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Abstract

A digital twin (DT) of the human body is a virtual representation 
of an individual’s physiological state, created using real-time data 
from sensors and medical devices, with the purpose of simulating, 
predicting and optimizing health outcomes through advanced analysis 
and modelling. Human body DTs have the potential to revolutionize 
healthcare and wellness, but their responsible and effective 
implementation requires consideration of multiple intertwined 
engineering aspects. This Perspective presents an overview of the 
status and prospects of the human body DT and proposes a five-level 
roadmap to guide its development, from the sensing components, 
in the form of wearable devices, to the data collection, analysis and 
decision-making systems. The support, security, cost and ethical 
considerations that must be addressed are also highlighted. Finally, 
we provide a framework for the development and a perspective on 
the future of the human body DT, to aid interdisciplinary research and 
solutions for this evolving field.
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real-world implementation. This reduces the risk of adverse reactions 
and streamlines the regulatory pathway in clinical trials. Nevertheless, 
the lack of a unifying approach, especially a consensus on the taxonomy 
and future roadmap of human body DTs, limits their development and 
deployment for use in healthcare.

Based on analysis of state-of-the-art and technological develop-
ments in the field, we anticipate that future human body DTs will be 
defined into five levels for different healthcare applications. To aid 
scientific and technological advancement in this promising field of 
engineering, we present here a five-level blueprint for modelling the 
human body DT (Fig. 1). The five-level roadmap will serve as a conveni-
ent and unifying framework to establish a common language and aid 
collaboration among researchers in different fields.

In this Perspective, we provide a detailed introduction to our 
roadmap for building the human body DT, review the prerequisite 
data-capturing technologies associated with it and discuss prospec-
tive applications. Furthermore, we discuss the necessary support from 
stakeholders (including data-sharing and test initiatives, research 
funding and so forth) and the open issues that need to be addressed 
for the deployment of human body DTs, including security, cost and 
ethical considerations.

Five-level roadmap and modelling methods
The scarcity of human data, especially data annotated by clinicians, 
poses a considerable challenge to the advancement of the digital health 
field12. The development of a human body DT model is no exception. 
However, recent advances in related technologies offer promising 
solutions. Specifically, innovations in nanotechnology have led to the 
design and fabrication of new sensors that are more sensitive, adaptable 
and comfortable, thereby enabling large-scale collection of human 
data over extended periods14,15. Moreover, the advent of advanced 
self-supervised learning (SSL) algorithms allows for the use of copious 
amounts of unlabelled human data, a previously inconceivable accom-
plishment (see Box 1). SSL algorithms, combined with large-scale pre-
training methods, have proven to be effective in fields such as computer 
vision and natural language processing. AI models such as DALL·E 2 
(which can complete intricate drawings based solely on descriptive 
sentences)16 and ChatGPT (which can answer various complex ques-
tions, including coding and finance strategies)17 pretrain on immense 
amounts of unlabelled data and fine-tune on small, labelled datasets for 
diverse tasks. The capacity of AI models to use SSL algorithms capable 
of leveraging unlabelled data aligns well with the demands of human 
body healthcare and holds immense potential for addressing the issue 
of insufficient human data for the development of a robust human 
body DT model. Under the impetus of emerging on-body sensors and 
multimodal AI technologies (Fig. 2), human body DT technology is 
expected to progressively unveil the mysteries of the human body 
along the five-level modelling roadmap outlined below.

Cross-sectional model
In level 1, cross-sectional models are created for depicting a digital por-
trait of the human body, by collecting data from the body in a temporal 
cross-section to determine the real-time physical and biochemical 
states. The term ‘cross-sectional’ in this context draws inspiration from 
medical imaging, where it refers to examining a body at a single point 
in time with a static but detailed snapshot.

Pioneering work at level 1 has focused on constructing diverse 
cross-sectional models that capture different aspects of the human 
body. In 2023, for example, a graphic processing unit (GPU)-accelerated 

Key points

 • Human body digital twins (DTs) can be modelled following a 
five-level approach.

 • Wearable sensor technologies and algorithms are needed to capture 
human data and build the DTs.

 • Support, security, cost and ethics must be considered to ensure 
responsible and effective implementation of the human body DTs.

 • Limitations and prospects of human body DTs are related to the need 
for efficient computational architectures, and their effective integration 
in clinical settings for personalized diagnostics and treatments.

Introduction
Modern healthcare makes use of cutting-edge biomedical and 
nanomedicine technologies to deliver early prevention, accurate 
diagnoses and precise treatments. Examples include early warn-
ing for neurodegenerative disease1,2, imaging-based diagnosis of 
cardio-cerebrovascular diseases3,4 and tumour-targeting therapies5,6. 
Further progress is hindered by the uncertainty of the human body, 
originating from the complex relationships among organs, the unclear 
effects of the everyday environment on human bodies, and the hetero-
geneity of different individuals. For example, the mechanisms behind 
the development of diseases such as amyotrophic lateral sclerosis7 and 
infant asthma8 remain unclear because it is difficult to determine the 
precise effects of various external environmental factors and intrinsic 
factors (such as genes and microbiome) on human physiological con-
ditions. In these case studies, as in many others, new investigational 
approaches are needed to decode the specific mechanisms of action 
leading to a disease. To tackle the uncertainty and complexity associ-
ated with the human body, a useful approach could be to establish 
and analyse virtual representations of human organs and functions, 
inspired by the concept of digital twin (DT) technology.

DTs are virtual replicas or representations of physical objects. The 
technology has the potential to decode uncertainties within the target 
system by using sensors to collect information over an extended period 
and making use of advanced artificial intelligence (AI) algorithms. In 
this context, DT technology offers an opportunity to determine and 
predict the status of complex dynamical systems, even in the pres-
ence of changing conditions. Favoured by the exponential growth of 
computational capacity, DTs have been successfully applied in diverse 
complex industrial scenarios. For example, in the manufacturing sec-
tor, DTs are used to enhance production lines, equipment performance, 
bottleneck identification and prediction of equipment failure, and to 
optimize various processes through real-time data monitoring and 
integration with relevant data sources9. Similarly, in transportation, 
DTs optimize delivery schedules, route planning and fuel efficiency 
by integrating vehicle data, traffic sensors and weather forecasts10. 
These advances have sparked interest in applying DTs to the human 
body, using smart sensors in ‘Internet of Things’ environments for 
systematic monitoring of human health combined with clinical analysis 
for disease diagnosis and treatment planning11–13.

By making use of accurate and individualized models of human 
physiology, human body DTs hold immense potential for accurately 
and swiftly predicting the outcomes of treatments before their 
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computer model was developed to simulate the entire multiphysics 
dynamics of the human heart, opening new avenues for cardiovascular 
research18; and a workflow for 3D reconstruction and spatial analysis of 
cells in tissue (MATRICS-A) was introduced to provide deeper insights 
into cellular relationships in healthy and ageing organs19. Although 
these contributions are undoubtedly groundbreaking, current level 1 
research focuses on modelling individual organs or tissues. Recogniz-
ing that the human body functions as an interconnected system, we 
expect that future work will offer more comprehensive cross-sectional 
models that integrate multiple bodily components.

Multimodal contrastive learning, as an emerging AI method, has 
the potential to assist in building a more comprehensive model by 
effectively integrating and comparing data from various sources, 
enhancing the accuracy and depth of the understanding and predic-
tions of the model. Contrastive learning, as one of the most efficient SSL 
algorithms in recent years, uses intrinsic relationships between data 
modalities as pseudo-labels to train models (for example, DALL·E 2 uses 
pair relationships between images and their captions)20. This idea can 
be applied to the human body, where various multimodal sensor data 
also have diverse intrinsic relationships. For instance, when monitoring 
human motion, sensors deployed at different locations produce vari-
ous datasets all corresponding to the same action or posture21. When 
detecting neurodegenerative diseases, sensors such as inertial motion 
units, electroencephalography (EEG) and electromyography (EMG) 
electrodes, and biochemical sensors for detecting disease-related 
biomarkers in biological fluids produce patient-specific data. Although 
these outputs have distinct patterns, they often contribute to map the 
same disease. These intrinsic relationships derived from the human 
body can be used as pseudo-labels to perform large-scale pretraining 
and aid the training of the foundation model, a versatile AI model that 
is trained on vast amounts of data and can adapt to different applica-
tions with further fine-tuning (see Box 1 for details). Foundation models 
can extract cross-sectional conditions of the human body, primarily 
through encoders that extract human information from different 
data modalities and can decipher the cross-sectional status of the 

human body without further supervised training (‘zero-shot’). More 
importantly, they will serve as the cornerstone of human DT models 
and continue to have a role in subsequent higher-level tasks.

Deductive model
Level 2 models perform deductive reasoning on the future development 
of the human body based on the time-continuous cross-sectional model 
information. Whereas cross-sectional models (level 1) are all about the 
present state, deductive models use the current and past snapshots to 
predict the future. By integrating the data from past cross-sections and 
the current cross-section, deductive models can predict evolutionary 
trends in human health status and potential disease risks. Several level 2 
models have been reported22,23. For instance, DTs can be used to predict 
the onset age of brain atrophy in patients with multiple sclerosis22 or to 
quantify the extent of overdiagnosis in colorectal cancer screenings23. 
Although these level 2 models have been pivotal in medical advance-
ments, they also have their intrinsic limitation: the deductions are based 
only on existing cross-sectional data, and the uncertain interventions 
on the human body and changes in the external world make it hard to 
yield an accurate long-term prediction. Hence, we need to develop 
higher-level models.

In establishing the level 2 model, numerous past cross-sectional 
data can be encoded by pretrained foundation models through 
zero-shot or few-shot fine-tuning and fed into models for analysing 
temporal states, including models based on network backbones such as 
recurrent neural networks, long short-term memory, and transformer 
networks24. This enables the development of models that can predict 
future states through inference.

Editable model
In level 3, editable models, which can predict the impacts of ‘edits’  
(or interventions, such as drug administration, organ transplantation 
or gene editing) on human bodies, are created and used. The term ‘edit-
able’ refers to the possibility of simulating interventions on the human 
body by directly editing the digital model and testing the outcomes, 
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Fig. 1 | Five-level roadmap for human body digital twins (DTs). Level 1 (cross-
sectional model) aims to determine various human health indicators by using 
artificial intelligence (AI) classification methods on real-time data. Level 2 
(deductive model) builds on the first level by incorporating not only real-time 
data but also past data to train predictive models for forecasting future health 
conditions. Level 3 (editable model) extends the previous levels by considering 
human interventions, such as drug treatments, organ transplants and gene 
editing, to analyse and predict the health outcomes post-intervention. Level 4 

(evolutionary model) adds another layer by also taking into account the 
interactions between the human body and the external environment, such as 
solar exposure, diet and interpersonal connections, for more accurate health 
projections. Level 5 (explainable model) is based on the previous four levels and 
uses explainable AI methods to delve into the underlying logic of health analysis 
and prediction. It explores not just the output results from data input to health 
state but also the biological principles involved.
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hence emphasizing the capacity of the model to anticipate and under-
stand the effect of direct interventions on the human body before the 
actual intervention takes place. Level 3 models seamlessly combine 
the essence of editing with inherent adaptability. As they are exposed to 
various interventions and modifications, they evolve and adapt, refin-
ing their predictions based on new data. This synthesis of editing and 
adaptability provides a dynamic representation, allowing the models 
to respond to a vast array of potential edits and continually enhance 
the accuracy and relevance of their predictions.

For the level 3 model, the fundamental aspect is the integration 
of actual human edit data as new channels with the prior levels of the 
model. In comparison to cross-sectional data of the human body col-
lected through routine health monitoring, the availability of body data 
after edits (such as drug intake, surgeries or gene therapies) is limited. 
Using pretrained encoders from the previous levels and incorporating 
them with a small number of edit inputs is a promising approach to 
creating an editable model. To incorporate the edit data into the model, 
the parameters of the cross-sectional data encoders can be fixed, leav-
ing only the parameters of the encoder for the edits and the decoder 
to be trained. This approach reduces the number of parameters to 
be trained, effectively addressing the challenge posed by the limited 
quantity of edit data.

Building on the previous discussion, level 2 deductive models 
often have limitations in long-term predictive accuracy. To address 
these challenges, some research efforts have advanced to level 3, focus-
ing on personalized modifications to the condition of the human body. 
For example, a multitask deep learning framework called GCAP was 
introduced to predict the severity of adverse reactions to drugs25. 

Unlike existing computational methods, GCAP not only identifies 
whether a drug will produce an adverse reaction but also assesses the 
severity of clinical outcomes, providing a more nuanced understand-
ing of drug safety. These level 3 models represent a leap forward in 
the application of DTs to medical research by addressing the deficien-
cies found in earlier levels and focusing on personalized, long-term 
outcomes.

Evolutionary model
Models in previous levels focus on interpretations and predictions of 
human bodies with few considerations of the influences that external 
factors play in most if not all cases. The human body is by no means an 
isolated system. Interactions with the outside world, including solar 
exposure, diet intake and interpersonal connections, can have sub-
tle but determinant impacts on the human body (some have minimal 
impact in the short term but can lead to adverse effects over a longer 
exposure period)26–28. In level 4, models can merge external factors 
into previous tasks to evolve and enhance the prediction accuracy, so 
this level is therefore named ‘evolutionary’. Quantifying the external 
factors and incrementally feeding them to the learning machine to 
update the DT model is the focus of level 4.

Interactions between the human and the external environment are 
incorporated into the level 4 model. Unlike previous cross-sectional 
sensor data and edits, these interactions are no longer limited to a 
one-time input to the model. A single moment of interaction may 
have a minimal impact on human health, but when these interactions 
are accumulated over time, they can have a considerable influence on 
the individual’s overall health. Therefore, the core task of this level is 

Box 1

Self-supervised learning and foundation models in healthcare 
informatics
Self-supervised learning
In machine learning paradigms, self-supervised learning (SSL) is 
akin to decoding an intricate cipher without a predefined key. SSL 
effectively ‘teaches’ itself, ingeniously learning to make sense of data 
by using inherent structures within the data. This is a considerable 
advantage in healthcare informatics, where the annotated data 
are often scarce but the stakes are high. For instance, consider 
a repository of unlabelled magnetic resonance imaging (MRI) 
scans. SSL algorithms can autonomously discern the anatomical 
and pathological features within these scans, thereby generating 
valuable knowledge without requiring explicit labels, a process that 
is both costly and time-consuming. In the context of the human body 
digital twin (DT), SSL uses data not just from conventional sources 
such as MRI scans but also from round-the-clock wearable and 
implantable sensors. The method autonomously identifies vital signs 
and other physiological patterns.

Foundation models
Within the SSL framework, foundation models serve as the inaugural  
computational platform. These models are constructed by aggrega-
ting a broad range of unlabelled healthcare data, from traditional 

MRI scans to data harvested from modern wearable and implantable 
devices. This comprehensive approach creates a generalized founda-
tion, aiding the development of subsequent specialized predictive 
models tailored to various healthcare applications.

The importance of foundation models lies in their versatility 
and adaptability. Initially designed to offer a broad understanding 
of healthcare data, they can be fine-tuned using minimal sets of 
labelled data. This allows them to be tailored for specific downstream 
applications such as real-time health monitoring, diagnostic support, 
and early warning systems for emergent medical conditions.

SSL in healthcare: a use-case
Expanding on foundation models, wearables serve as a prime 
example of the applicability of SSL in healthcare. These devices 
produce a constant stream of unlabelled biometric data, such 
as heart rates and temperature readings. A foundation model, 
fine-tuned through SSL, can autonomously establish an individual’s 
baseline physiological parameters. Once these are established, the 
model can alert healthcare providers to significant deviations that 
may warrant clinical investigation. Research related to this topic has 
started to gain considerable interest in the past two years12.
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to quantify this accumulation and feed it into the model as additional 
parameters. Some factors, such as respiration and light exposure, can 
be quantified well by ambient sensors; more complex interactions, 
such as human social interactions, require the assistance of embedded 
submodels to convert them into digitized inputs for the model.

Although systematic research on evolutionary models is not yet 
fully established, recent studies have confirmed the feasibility of real-
time monitoring of important channels of interaction between the 
human body and external environment, such as solar exposure and 
breath29,30. These works have laid a solid foundation for the establishment 
of level 4 DTs of the human body.

Explainable model
In the first four levels, models may offer accurate predictions and esti-
mations, but they operate in a black-box or grey-box manner, meaning 

that their internal working mechanisms are either entirely opaque or 
only partially understood. This lack of transparency makes it challeng-
ing to discern the relationships between inputs and outputs, leaving 
researchers ill-equipped to navigate the inherent uncertainties associ-
ated with human physiology. Moreover, in clinical settings, the use of 
AI models as black-box tools for diagnosing and treating patients often 
leads to trust issues, as patients and doctors might find it difficult to 
rely on the model, even if it has demonstrated nearly 100% accuracy in 
trials. Therefore, in real-world clinical applications, the interpretabil-
ity of the model — its ability to provide underlying logic and explana-
tions for diagnoses and treatments, akin to a doctor’s reasoning — is 
crucial to achieve trust and acceptance. In level 5, models will inform 
the researchers of the logical connections between observed phenom-
ena and their outcomes. Research projects have just started to deploy 
explainable models relevant to this task. For example, researchers 
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Fig. 2 | Must-have technologies to build human body digital twins. The sensing 
devices that can be used to capture human body data are represented on the 
left side of the figure; the algorithms to model the human body on the right. The 
development stages of the human digital twin (DT) pose different requirements 
for wearable devices. Multimodality is crucial to measure signals of different 
nature and combine their information to extract complex patterns. Top left, types 
of wearable sensor that can be used as foundations of the human DT, including 
traditional electrical, optical, mechanical and chemical sensors, as well as emerging 
sensors such as medical imaging devices and gas sensors. Middle left, actuators 
that can provide quantifiable outputs, such as targeted drug delivery or physical 

interventions like heat, light or electrical stimulation. Bottom left, devices that 
monitor long-term exposure effects, such as smart masks that monitor air pollution, 
textile-based ultraviolet (UV) sensors, or ingestible sensors that monitor digestive 
tract exposures. On the right side are the algorithms corresponding to each stage. 
Top right, deep learning methods for classification and prediction to build level 1 and 
level 2 tasks. Middle right, transfer learning methods to adopt pretrained models for 
the development of level 3 models. Bottom right, incremental learning methods to 
help the model learn from ever-changing external environments, and explainable 
artificial intelligence (AI) to inform the underlying rationale and explanations for 
diagnoses and treatments when building level 5 models. ECG, electrocardiogram.
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developed translatable systems based on medical imaging to explain 
the information contained in computer tomography scans or magnetic 
resonance images31. Current works in level 5 are still in their infancy 
and unlikely to provide real guidance to clinicians32. However, with 
the continuous development of human body DTs, models in level 5 
may be integrated with suitable datasets to mine deep into actual fea-
tures of the human body, as witnessed in the AI domain33,34, pushing 
the boundaries of future healthcare interventions.

The development of a level 5 model requires a deep understand-
ing and explanation of the underlying mechanisms behind previous 
levels. To achieve this, the use of advanced model interpretability 
techniques, such as saliency maps, activation maps and model distil-
lation, can provide insights into the decision-making process of the 
model35. The application of causal inference algorithms can further 
illuminate the relationships between inputs and outputs, allowing a 
better understanding of the internal workings of the model36. Addition-
ally, incorporating model-agnostic interpretability methods, such as 
local interpretable model-agnostic explanations (LIME), Grad-CAM and 
SHAP, can offer a comprehensive view of the behaviour of the model, 
enabling a thorough understanding of not only how but also why the 
model arrived at its predictions35. Through these cutting-edge tech-
niques, the level 5 model serves as a tool for advancing our knowledge 
of the human body and enhancing the reliability and trustworthiness of 
human body DT models.

Must-have technologies to collect physiological 
data
Human body DT models rely on input data from wearable sensors 
in various body locations (Fig. 2). For cross-sectional and deductive 
models in levels 1 and 2, we have identified four main categories of 
sensors that enable direct monitoring of physiological states to infer 
health trends and disease risks: electrical, such as electrocardiography 
(ECG), EEG and EMG; optical, such as photoplethysmography (PPG); 
mechanical, such as micro-electromechanical microphones or accel-
erometers; and chemical, such as biosensors to detect specific target 
biomarkers from biological fluids (for example, sweat). Several com-
panies have already incorporated one or more of these sensors into 
commercial wearable products such as smart watches37,38, but further 
effort is required to encourage widespread adoption and continuous 
health monitoring. The sensors should integrate seamlessly into our 
daily lives by being comfortable, miniaturized, discreet and equipped 
with long-lasting energy sources. Besides these, various on-body and 
in-body sensors are required to provide holistic information for a 
higher level of human DT models, including, for instance, continuous 
monitoring of hormone levels and long-term observation of specific 
internal organs through implantable devices. Level 3 editable models 
additionally require actual human edit data. Carefully quantified edits 
by wearable actuators generate the data needed to train models to 
avoid side effects during long-term therapies. Furthermore, sensors 
for capturing environmental stimuli are required to be incorporated 
in levels 4 and 5, allowing spontaneous monitoring of human and sur-
rounding environment. These sensors need to be designed to support 
long-term imperceptible monitoring and user convenience, as in the 
case of textile-based sensors integrated into clothing.

Current on-body wearable sensors with form factors such as tex-
tile, patches and tattoos can access diverse analytes with no or minimal 
invasiveness. For large-area monitoring, fibre and textile-based sensors 
can be seamlessly integrated into clothing to allow spatially distributed 
analysis of signals including strain, UV exposure, pH, metabolites, 

environmental pollutants, or biomarkers in sweat across epithelial 
areas39. Skin-conformable patches and tattoo-like devices using bio-
compatible adhesives are ideal for monitoring of physical parameters 
such as temperature, pressure, strain, and biomarkers in sweat or 
interstitial fluids40,41. Emerging bioadhesive ultrasound devices can 
provide ultrasound imaging of organs and anomalies beneath the 
skin, enabling early diagnosis through viewing cardiac motility or 
vascular remodelling42. Additionally, implantable sensors can provide 
direct transduction of biological signals under the skin. For instance, 
continuous glucose monitors from Abbott, Dexcom and Medtronic 
are implanted subcutaneously to measure glucose levels in blood and 
interstitial fluid, providing large dynamic datasets inaccessible from 
conventional finger-prick tests43.

As people are largely used to wearing earbuds, and, unlike arms, 
ears maintain constant proximity to vital signal sources such as the 
brain, lungs and heart, ears are an encouraging location for 24/7 con-
tinuous monitoring. Ears also have high vascularity, thus enabling the 
measurement of cardiorespiratory information through, for exam-
ple, optical PPG signals. PPG recordings from the ears exhibit a more 
pronounced amplitude modulation with breathing, crucial for pre-
cise estimation of breathing rate, and a faster response to SpO2 drops 
(as compared with the gold standard SpO2 monitoring PPG recorded 
from fingers)44, which are essential requirements for promptly identify-
ing potential hypoxia. Recently developed multimodal in-ear sensors45 
have demonstrated their capability to measure EEG46, ECG47, PPG43, 
microphone and accelerometer signals48, indicating their potential 
for various applications of human body DT models.

Data acquisition and processing challenges
One of the biggest challenges in exploiting the potential of wearables 
for continuous monitoring is the presence of artefacts. These devices 
are prone to motion artefacts, which frequently result in the discarding 
of entire epochs of recordings. Such artefacts should be identified, clas-
sified and removed in real time with low-latency hardware-integrated 
algorithms. To remove the artefacts, one potential approach is to use 
the signals from mechanical sensors to capture and model the artefact. 
These sensors will only record a signal that is correlated with the arte-
fact but not with the physiological signal of interest. The signals from 
the mechanical sensors can then be used as reference signals in an adap-
tive filter with an adaptive noise-cancellation configuration. Prelimi-
nary results48 have shown that accelerometers can be used to remove 
low-frequency artefacts generated by full-body movements (such as 
walking), while microphones can be used to remove higher-frequency 
artefacts generated by the relative movement between the sensor and 
the skin.

The influx of multidimensional sensor data generated by human 
body DTs poses considerable computational challenges. Cloud-based 
centralized computing built on conventional von Neumann architec-
tures is energy-intensive and constrained by limited data transmission 
bandwidth. Neuromorphic computing offers a promising alterna-
tive pathway to efficiently process the massive datasets involved in 
modelling complex physiological systems49. Neuromorphic devices 
emulate the signal processing and learning capabilities of biological 
nervous systems through networks of artificial neurons and synapses. 
By processing data locally where they are generated, and harness-
ing the massive parallelism and adaptability of brain-inspired archi-
tectures, neuromorphic systems can potentially analyse streaming 
multimodal sensor data in real time at far lower energy costs than 
for traditional computing50. Integrating memristive synapses into 
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wearable systems creates an artificial nervous network directly in 
the wearable platform51–53. Although limitations remain in switching 
speeds and reliability, progress in memristive materials and fabrica-
tion approaches may soon overcome these hurdles54. On-node and 
edge computing configurations place neuromorphic processors 
directly adjacent to sensors, avoiding data transmission lags. This tight 
sensing–computing integration allows rapid reflexive actions and 
real-time adaptive decision-making on the body.

For a discussion on data security, cost and ethics, refer to Box 2. 
As the realm of human body DTs continues to expand, recognizing and 
addressing these limitations collaboratively becomes paramount to 
ensuring an accurate and holistic representation of human biology.

Outlook
The evolution of human body DT technology has ushered in a new era 
in medicine. By generating virtual counterparts that replicate human 
anatomy and physiology, it offers a remarkable opportunity to compre-
hend and anticipate physiological and pathological states in a highly 
individualized manner.

One of the most exciting applications is in the field of person-
alized medicine. Level 1 of the DT model presents the potential to 
achieve real-time assessments such as metabolism monitoring and 
disease diagnosis, offering immediate insights into the human physi-
ological state. At level 2, the capacity expands to predicting future 

physiological indicators, such as disease progression, bringing about 
proactive healthcare interventions. Level 3 highlights the adapt-
ability of the models, with applications such as drug intervention 
illustrating the ability of the model to adjust based on medical treat-
ments. Level 4 opens the door to understanding external influences 
on health, where factors such as weather and climate have a role in 
overall wellbeing. Culminating at level 5, the model aims for compre-
hensive interpretation of physiological signals, such as internal control 
modelling, setting the stage for tailored, precise healthcare measures. 
By following this multitiered approach, the human body DT model 
stands poised to transform healthcare practices, offering interven-
tions based on rigorous analyses within the DT before their real-world  
application.

As the technology advances to level 5, it will enable the creation 
of accurate and individualized models of human physiology and, con-
sequently, the design of personalized therapies for various diseases, 
considering the unique characteristics and requirements of each 
patient. The proposed human body DT model uses wearable sensors, 
which are cost-effective and convenient compared with large medical 
instruments, as the hardware backbone, and large foundation models 
as the basis, which can greatly increase user acceptance and reduce 
the model development cost. Clinicians can predict outcomes based 
on models before they are implemented in the real world, minimizing 
the risk of adverse reactions and increasing the chance of success while 

Box 2

Implementation of human body digital twins in healthcare
The development of the human body digital twin (DT) has the potential 
to revolutionize healthcare. However, several considerations must be 
addressed to ensure that this technology is implemented responsibly 
and effectively.

Necessary support
Support from stakeholders is crucial. This includes data-sharing 
initiatives among healthcare organizations, securing government 
funding for research and development, nurturing interdisciplinary 
talent with expertise in fields such as biology, engineering and 
computer science, and encouraging international collaborations 
to pool resources and expertise. For example, the DIGIPREDICT 
project aims to seamlessly integrate various human body models 
and healthcare systems across Europe55. This project brings together 
experts from various fields to develop a collaborative platform for 
data sharing and has been successfully deployed in several countries.

Security
Ensuring the security of patient data, from collection to storage, 
is essential because of the sensitivity of personal health information. 
This requires robust data storage systems and encrypted 
data transmission to safeguard against potential cyberattacks 
and data breaches. Restricting access to authorized personnel and 
granting patients control over their data usage are vital steps. 
Moreover, the connectivity of sensors exposes them to hacking, 
posing risks to patients. Addressing these aspects is essential to 

maintain patient trust, as well as to comply with regulations such as 
the General Data Protection Regulation (GDPR) in Europe.

Cost
Implementing human body DT systems carries financial implications, 
including the cost of sensors, data processing and storage, energy 
consumption and sustainability. Cost-effective and scalable 
solutions are pivotal to ensure broad accessibility across individuals 
and healthcare organizations. Ongoing research aims to explore 
low-cost scalable sensors and self-powered devices based on 
energy-harvesting technology56,57. These have the potential to 
eliminate the need for frequent battery recharging or replacement, 
while extending the lifespan of the devices. Moreover, there are 
maintenance costs associated with model refinement to reflect the 
latest medical knowledge and technological advancements.

Ethical issues
Ethical considerations in human body DT implementation involve 
ensuring data anonymity, obtaining informed consent for data 
collection, and preventing misuse or discrimination. Equitable access 
is also essential to avoid exacerbating existing health disparities. 
Strategies such as government subsidies for low-income individuals, 
or the development of affordable, scalable solutions, can make 
this technology widely accessible to everyone, regardless of their 
socioeconomic background.
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shortening the regulatory pathway in clinical trials. The possibility of 
using human body DT technology to accurately simulate and help to 
predict the response to therapies for chronic diseases based on per-
sonalized user profiles will boost the upgrade of the technology from 
the laboratory scale to large-scale applications.

Apart from the obvious advantages, personalized medicine that 
uses human body DT technology could be cost-effective. By pinpointing 
the root cause of a disease, it can reduce dependence on trial-and-error 
approaches and the use of costly and potentially detrimental drugs. 
Furthermore, through real-time monitoring of patients, it can help to 
detect potential complications early, allowing for timely and efficacious 
intervention. Detailed examples can be seen in Fig. 3 where, from left to 
right, the five-level roadmap moves towards precise and personalized 
healthcare, based on predictive versus real-time assessments enabled 
by the translation of human body DT models in a clinical setting.

Human body DTs could transform biomedical research. However, 
several challenges lie ahead. One pressing concern is associated with 
rare diseases. Owing to their infrequency, collecting adequate data 
for these conditions is difficult, making it challenging to develop com-
prehensive machine learning models. Therefore, there is an impera-
tive to develop advanced, user-friendly and sustainable devices for 
continuous collection of human body information to augment data 
acquisition for these rare conditions. Reinforcing data sharing among 
institutions and researchers could further alleviate this scarcity of 
data. Another layer of complexity arises when addressing data sharing 
between research institutions, with issues ranging from security to 
geopolitical considerations. Our current understanding of the underly-
ing physics of various diseases is another hurdle. Historical attempts, 

like Schrödinger’s venture into quantum physics to shed light on life, 
emphasize the vast interdisciplinary domains we still need to explore.

This Perspective provides a timely look at the status and prospects 
of the rapidly evolving area of the human body DT, informing a master 
plan for its future development, and stimulating discussion and new 
experimental approaches in this promising interdisciplinary domain. 
We believe that the proposed framework and five-level structure cap-
tures the main aspects and elements required for the future roadmap 
of human body DT models. Further research around validation of both 
data-driven and explainable AI models is ongoing as an interdisciplinary 
field, where data scientists and clinical experts are expected to collabo-
rate in decoding and assessing the validity of the proposed approach 
and application use-cases. With continued progress and refinement, 
human body DTs could become indispensable in diagnosing and man-
aging a wide array of medical conditions. We also anticipate a broader 
impact in future healthcare and in other research areas. For example, 
the adoption of the human body DT in human assistive tasks for older 
people or people with physical disabilities may help to alleviate the 
productivity deficit caused by global population ageing and provide 
resilient solutions in the context of global economic slowdown cycles.

Published online: 29 February 2024
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