furthermore, a meta-analysis indicated that N deposition impedes the decomposition of soil organic matter and thus improves carbon storage in temperate forests16. In tropical or subtropical forests, however, the effects of N deposition on forest carbon storage depend on forest characteristics such as soil nutrients and latitude6,17.

Based on the stand level, long-term experiments have investigated the effects of N deposition on above- and belowground carbon dynamics in temperate or boreal regions. For example, a 30-year N loading experiment initially improved tree growth, and then the amount of N addition regulated the growth rate in a boreal forest18. In tropical or subtropical regions, however, few studies of N addition in forests have been longer than 10 years19,20, generating difficulty in assessing the effect of nitrogen deposition on forest carbon cycling16. In tropical and subtropical forests17,21, N addition usually promotes forest carbon sequestration, and the increased carbon sequestration has been mainly ascribed to soil carbon but not plant growth22,23. However, a minimal impact from N deposition on plant carbon has also been found in temperate and boreal forests24,25. For instance, N addition did not significantly affect woody biomass increments for five tree species in Northeastern America26.

The potential mechanism of plant non-response was attributed to the N saturation or N-induced soil acidification in these forest ecosystems26,27. Most of these arguments were based on the stand level, and the effects of individual trees were not considered. However, the size of individual trees would play different roles in a forest and result in different responses to environmental change28,29. For example, evergreen broad-leaved forests in China are undergoing a change from forests that are dominated by a cohort of fewer and larger individuals to forests dominated by a cohort of more and smaller individuals in response to global warming and drought stress30, and the biome-scale reconstitution of forests would strongly influence the regional carbon dynamics31. Although there were several N addition experiments concerning tree growth more than 10 years long14,18,20, as far as we know, no study has used long-term (>10 years) manipulation experiments to investigate the responses of individual trees to N addition in China. It is unclear whether unchanged plant growth after N deposition is affected by different growth dynamics among different tree sizes.

In this article, we used data from a10-year observation plot in a Chinese fir forest to examine whether N addition affects net primary production at the stand level and whether the responses of plant carbon sequestration are affected by tree size. The Chinese fir (Cunninghamia Ianceolata(Lamb.)Hook.) has been widely planted in 14 provinces and is one of the most important commercial forest species in subtropical China32,33. It has been reported that the total area of Chinese fir plantations was approximately 1.12 × 107 ha in 2009, which accounted for 18.17% of all reforested plantations in China34. We hypothesized that N treatments have minimal impacts on tree carbon sequestration but that carbon sequestration in trees of different sizes would vary in their responses to N addition. Furthermore, we also predicted that tree size would play a greater role in carbon storage overtime due to its growth characteristics.

Results

Plant response at the stand level

The tree diameters were normally distributed prior to and after N addition. The diameter of most individual trees was from 10 cm to 25 cm before N addition (Supplementary Figure 1), whereas the diameter increased from 15 cm to 30 cm after a decade of N treatment (Supplementary Figure 2). The tree numbers in the four treatments were similar, averaging 66 per plot (Fig. 1a).The average DBH increments ranged from 32.96 cm to 36.88 cm, but there was no significant difference among treatments (Fig. 1b). When we divided by tree number in each plot, the average DBH increments were 0.55 cm per tree per year during the 10-year treatment, and they were also not statistically significant (Fig. 1c). The average carbon storage per year was similar to the DBH increment (Fig. 1d).

Figure 1
figure1

The number of trees (a), average DBH increment per plot (b), and average diameter at breast height (DBH) increment per tree (c) and average carbon sequestration (d) after 10 years of N addition. Values are the means ± SEs of the three plots. Within each panel, the F-value and P-value are shown based on a one-way ANOVA.

Individual plant response

The individual DBH increments in the three classes from 2003 to 2013 did not exhibit an obvious increasing trend among the N treatments, although significant differences were detected at 15 cm ≤ DBH ≤ 20 cm (Supplementary Figure 3). The similar trends of decreased tree numbers at DBH < 15 cm and 15 cm ≤ DBH ≤ 20 cm, and the increased tree numbers at DBH > 20 cm, were found after 10 years of N addition (Table 1). The average carbon storage per tree per year was not significantly different among N treatments for the three DBH classes (DBH < 15 cm, 15 cm ≤ DBH ≤ 20 cm and DBH > 20 cm) (Fig. 2). By contrast, if we calculated the average carbon storage per tree per year among tree sizes, the results exhibited an obvious increasing trend of carbon storage with tree size (Fig. 3). A regression analysis of the plant carbon sequestration with the DBH showed a strong positive relationship in the four N treatments (Fig. 4). The two-way ANOVA also indicated that the DBH class but not N addition significantly affected the carbon storage (Table 2).

Table 1 Changes in actual tree numbers in three classes from 2003 to 2013.
Figure 2: The average carbon storage per tree per year among N treatments for the three DBH classes (DBH < 15 cm, 15 cm ≤ DBH ≤ 20 cm and DBH > 20 cm).
figure2

The values are the means ± SEs of the three plots. Within each panel, the F-value and P-value are shown based on one-way ANOVA.

Figure 3: The average carbon storage per tree per year among the tree sizes for the four N addition treatments.
figure3

The values are the means ± SEs of the three plots. Within each panel, the means with different letters are significantly different based on ANOVA and LSD (P < 0.05).

Figure 4: A regression between plant carbon sequestration and the diameter at breast (DBH) in the four N treatments.
figure4

The plant carbon sequestration represents the difference before and after N treatment after a decade. The DBH represents the value prior to N treatment.

Table 2 F and P values of the effects of diameter at breast height (DBH), N treatment, and their interaction on the average carbon sequestration per tree per year after 10 years of N treatments.

Discussion

Our data indicated that N addition did not affect plant carbon storage after 10 years of treatment at the stand level. Similar results were reported in our previous study, which showed that plant carbon sequestration did not respond to N addition or to the interaction between sampling year and N addition over a shorter time scale23. The secondary forests or early successional forests were usually grouped into N-limited ecosystems6,35, where experimental N fertilization would promote plant carbon accumulation17. For example, Chen et al.6 reported that N addition increased the aboveground plant carbon pools, especially in N-limited subtropical forests. The lack of positive responses in plant carbon sequestration after N addition would be attributable to N saturation at our study site. A high background of N deposition in South China has been reported3,4. In fact, many studies of temperate or tropical forests have reported that when an ecosystem reaches N saturation, plant growth or aboveground net primary production would not be improved by N addition22,26,36. In addition, the soil available N significantly enhanced along with N addition37, which was also consistent with Chen et al.’s report that N addition caused further N saturation in humid tropical forests38. The second factor was co-limitation by other nutrients. For example, phosphorus is considered to be a limiting factor for plant growth in tropical regions39. Although N addition alone did not increase plant carbon accumulation, the combined addition of N and other nutrients significantly facilitate tree growth in tropical forests19,20. The contents of available phosphorus had not the same trend with soil available N after N addition37, which partially supported the assertion. Third, the three DBH classes had no responses to the four levels of N deposition, which consequently might have limited variations in carbon sequestration among them. Our results agree with a previous study conducted in tropical forests that found no effect of N addition on plant diameter increments for different tree size classes22.

Furthermore, it is worth noting that the marginal effect of N deposition on plant growth in our study was supported by an assessment based on the FORECAST model33. When N deposition levels exceeded 20–30 kg ha−1 yr−1, N saturation in Chinese fir forests would occur and the incremental impacts of N deposition on forest carbon storage would not be obvious33, which is consistent with our results. The marginal response of tree growth to long-term N addition would suggest that N deposition has a small negative effect on subtropical forests. It is well known that ecological functions and services are important in forests in the context of climate change8. In Chinese monsoon evergreen broad-leaved forests, global warming and drought stress resulted in a decline of mean DBH and in larger individual trees accompanied by more and smaller individuals, which suggests that ecosystem resilience is threatened by long-term climate change in subtropical forests30. However, at least from our study, the subtropical Chinese fir plantations would not be strongly affected by long-term N addition.

Interestingly, when comparing plant carbon storage in different tree size classes, we found that plant carbon sequestration was significantly different. The bigger tree size classes sequestered larger amounts of carbon in our study. Recent research has indicated that individual tree size plays an important role in ecosystem carbon storage28, which is consistent with our results. For instance, large trees do not only act as senescent carbon reservoirs but also assimilate larger amounts of carbon compared with smaller individuals28. In a previous study from tropical forests, it was also reported that the incremental rate of tree diameter growth was significantly higher for larger size classes than smaller size classes, and no effect of fertilization for any tree size class22. We realized that these arguments were mainly based on the studies from broad-leaved forests, which may be different from coniferous forests. They further highlighted a critical need in future studies to investigate the responses of different tree sizes to N addition and determine the mechanisms involved in coniferous forests.

In conclusion, our long-term investigation suggests that tree carbon storage would not be affected by N deposition in Chinese fir forests. Further, N addition had no effect on carbon sequestration in different tree size classes. Plant carbon sequestration was significantly enhanced with tree size class, which indicated the importance of community structure and growth characteristics in the subtropical forest. We also suggest that more attention should be paid to investigating belowground processes, such as the soil biota community and soil carbon dynamics in response to N deposition, due to their large potential carbon pool based on our current and previous studies23,40.

Materials and methods

Site description

The study area was located at the Guanzhuang National Forestry Farm (117°43′E, 26°30′N), in Sanming City, Fujian Province, South China. The climate of this region is a typical subtropical monsoon climate with mean annual precipitation of 1606–1650 mm and a mean annual temperature of 18.8–19.6 °C. The soil is classified as an acrisol. The selected Chinese firs in this study site were planted in 1992 at a density of 1660 trees per ha over a total of 5173 ha. This long-term experiment was initiated in December 2003 when the plantations were 12 years old. The plantations were established on hilly land with uniform site characteristics. The initial characteristics of the plantations and soil in the N addition plots in December 2003 were reported in our previous papers23,41.

Experimental design

We randomly established 12 experimental plots over a 6 ha section of the plantation. Each plot was 20 m × 20 m and was treated with one of four levels of N. The treatment codes and levels (kg N ha−1 yr−1) were N0 (0), N1 (60), N2 (120), and N3 (240). The plots were randomly arranged and each treatment had three replicate plots. For each treatment and each plot, the required amount of urea [CO(NH2)2] was dissolved in 20 L of tap water, and the solution was sprayed onto the soil surface every month beginning in January 2004. The control plots received an equivalent volume of water without CO(NH2)2.

Investigation of plant growth, carbon storage, and litter input

In total, 796 trees were investigated from all of the plots. The tree diameters at breast height (DBH at 1.3 m point) were measured at the start of the experiment in 2003 and at the end of 2013. For the carbon storage of each tree, the allometric relationship between DBH and tree biomass was fitted with a power function by our research group23, which was Biomass = 0.48 × DBH1.84 (r2 = 0.91, P < 0.001, n = 12). The proportion of carbon in the dried plant biomass was assumed to be 0.45. We first calculated tree growth and carbon sequestration at the stand level. To identify the response of tree size to N deposition, we divided all individuals into three DBH classes (DBH < 15 cm, 15 cm ≤ DBH ≤ 20 cm and DBH > 20 cm). We classified each tree into one of those three classes based on the DBH data of the first survey in December 2003. The last surveys were conducted in December 2013. The annual average growth or carbon storage = (the values from 2013 - the values from 2003)/10. Only 1% of trees died in our study site during the studied period and they were considered as no growth when analysis was conducted.

Statistical analyses

One-way analyses of variances (ANOVAs) were used to analyse the effect of treatment (levels of N addition) or tree size (DBH classes) on tree growth and carbon storage. Two-way ANOVAs were used to determine the effects of N deposition and tree size on individual plant carbon storage. SPSS 15 (SPSS Inc., Chicago, IL, USA) was used for the statistical analyses. Differences were considered significant at the 0.05 level. The data for tree DBH and plant carbon sequestration was fitted with linear regression: y = ax + b, where a and b were two parameters. All fittings were conducted using regression function in Sigmaplot 12.0 (Systat Software Inc., San Jose, CA, USA).

Additional Information

How to cite this article: Wu, J. et al. Individual size but not additional nitrogen regulates tree carbon sequestration in a subtropical forest. Sci. Rep. 7, 46293; doi: 10.1038/srep46293 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1

    IPCC. Climate Change 2007: the physical science basis: summary for policy makers. (Cambridge University Press, Cambridge, UK 2007).

  2. 2

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    CAS  ADS  Article  Google Scholar 

  3. 3

    Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

    CAS  ADS  Article  Google Scholar 

  4. 4

    Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H. & Zhu, Y. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proceedings of the National Academy of Sciences 110, 2052–2057 (2013).

    CAS  ADS  Article  Google Scholar 

  5. 5

    Liu, X. et al. Nitrogen deposition and its ecological impact in China: An overview. Environmental Pollution 159, 2251–2264 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Chen, H. et al. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environmental Pollution 206, 352–360 (2015).

    CAS  Article  Google Scholar 

  7. 7

    FAO. Global forest resources assessment 2015. Food and Agriculture Organization, Rome, FAO Forestry Paper (2015).

  8. 8

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  ADS  Article  Google Scholar 

  9. 9

    Maaroufi, N. I. et al. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Global Change Biology 21, 3169–3180 (2015).

    ADS  Article  Google Scholar 

  10. 10

    Reay, D., Dentener, F., Smith, P., Grace, J. & Feely, R. Global nitrogen deposition and carbon sinks. Nature Geoscience 1, 430–437 (2008).

    CAS  ADS  Article  Google Scholar 

  11. 11

    Liu, L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters 13, 819–828 (2010).

    Article  Google Scholar 

  12. 12

    Niu, S. et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters 19, 697–709 (2016).

    Article  Google Scholar 

  13. 13

    De Vries, W., Reinds, G. J., Gundersen, P. & Sterba, H. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biology 12, 1151–1173 (2006).

    ADS  Article  Google Scholar 

  14. 14

    Hyvönen, R. et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89, 121–137 (2008).

    Article  Google Scholar 

  15. 15

    Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience 3, 13–17 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Janssens, I. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3, 315–322 (2010).

    CAS  ADS  Article  Google Scholar 

  17. 17

    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article  Google Scholar 

  18. 18

    Högberg, P., Fan, H., Quist, M., Binkley, D. & Tamm, C. O. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology 12, 489–499 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Harrington, R. A., Fownes, J. H. & Vitousek, P. M. Production and resource use efficiencies in N-and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4, 646–657 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Wright, S. J. et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92, 1616–1625 (2011).

    Article  Google Scholar 

  21. 21

    Kaspari, M. et al. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11, 35–43 (2008).

    PubMed  Google Scholar 

  22. 22

    Cusack, D. F., Silver, W. L., Torn, M. S. & McDowell, W. H. Effects of nitrogen additions on above-and belowground carbon dynamics in two tropical forests. Biogeochemistry 104, 203–225 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Fan, H. et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant and Soil 379, 361–371 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Nadelhoffer, K. J. et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145–148 (1999).

    CAS  ADS  Article  Google Scholar 

  25. 25

    Gundale, M. J., From, F., Bach, L. H. & Nordin, A. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Global Change Biology 20, 276–286 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Lovett, G. M., Arthur, M. A., Weathers, K. C., Fitzhugh, R. D. & Templer, P. H. Nitrogen addition increases carbon storage in soils, but not in trees, in an eastern US deciduous forest. Ecosystems 16, 980–1001 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology 20, 3790–3801 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).

    CAS  ADS  Article  Google Scholar 

  29. 29

    Coomes, D. A. et al. Wood production response to climate change will depend critically on forest composition and structure. Global Change Biology 20, 3632–3645 (2014).

    ADS  Article  Google Scholar 

  30. 30

    Zhou, G. et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology 19, 1197–1210 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Zhou, G. et al. Substantial reorganization of China’s tropical and subtropical forests: based on the permanent plots. Global Change Biology 20, 240–250 (2014).

    ADS  Article  Google Scholar 

  32. 32

    Wang, Q., Wang, S. & Zhang, J. Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site. Forest Ecology and Management 258, 1437–1441 (2009).

    Article  Google Scholar 

  33. 33

    Wei, X., Blanco, J. A., Jiang, H. & Kimmins, J. Effects of nitrogen deposition on carbon sequestration in Chinese fir forest ecosystems. Science of the Total Environment 416, 351–361 (2012).

    CAS  ADS  Article  Google Scholar 

  34. 34

    China Forestry Administration. The seventh national forest resources inventory and the status of forest resources. Forest Resources Management 1, 1–8 (2010).

  35. 35

    Mo, J. et al. Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China. Plant and Soil 296, 125–135 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Aber, J. et al. Nitrogen saturation in temperate forest ecosystems. BioScience 48, 921–934 (1998).

    Article  Google Scholar 

  37. 37

    Cai, Q. et al. Impacts of nitrogen deposition on soil available N and P contents in the Chinese fir plantation. Journal of Forest and Environment 26, 342–348, In Chinese with English abstract (2016).

    Google Scholar 

  38. 38

    Chen, H. et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition. Functional Ecology 30, 305–313 (2016).

    Article  Google Scholar 

  39. 39

    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  40. 40

    Wu, J. et al. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest. Ecology and Evolution 3, 3895–3905 (2013).

    Article  Google Scholar 

  41. 41

    Fan, H. et al. Carbon and nitrogen dynamics of decomposing foliar litter in a Chinese fir (Cunninghamia lanceolata) plantation exposed to simulated nitrogen deposition. Acta Ecologica Sinica 28, 2546–2553, In Chinese with English abstract (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Editor and three anonymous reviewers for their constructive comments and suggestions. We thank Yanyan Li, Luping Xu, Ziwen Zhang, and Qingyin Meng for their assistance in our field work. This research was financially supported over ten years by the National Science Foundation of China (Nos 31570444, 31600483, 31360175 and 30771714), Gan-Po 555 Talent Project, Jiangxi Provincial Fund for Academic and Technical Leadership of Major Disciplines (20162BCB22021) and the Education Department of Jiangxi Province (GJJ14744).

Author information

Affiliations

Authors

Contributions

J.P.W., W.F.L. and H.B.F. conceived and designed the experiments. J.P.W., H.L.D., and W.F.L. performed the experiments. X.H.W. and Y.C.L. analysed the data. The authors jointly wrote the manuscript.

Corresponding author

Correspondence to Houbao Fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Duan, H., Liu, W. et al. Individual size but not additional nitrogen regulates tree carbon sequestration in a subtropical forest. Sci Rep 7, 46293 (2017). https://doi.org/10.1038/srep46293

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing