Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial intelligence-based methods for renewable power system operation

Abstract

Carbon neutrality goals are driving the increased use of renewable energy (RE). Large-scale use of RE requires accurate energy generation forecasts; optimized power dispatch, which minimizes costs while satisfying operational constraints; effective system control to ensure a stable power supply; and electricity markets that support bidding and trading decisions associated with RE. However, the uncertainties in RE generation make renewable power systems challenging to operate. For example, the intermittent nature of wind power can make it difficult to balance the supply and demand of electricity in real time; therefore, traditional power sources could be needed to meet the demand, which can increase electricity prices. This Review outlines the potential of artificial intelligence-based methods for supporting renewable power system operation. We discuss the ability of machine learning, deep learning and reinforcement learning methods to facilitate power system forecasts, dispatch, control and markets to support the use of RE. We also emphasize the applicability of these techniques to different operational problems. Finally, we discuss potential trends in renewable power system development and approaches to address the associated operational challenges such as the increasingly distributed nature of RE installations, diversification of energy storage systems and growing market complexity.

Key points

  • The large variabilities in renewable energy (RE) generation can make it challenging for renewable power systems to provide stable power supplies; however, artificial intelligence (AI)-based methods can help overcome these challenges.

  • Deep learning methods can provide accurate RE generation forecasts to help balance the supply of and demand for electricity.

  • Reinforcement learning techniques can effectively handle the increased computational complexity associated with optimizing power dispatch for renewable power systems to ensure that costs are minimized and operational constraints are met.

  • Renewable power systems are subject to greater instabilities than traditional systems, which can lead to voltage and frequency fluctuations in the power supply. AI-based techniques can provide real-time control signals to facilitate generation-to-demand control.

  • Reinforcement learning techniques can also be used to analyse market behaviours and optimize decision-making to support the effective integration of RE into power markets.

  • Future AI-based methods will need to solve the challenges that could arise from increases in the number of entities supplying RE and the diversity of energy storage systems, which will further complicate renewable power systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A framework for renewable energy forecasts.
Fig. 2: The dispatch problem.
Fig. 3: The structure of AI-based control mechanisms for renewable power systems.
Fig. 4: The structure of an AI-based electricity market.

Similar content being viewed by others

References

  1. BP p.l.c. Energy outlook. BP https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html (2023).

  2. Li, Y. et al. Deep reinforcement learning for smart grid operations: algorithms, applications, and prospects. Proc. IEEE 111, 1055–1096 (2023).

    Google Scholar 

  3. Sharma, S., Xu, Y., Verma, A. & Panigrahi, B. K. Time-coordinated multi-energy management of smart buildings under uncertainties. IEEE Trans. Ind. Inform. 15, 4788–4798 (2019).

    Google Scholar 

  4. China Monitoring and Early Warning Centre for Renewable Energy Absorption. Evaluation and analysis of Chinese renewable energy utilization in the fourth quarters of 2021. China Power http://www.chinapower.com.cn/zx/hyfx/20220315/138719.html (2022).

  5. US Energy lnformation Administration. As Texas wind and solar capacity increase, energy curtailments are also likely to rise. EIA https://www.eia.gov/todayinenergy/detail.php?id=57100 (2023).

  6. Li, Y., Zhao, Y., Wu, L. & Zeng, Z. Artificial Intelligence Enabled Computational Methods for Smart Grid Forecast and Dispatch (Springer Nature, 2023).

  7. Razavi, S. & Tolson, B. A. A new formulation for feedforward neural networks. IEEE Trans. Neural Netw. 22, 1588–1598 (2011).

    PubMed  Google Scholar 

  8. Ren, Z. et al. Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics. NPJ Comput. Mater. 6, 9 (2020).

    ADS  CAS  Google Scholar 

  9. Kingsford, C. & Salzberg, S. L. What are decision trees? Nat. Biotechnol. 26, 1011–1013 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006).

    CAS  PubMed  Google Scholar 

  11. Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. & Müller, K.-R. Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109, 247–278 (2021).

    Google Scholar 

  12. Parlos, A. G., Chong, K. T. & Atiya, A. F. Application of the recurrent multilayer perceptron in modeling complex process dynamics. IEEE Trans. Neural Netw. 5, 255–266 (1994).

    CAS  PubMed  Google Scholar 

  13. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

    Google Scholar 

  14. He, K., Zhang, X., Ren, S. & Sun, J. in Proc. IEEE Conf. Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

  15. Pascanu, R., Mikolov, T. & Bengio, Y. in Int. Conf. Machine Learning 1310–1318 (2013).

  16. Li, C. et al. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019).

    Google Scholar 

  17. Ravanelli, M., Brakel, P., Omologo, M. & Bengio, Y. Light gated recurrent units for speech recognition. IEEE Trans. Emerg. Top. Comput. Intell. 2, 92–102 (2018).

    Google Scholar 

  18. Bellemare, M. G., Dabney, W. & Munos, R. in Int. Conf. Machine Learning 449–458 (ACM, 2017).

  19. Henderson, P. et al. in Proc. AAAI Conf. Artificial Intelligence Vol. 32 (AAAI, 2018).

  20. Li, Y. et al. Dense skip attention based deep learning for day-ahead electricity price forecasting. IEEE Trans. Power Syst. 38, 4308–4327 (2023).

    ADS  Google Scholar 

  21. Hong, T. et al. Energy forecasting: a review and outlook. Res. Pap. Econ. 7, 376–388 (2020).

    Google Scholar 

  22. Liu, H. & Zhang, Z. A bi-party engaged modeling framework for renewable power predictions with privacy-preserving. IEEE Trans. Power Syst. 38, 5794–5805 (2022).

    ADS  Google Scholar 

  23. Gu, Y. & Green, T. C. Power system stability with a high penetration of inverter-based resources. Proc. IEEE 111, 832–853 (2023).

    Google Scholar 

  24. Wang, Y. et al. Short-term load forecasting for industrial customers based on TCN-LightGBM. IEEE Trans. Power Syst. 36, 1984–1997 (2021).

    ADS  CAS  Google Scholar 

  25. Li, C., Tang, G., Xue, X., Saeed, A. & Hu, X. Short-term wind speed interval prediction based on ensemble GRU model. IEEE Trans. Sustain. Energy 11, 1370–1380 (2019).

    ADS  Google Scholar 

  26. Zheng, Z. & Zhang, Z. A stochastic recurrent encoder decoder network for multistep probabilistic wind power predictions. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2023.3234130 (2023).

    Article  PubMed  Google Scholar 

  27. Chai, S., Xu, Z., Jia, Y. & Wong, W. K. A robust spatiotemporal forecasting framework for photovoltaic generation. IEEE Trans. Smart Grid 11, 5370–5382 (2020).

    Google Scholar 

  28. Wang, J. et al. (eds.) Advances in Neural Information Processing Systems Vol. 35 5941–5954 (Curran Associates, 2022).

  29. Wu, F., Jing, R., Zhang, X.-P., Wang, F. & Bao, Y. A combined method of improved grey BP neural network and MEEMD-ARIMA for day-ahead wave energy forecast. IEEE Trans. Sustain. Energy 12, 2404–2412 (2021).

    ADS  Google Scholar 

  30. Dudek, G., Pełka, P. & Smyl, S. A hybrid residual dilated LSTM and exponential smoothing model for midterm electric load forecasting. IEEE Trans. Neural Netw. Learn. Syst. 33, 2879–2891 (2021).

    Google Scholar 

  31. Dhiman, H. S., Deb, D. & Guerrero, J. M. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renew. Sustain. Energy Rev. 108, 369–379 (2019).

    Google Scholar 

  32. Tantithamthavorn, C., McIntosh, S., Hassan, A. E. & Matsumoto, K. The impact of automated parameter optimization on defect prediction models. IEEE Trans. Softw. Eng. 45, 683–711 (2018).

    Google Scholar 

  33. Li, Z. et al. Deep learning based densely connected network for load forecasting. IEEE Trans. Power Syst. 36, 2829–2840 (2021).

    ADS  Google Scholar 

  34. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS  CAS  PubMed  Google Scholar 

  35. Yan, J. et al. Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model. IEEE Trans. Ind. Appl. 57, 3282–3295 (2021).

    Google Scholar 

  36. Zhou, X., Pang, C., Zeng, X., Jiang, L. & Chen, Y. A short-term power prediction method based on temporal convolutional network in virtual power plant photovoltaic system. IEEE Trans. Instrum. Meas. 72, 1–10 (2023).

    Google Scholar 

  37. Abdel-Nasser, M., Mahmoud, K. & Lehtonen, M. Reliable solar irradiance forecasting approach based on choquet integral and deep LSTMs. IEEE Trans. Ind. Inform. 17, 1873–1881 (2020).

    Google Scholar 

  38. Zheng, Z., Yang, L. & Zhang, Z. Conditional variational autoencoder informed probabilistic wind power curve modeling. IEEE Trans. Sustain. Energy 14, 2445–2460 (2023).

    ADS  Google Scholar 

  39. Ziyabari, S., Du, L. & Biswas, S. K. Multibranch attentive gated ResNet for short-term spatio-temporal solar irradiance forecasting. IEEE Trans. Ind. Appl. 58, 28–38 (2021).

    Google Scholar 

  40. Sun, C., Shrivastava, A., Singh, S. & Gupta, A. in Proc. IEEE Int. Conf. Computer Vision 843-852 https://doi.org/10.1109/ICCV.2017.97 (IEEE, 2017).

  41. Zhou, H. et al. Informer: beyond efficient Transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif. Intell. 35, 11106–11115 (2021).

    Google Scholar 

  42. Wang, C. et al. A transformer-based method of multi-energy load forecasting in integrated energy system. IEEE Trans. Smart Grid 13, 2703–2714 (2022).

    Google Scholar 

  43. Verde, S. F. & Rossetto, N. The Future of Renewable Energy Communities in the EU: An Investigation at the Time of the Clean Energy Package (European Univ. Institute, 2020).

  44. Sharda, S., Singh, M. & Sharma, K. RSAM: robust self-attention based multi-horizon model for solar irradiance forecasting. IEEE Trans. Sustain. Energy 12, 1394–1405 (2020).

    ADS  Google Scholar 

  45. Li, Y., He, S., Li, Y., Ding, Q. & Zeng, Z. Renewable energy absorption oriented many-objective probabilistic optimal power flow. IEEE Trans. Netw. Sci. Eng. https://doi.org/10.1109/TNSE.2023.3290147 (2023).

  46. Dommel, H. W. & Tinney, W. F. Optimal power flow solutions. IEEE Trans. Power Appar. Syst. PAS-87, 1866–1876 (1968).

    ADS  Google Scholar 

  47. Frangioni, A., Gentile, C. & Lacalandra, F. Tighter approximated MILP formulations for unit commitment problems. IEEE Trans. Power Syst. 24, 105–113 (2009).

    ADS  Google Scholar 

  48. Hou, H. et al. Data-driven economic dispatch for islanded micro-grid considering uncertainty and demand response. Int. J. Electr. Power Energy Syst. 136, 107623 (2022).

    Google Scholar 

  49. Du, Y., Li, F., Li, J. & Zheng, T. Achieving 100× acceleration for n – 1 contingency screening with uncertain scenarios using deep convolutional neural network. IEEE Trans. Power Syst. 34, 3303–3305 (2019).

    ADS  Google Scholar 

  50. Zhou, M., Chen, M. & Low, S. H. DeepOPF-FT: one deep neural network for multiple AC-OPF problems with flexible topology. IEEE Trans. Power Syst. 38, 964–967 (2023).

    ADS  Google Scholar 

  51. Li, Y., Wan, C., Chen, D. & Song, Y. Nonparametric probabilistic optimal power flow. IEEE Trans. Power Syst. 37, 2758–2770 (2022).

    ADS  Google Scholar 

  52. Li, Y. et al. Optimal operation of multimicrogrids via cooperative energy and reserve scheduling. IEEE Trans. Ind. Inform. 14, 3459–3468 (2018).

    Google Scholar 

  53. Owerko, D., Gama, F. & Ribeiro, A. in ICASSP 2020 — 2020 IEEE Int. Conf. Acoustics, Speech and Signal Processing 5930–5934 (IEEE, 2020).

  54. Diehl, F. in 33rd Conf. Neural Information Processing Systems (NeurIPS 2019) 1–6 (MIT Press, 2019).

  55. Yan, Z. & Xu, Y. Real-time optimal power flow: a lagrangian based deep reinforcement learning approach. IEEE Trans. Power Syst. 35, 3270–3273 (2020).

    ADS  Google Scholar 

  56. Liu, S. et al. Varying condition SCOPF based on deep learning and knowledge graph. IEEE Trans. Power Syst. 38, 3189–3200 (2023).

    Google Scholar 

  57. Singh, M. K., Kekatos, V. & Giannakis, G. B. Learning to solve the AC-OPF using sensitivity-informed deep neural networks. IEEE Trans. Power Syst. 37, 2833–2846 (2022).

    ADS  Google Scholar 

  58. Liu, T. et al. A Bayesian learning based scheme for online dynamic security assessment and preventive control. IEEE Trans. Power Syst. 35, 4088–4099 (2020).

    ADS  Google Scholar 

  59. Velloso, A. & Van Hentenryck, P. Combining deep learning and optimization for preventive security-constrained DC optimal power flow. IEEE Trans. Power Syst. 36, 3618–3628 (2021).

    ADS  Google Scholar 

  60. Donti, P., Agarwal, A., Bedmutha, N. V., Pileggi, L. & Kolter, J. Z. Adversarially robust learning for security-constrained optimal power flow. Adv. Neural Inf. Process. Syst. 34, 28677–28689 (2021).

    Google Scholar 

  61. Zeng, L. et al. Physics-constrained vulnerability assessment of deep reinforcement learning-based SCOPF. IEEE Trans. Power Syst. 38, 2690–2704 (2023).

    ADS  Google Scholar 

  62. Yang, H., Yi, J., Zhao, J. & Dong, Z. Extreme learning machine based genetic algorithm and its application in power system economic dispatch. Neurocomputing 102, 154–162 (2013).

    Google Scholar 

  63. Chen, W., Park, S., Tanneau, M. & Van Hentenryck, P. Learning optimization proxies for large-scale security-constrained economic dispatch. Electr. Power Syst. Res. 213, 108566 (2022).

    Google Scholar 

  64. Han, J., Yan, L. & Li, Z. A task-based day-ahead load forecasting model for stochastic economic dispatch. IEEE Trans. Power Syst. 36, 5294–5304 (2021).

    ADS  Google Scholar 

  65. Zhou, S. et al. Combined heat and power system intelligent economic dispatch: a deep reinforcement learning approach. Int. J. Electr. Energy Syst. 120, 106016 (2020).

    Google Scholar 

  66. Yu, T., Zhou, B., Chan, K. W., Chen, L. & Yang, B. Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step Q(λ) learning. IEEE Trans. Power Syst. 26, 1272–1282 (2011).

    ADS  Google Scholar 

  67. Han, X., He, H., Wu, J., Peng, J. & Li, Y. Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle. Appl. Energy 254, 113708 (2019).

    CAS  Google Scholar 

  68. Duan, J. et al. Deep-reinforcement-learning-based autonomous voltage control for power grid operations. IEEE Trans. Power Syst. 35, 814–817 (2020).

    ADS  Google Scholar 

  69. Li, Y., He, S., Li, Y., Shi, Y. & Zeng, Z. Federated multiagent deep reinforcement learning approach via physics-informed reward for multi-microgrid energy management. IEEE Trans. Neural Netw. Learn. Syst. 1–13 https://doi.org/10.1109/TNNLS.2022.3232630 (2023).

  70. Du, Y. & Li, F. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning. IEEE Trans. Smart Grid 11, 1066–1076 (2020).

    Google Scholar 

  71. Wang, Z., Liu, Y., Ma, Z., Liu, X. & Ma, J. LiPSG: lightweight privacy-preserving Q-learning-based energy management for the IoT-enabled smart grid. IEEE Internet Things J. 7, 3935–3947 (2020).

    Google Scholar 

  72. Lee, S. & Choi, D.-H. Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: a privacy-preserving deep reinforcement learning approach. Appl. Energy 304, 117754 (2021).

    Google Scholar 

  73. Chen, P., Liu, S., Chen, B. & Yu, L. Multi-agent reinforcement learning for decentralized resilient secondary control of energy storage systems against dos attacks. IEEE Trans. Smart Grid 13, 1739–1750 (2022).

    Google Scholar 

  74. Liang, Y., Ding, Z., Zhao, T. & Lee, W.-J. Real-time operation management for battery swapping-charging system via multi-agent deep reinforcement learning. IEEE Trans. Smart Grid 14, 559–571 (2022).

    Google Scholar 

  75. Salari, A., Ahmadi, S. E., Marzband, M. & Zeinali, M. Fuzzy Q-learning-based approach for real-time energy management of home microgrids using cooperative multi-agent system. Sustain. Cities Soc. 95, 104528 (2023).

    Google Scholar 

  76. Padhy, N. Unit commitment—a bibliographical survey. IEEE Trans. Power Syst. 19, 1196–1205 (2004).

    ADS  Google Scholar 

  77. Zhou, M., Wang, B. & Watada, J. Deep learning-based rolling horizon unit commitment under hybrid uncertainties. Energy 186, 115843 (2019).

    Google Scholar 

  78. Ajagekar, A. & You, F. Deep reinforcement learning based unit commitment scheduling under load and wind power uncertainty. IEEE Trans. Sustain. Energy 14, 803–812 (2023).

    Google Scholar 

  79. Li, F., Qin, J. & Zheng, W. X. Distributed Q-learning-based online optimization algorithm for unit commitment and dispatch in smart grid. IEEE Trans. Cybern. 50, 4146–4156 (2020).

    PubMed  Google Scholar 

  80. de Mars, P. & O’Sullivan, A. Applying reinforcement learning and tree search to the unit commitment problem. Appl. Energy 302, 117519 (2021).

    Google Scholar 

  81. Dalal, G. & Mannor, S. Reinforcement learning for the unit commitment problem. 2015 IEEE Eindh. PowerTech. 1–6 https://doi.org/10.1109/PTC.2015.7232646 (2015).

  82. Li, F., Jiahu, Q. & Wei, X. Z. Distributed Q-learning-based online optimization algorithm for unit commitment and dispatch in smart grid. IEEE Trans. Cybern. 50.9, 4146–4156 (2019).

    Google Scholar 

  83. Ajagekar, A. & Fengqi, Y. Deep reinforcement learning based unit commitment scheduling under load and wind power uncertainty. IEEE Trans. Sustain. Energy 14.2, 803–812 (2022).

    ADS  Google Scholar 

  84. Guedes, L. S., de Mendonça Maia, P., Lisboa, A. C., Vieira, D. A. G. & Saldanha, R. R. A unit commitment algorithm and a compact MILP model for short-term hydro-power generation scheduling. IEEE Trans. Power Syst. 32, 3381–3390 (2016).

    ADS  Google Scholar 

  85. Shi, J. & Oren, S. S. Stochastic unit commitment with topology control recourse for power systems with large-scale renewable integration. IEEE Trans. Power Syst. 33, 3315–3324 (2017).

    ADS  Google Scholar 

  86. Chen, Y. et al. Security-constrained unit commitment for electricity market: modeling, solution methods, and future challenges. IEEE Trans. Power Syst. 38, 4668–4681 (2022).

    ADS  Google Scholar 

  87. Qu, K., Zheng, X. & Yu, T. Environmental–economic unit commitment with robust diffusion control of gas pollutants. IEEE Trans. Power Syst. 38, 818–834 (2022).

    ADS  Google Scholar 

  88. Chu, Z. & Teng, F. Voltage stability constrained unit commitment in power systems with high penetration of inverter-based generators. IEEE Trans. Power Syst. 38, 1572–1582 (2022).

    ADS  Google Scholar 

  89. Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J. & Zheng, T. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28, 52–63 (2012).

    ADS  Google Scholar 

  90. Zhang, J. et al. A survey for solving mixed integer programming via machine learning. Neurocomputing 519, 205–217 (2023).

    Google Scholar 

  91. Gasse, M., Chételat, D., Ferroni, N., Charlin, L. & Lodi, A. Exact combinatorial optimization with graph convolutional neural networks. Adv. Neural Information Processing Systems. 32, 1–13 (2019).

    Google Scholar 

  92. Paulus, M. B., Zarpellon, G., Krause, A., Charlin, L. & Maddison, C. in Int. Conf. Machine Learning 17584–17600 (PMLR, 2022).

  93. Hatziargyriou, N. et al. Definition and classification of power system stability—revisited & extended. IEEE Trans. Power Syst. 36, 3271–3281 (2021).

    ADS  Google Scholar 

  94. Parvez, I., Aghili, M., Sarwat, A. I., Rahman, S. & Alam, F. Online power quality disturbance detection by support vector machine in smart meter. J. Mod. Power Syst. Clean. Energy 7, 1328–1339 (2019).

    Google Scholar 

  95. Impram, S., Varbak Nese, S. & Oral, B. Challenges of renewable energy penetration on power system flexibility: a survey. Energy Strateg. Rev. 31, 100539 (2020).

    Google Scholar 

  96. Shi, Z. et al. Artificial intelligence techniques for stability analysis and control in smart grids: methodologies, applications, challenges and future directions. Appl. Energy 278, 115733 (2020).

    Google Scholar 

  97. Shi, Z. et al. Bidirectional active transfer learning for adaptive power system stability assessment and dominant instability mode identification. IEEE Trans. Power Syst. 1–15 https://doi.org/10.1109/TPWRS.2022.3220955 (2022).

  98. Xi, L., Wu, J., Xu, Y. & Sun, H. Automatic generation control based on multiple neural networks with actor–critic strategy. IEEE Trans. Neural Netw. Learn. Syst. 32, 2483–2493 (2021).

    PubMed  Google Scholar 

  99. Xi, L., Yu, L., Xu, Y., Wang, S. & Chen, X. A novel multi-agent DDQN-AD method-based distributed strategy for automatic generation control of integrated energy systems. IEEE Trans. Sustain. Energy 11, 2417–2426 (2020).

    ADS  Google Scholar 

  100. Buşoniu, L., de Bruin, T., Tolić, D., Kober, J. & Palunko, I. Reinforcement learning for control: performance, stability, and deep approximators. Annu. Rev. Control. 46, 8–28 (2018).

    MathSciNet  Google Scholar 

  101. Hwang, M., Muljadi, E., Jang, G. & Kang, Y. C. Disturbance-adaptive short-term frequency support of a DFIG associated with the variable gain based on the ROCOF and rotor speed. IEEE Trans. Power Syst. 32, 1873–1881 (2017).

    ADS  Google Scholar 

  102. Kheshti, M. et al. Toward intelligent inertial frequency participation of wind farms for the grid frequency control. IEEE Trans. Ind. Inform. 16, 6772–6786 (2020).

    Google Scholar 

  103. Liang, Y., Zhao, X. & Sun, L. A multiagent reinforcement learning approach for wind farm frequency control. IEEE Trans. Ind. Inform. 19, 1725–1734 (2023).

    Google Scholar 

  104. Dong, H. & Zhao, X. Data-driven wind farm control via multiplayer deep reinforcement learning. IEEE Trans. Control. Syst. Technol. 31, 1468–1475 (2023).

    Google Scholar 

  105. Yan, J., Nuertayi, A., Yan, Y., Liu, S. & Liu, Y. Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine. Renew. Energy 215, 118958 (2023).

    Google Scholar 

  106. Su, Y. et al. An adaptive PV frequency control strategy based on real-time inertia estimation. IEEE Trans. Smart Grid 12, 2355–2364 (2021).

    Google Scholar 

  107. Chen, Y. & Xu, D. Review of soft-switching topologies for single-phase photovoltaic inverters. IEEE Trans. Power Electron. 37, 1926–1944 (2022).

    Google Scholar 

  108. Zhao, B., Zhang, X. & Huang, J. AI algorithm-based two-stage optimal design methodology of high-efficiency CLLC resonant converters for the hybrid AC–DC microgrid applications. IEEE Trans. Ind. Electron. 66, 9756–9767 (2019).

    Google Scholar 

  109. Cao, D. et al. Attention enabled multi-agent DRL for decentralized volt-VAR control of active distribution system using PV inverters and SVCs. IEEE Trans. Sustain. Energy 12, 1582–1592 (2021).

    ADS  Google Scholar 

  110. Khan, M. A., Haque, A. & Kurukuru, V. S. B. Intelligent transition control approach for different operating modes of photovoltaic inverter. IEEE Trans. Ind. Appl. 58, 2332–2340 (2022).

    Google Scholar 

  111. Alam, M. J. E., Muttaqi, K. M. & Sutanto, D. A multi-mode control strategy for VAr support by solar PV inverters in distribution networks. IEEE Trans. Power Syst. 30, 1316–1326 (2015).

    ADS  Google Scholar 

  112. Weckx, S. & Driesen, J. Optimal local reactive power control by PV inverters. IEEE Trans. Sustain. Energy 7, 1624–1633 (2016).

    ADS  Google Scholar 

  113. Fu, X., Li, S. & Jaithwa, I. Implement optimal vector control for LCL-filter-based grid-connected converters by using recurrent neural networks. IEEE Trans. Ind. Electron. 62, 4443–4454 (2015).

    Google Scholar 

  114. Song, Y. et al. A Q-learning based robust MPC method for DFIG to suppress the rotor overcurrent. Int. J. Electr. Power Energy Syst. 141, 108106 (2022).

    Google Scholar 

  115. Yin, Z., Wang, S. & Zhao, Q. Sequential reconfiguration of unbalanced distribution network with soft open points based on deep reinforcement learning. J. Mod. Power Syst. Clean. Energy 11, 107–119 (2023).

    Google Scholar 

  116. Peng, F. Z. Flexible AC transmission systems (FACTS) and resilient AC distribution systems (RACDS) in smart grid. Proc. IEEE 105, 2099–2115 (2017).

    Google Scholar 

  117. Zheng, D.-D., Madani, S. S. & Karimi, A. Data-driven distributed online learning control for islanded microgrids. IEEE J. Emerg. Sel. Top. Circuits Syst. 12, 194–204 (2022).

    ADS  CAS  Google Scholar 

  118. Zamzam, A. S. & Sidiropoulos, N. D. Physics-aware neural networks for distribution system state estimation. IEEE Trans. Power Syst. 35, 4347–4356 (2020).

    ADS  Google Scholar 

  119. Chen, Q., Lin, N., Bu, S., Wang, H. & Zhang, B. Interpretable time-adaptive transient stability assessment based on dual-stage attention mechanism. Power Syst. IEEE Trans. 38, 2776–2790 (2023).

    ADS  Google Scholar 

  120. Ye, X., Yan, J., Wang, Y., Lu, L. & He, R. A novel capsule convolutional neural network with attention mechanism for high-voltage circuit breaker fault diagnosis. Electr. Power Syst. Res. 209, 108003 (2022).

    Google Scholar 

  121. Wang, W., Yu, N., Gao, Y. & Shi, J. Safe off-policy deep reinforcement learning algorithm for Volt-VAR control in power distribution systems. IEEE Trans. Smart Grid 11, 3008–3018 (2020).

    Google Scholar 

  122. Wang, Y., Mao, M., Chang, L. & Hatziargyriou, N. D. Intelligent voltage control method in active distribution networks based on averaged weighted double deep Q-network algorithm. J. Mod. Power Syst. Clean. Energy 11, 132–143 (2023).

    CAS  Google Scholar 

  123. Sun, X. & Qiu, J. Two-stage Volt/Var control in active distribution networks with multi-agent deep reinforcement learning method. IEEE Trans. Smart Grid 12, 2903–2912 (2021).

    Google Scholar 

  124. Cao, D. et al. Data-driven multi-agent deep reinforcement learning for distribution system decentralized voltage control with high penetration of PVs. IEEE Trans. Smart Grid 12, 4137–4150 (2021).

    Google Scholar 

  125. Hu, D. et al. Multi-agent deep reinforcement learning for voltage control with coordinated active and reactive power optimization. IEEE Trans. Smart Grid 13, 4873–4886 (2022).

    Google Scholar 

  126. Li, Y. et al. Many-objective distribution network reconfiguration via deep reinforcement learning assisted optimization algorithm. IEEE Trans. Power Deliv. 37, 2230–2244 (2022).

    Google Scholar 

  127. Kushwaha, A., Gopal, M. & Singh, B. Q-learning based maximum power extraction for wind energy conversion system with variable wind speed. IEEE Trans. Energy Convers. 35, 1160–1170 (2020).

    ADS  Google Scholar 

  128. Liu, H. & Wu, W. Federated reinforcement learning for decentralized voltage control in distribution networks. IEEE Trans. Smart Grid 13, 3840–3843 (2022).

    Google Scholar 

  129. Poudyal, A. et al. Multiarea inertia estimation using convolutional neural networks and federated learning. IEEE Syst. J. 16, 6401–6412 (2022).

    ADS  Google Scholar 

  130. Molina-García, A., Bouffard, F. & Kirschen, D. S. Decentralized demand-side contribution to primary frequency control. IEEE Trans. Power Syst. 26, 411–419 (2011).

    ADS  Google Scholar 

  131. Wang, X., Wang, J. & Liu, J. Vehicle to grid frequency regulation capacity optimal scheduling for battery swapping station using deep Q-network. IEEE Trans. Ind. Inform. 17, 1342–1351 (2021).

    Google Scholar 

  132. Li, S. et al. Battery protective electric vehicle charging management in renewable energy system. IEEE Trans. Ind. Inform. 19, 1312–1321 (2023).

    ADS  Google Scholar 

  133. Kabir, M. E., Ghafouri, M., Moussa, B. & Assi, C. A two-stage protection method for detection and mitigation of coordinated EVSE switching attacks. IEEE Trans. Smart Grid 12, 4377–4388 (2021).

    Google Scholar 

  134. Du, Y., Li, F., Kurte, K., Munk, J. & Zandi, H. Demonstration of intelligent HVAC load management with deep reinforcement learning: real-world experience of machine learning in demand control. IEEE Power Energy Mag. 20, 42–53 (2022).

    Google Scholar 

  135. Wang, B., Li, Y., Ming, W. & Wang, S. Deep reinforcement learning method for demand response management of interruptible load. IEEE Trans. Smart Grid 11, 3146–3155 (2020).

    Google Scholar 

  136. Hu, Z. et al. Intelligent and rapid event-based load shedding pre-determination for large-scale power systems: knowledge-enhanced parallel branching dueling Q-network approach. Appl. Energy 347, 121468 (2023).

    Google Scholar 

  137. Zhang, B., Hu, W., Ghias, A. M. Y. M., Xu, X. & Chen, Z. Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings. Appl. Energy 328, 120215 (2022).

    Google Scholar 

  138. Guelpa, E. & Verda, V. Demand response and other demand side management techniques for district heating: a review. Energy 219, 119440 (2021).

    Google Scholar 

  139. Zhang, Z. et al. A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 148, 111263 (2021).

    Google Scholar 

  140. Calero, F. et al. A review of modeling and applications of energy storage systems in power grids. Proc. IEEE. 111, 806–831 (2023).

    CAS  Google Scholar 

  141. Yao, F., Zhao, J., Li, X., Mao, L. & Qu, K. RBF neural network based virtual synchronous generator control with improved frequency stability. IEEE Trans. Ind. Inform. 17, 4014–4024 (2021).

    Google Scholar 

  142. Wang, Y. & Wai, R.-J. Adaptive fuzzy-neural-network power decoupling strategy for virtual synchronous generator in micro-grid. IEEE Trans. Power Electron. 37, 3878–3891 (2022).

    ADS  Google Scholar 

  143. Saadatmand, S., Shamsi, P. & Ferdowsi, M. Adaptive critic design-based reinforcement learning approach in controlling virtual inertia-based grid-connected inverters. Int. J. Electr. Power Energy Syst. 127, 106657 (2021).

    Google Scholar 

  144. Bui, V.-H., Hussain, A. & Kim, H.-M. Double deep Q-learning-based distributed operation of battery energy storage system considering uncertainties. IEEE Trans. Smart Grid 11, 457–469 (2020).

    Google Scholar 

  145. Shuai, H., Li, F., Pulgar-Painemal, H. & Xue, Y. Branching dueling Q-network-based online scheduling of a microgrid with distributed energy storage systems. IEEE Trans. Smart Grid 12, 5479–5482 (2021).

    Google Scholar 

  146. Hosseini, M. M. & Parvania, M. Hierarchical intelligent operation of energy storage systems in power distribution grids. IEEE Trans. Sustain. Energy 14, 741–750 (2023).

    ADS  Google Scholar 

  147. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  148. Ye, Y., Qiu, D., Sun, M., Papadaskalopoulos, D. & Strbac, G. Deep reinforcement learning for strategic bidding in electricity markets. IEEE Trans. Smart Grid 11, 1343–1355 (2019).

    Google Scholar 

  149. Liang, Y., Guo, C., Ding, Z. & Hua, H. Agent-based modeling in electricity market using deep deterministic policy gradient algorithm. IEEE Trans. Power Syst. 35, 4180–4192 (2020).

    ADS  Google Scholar 

  150. Zhang, Z., Chen, Z. & Lee, W.-J. Soft actor–critic algorithm featured residential demand response strategic bidding for load aggregators. IEEE Trans. Ind. Appl. 58, 4298–4308 (2022).

    Google Scholar 

  151. Peng, F. et al. Review on bidding strategies for renewable energy power producers participating in electricity spot markets. Sustain. Energy Technol. Assess. 58, 103329 (2023).

    Google Scholar 

  152. Longoria, G., Davy, A. & Shi, L. Subsidy-free renewable energy trading: a meta agent approach. IEEE Trans. Sustain. Energy 11, 1707–1716 (2019).

    ADS  Google Scholar 

  153. Ochoa, T., Gil, E., Angulo, A. & Valle, C. Multi-agent deep reinforcement learning for efficient multi-timescale bidding of a hybrid power plant in day-ahead and real-time markets. Appl. Energy 317, 119067 (2022).

    Google Scholar 

  154. Jeong, J., Kim, S. W. & Kim, H. Deep reinforcement learning based real-time renewable energy bidding with battery control. IEEE Trans. Energy Mark. Policy Regul. 1, 85–96 (2023).

    Google Scholar 

  155. Tang, Q., Guo, H. & Chen, Q. Multi-market bidding behavior analysis of energy storage system based on inverse reinforcement learning. IEEE Trans. Power Syst. 37, 4819–4831 (2022).

    ADS  Google Scholar 

  156. Lin, Z. & Liu, X. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy 201, 117693 (2020).

    Google Scholar 

  157. Jin, X., Xu, Z. & Qiao, W. Condition monitoring of wind turbine generators using SCADA data analysis. IEEE Trans. Sustain. Energy 12, 202–210 (2021).

    ADS  Google Scholar 

  158. Yu, Y., Chen, L. & Liu, R. The source of wind power producers’ market power. Energy Policy 173, 113401 (2023).

    Google Scholar 

  159. Tellidou, A. C. & Bakirtzis, A. G. Agent-based analysis of capacity withholding and tacit collusion in electricity markets. IEEE Trans. Power Syst. 22, 1735–1742 (2007).

    ADS  Google Scholar 

  160. Razmi, P., Buygi, M. O. & Esmalifalak, M. Collusion strategy investigation and detection for generation units in electricity market using supervised learning paradigm. IEEE Syst. J. 15, 146–157 (2020).

    ADS  Google Scholar 

  161. Qiu, D. et al. Strategic retail pricing and demand bidding of retailers in electricity market: a data-driven chance-constrained programming. Adv. Appl. Energy 7, 100100 (2022).

    Google Scholar 

  162. Tsaousoglou, G. et al. Flexibility aggregation of temporally coupled resources in real-time balancing markets using machine learning. IEEE Trans. Ind. Inform. 18, 4342–4351 (2021).

    Google Scholar 

  163. Chen, T. & Su, W. Indirect customer-to-customer energy trading with reinforcement learning. IEEE Trans. Smart Grid 10, 4338–4348 (2018).

    Google Scholar 

  164. Taghizadeh, A., Montazeri, M. & Kebriaei, H. Deep reinforcement learning-aided bidding strategies for transactive energy market. IEEE Syst. J. 16, 4445–4453 (2022).

    ADS  Google Scholar 

  165. Qian, T., Shao, C., Shi, D., Wang, X. & Wang, X. Automatically improved VCG mechanism for local energy markets via deep learning. IEEE Trans. Smart Grid 13, 1261–1272 (2021).

    Google Scholar 

  166. Zhao, Z., Feng, C. & Liu, A. L. Comparisons of auction designs through multiagent learning in peer-to-peer energy trading. IEEE Trans. Smart Grid 14, 593–605 (2022).

    Google Scholar 

  167. Ye, Y., Papadaskalopoulos, D., Yuan, Q., Tang, Y. & Strbac, G. Multi-agent deep reinforcement learning for coordinated energy trading and flexibility services provision in local electricity markets. IEEE Trans. Smart Grid 14, 1541–1554 (2023).

    Google Scholar 

  168. Wang, J., Mishra, D. K., Li, L. & Zhang, J. Demand side management and peer-to-peer energy trading for industrial users using two-level multi-agent reinforcement learning. IEEE Trans. Energy Mark. Policy Regul. 1, 23–36 (2023).

    Google Scholar 

  169. Gao, G., Wen, Y. & Tao, D. Distributed energy trading and scheduling among microgrids via multiagent reinforcement learning. IEEE Trans. Neural Networks Learn. Syst. 1–15 https://doi.org/10.1109/TNNLS.2022.3170070 (2022).

  170. Nunna, H. K., Sesetti, A., Rathore, A. K. & Doolla, S. Multiagent-based energy trading platform for energy storage systems in distribution systems with interconnected microgrids. IEEE Trans. Ind. Appl. 56, 3207–3217 (2020).

    CAS  Google Scholar 

  171. Lu, X. et al. Reinforcement learning-based microgrid energy trading with a reduced power plant schedule. IEEE Internet Things J. 6, 10728–10737 (2019).

    Google Scholar 

  172. Yan, L., Chen, X., Chen, Y. & Wen, J. A hierarchical deep reinforcement learning-based community energy trading scheme for a neighborhood of smart households. IEEE Trans. Smart Grid 13, 4747–4758 (2022).

    Google Scholar 

  173. Wu, Y., Zhao, T., Yan, H., Liu, M. & Liu, N. Hierarchical hybrid multi-agent deep reinforcement learning for peer-to-peer energy trading among multiple heterogeneous microgrids. IEEE Trans. Smart Grid 14, 4649–4665 (2023).

    Google Scholar 

  174. Zamee, M. A., Han, D. & Won, D. Online hour-ahead load forecasting using appropriate time-delay neural network based on multiple correlation–multicollinearity analysis in IoT energy network. IEEE Internet Things J. 9, 12041–12055 (2022).

    Google Scholar 

  175. Zhang, X., Pipattanasomporn, M., Chen, T. & Rahman, S. An IoT-based thermal model learning framework for smart buildings. IEEE Internet Things J. 7, 518–527 (2020).

    Google Scholar 

  176. Lin, W., Wu, D. & Boulet, B. Spatial-temporal residential short-term load forecasting via graph neural networks. IEEE Trans. Smart Grid 12, 5373–5384 (2021).

    Google Scholar 

  177. Zheng, X. et al. A multi-scale time-series dataset with benchmark for machine learning in decarbonized energy grids. Sci. Data 9, 359 (2022).

    PubMed  PubMed Central  Google Scholar 

  178. Yin, X., Zhu, Y. & Hu, J. A comprehensive survey of privacy-preserving federated learning: a taxonomy, review, and future directions. ACM Comput. Surv. 54, 1–36 (2021).

    Google Scholar 

  179. Hu, Q., Guo, Z. & Li, F. Imitation learning based fast power system production cost minimization simulation. IEEE Trans. Power Syst. 38, 2951–2954 (2023).

    ADS  Google Scholar 

  180. Bellemare, M. G., Dabney, W. & Rowland, M. Distributional Reinforcement Learning (MIT Press, 2023).

  181. Hu, Q., Zhang, S., Yu, M. & Xie, Z. Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustain. Energy 7, 241–249 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (grant 2021ZD0201300), National Natural Science Foundation of China (grants 62325304 and 62073148) and Key Project of the National Natural Science Foundation of China (grant 62233006).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., Y.D., S.H., F.H. and J.D. researched data for the article. All authors contributed substantially to discussion of the content. Y.L., Y.D., S.H., F.H., J.D., G.W. and H.B.G. wrote the article. All authors edited the manuscript before submission.

Corresponding authors

Correspondence to Guanghui Wen, Hoay Beng Gooi or Zhigang Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Bhuvanagiri Ramesh and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ding, Y., He, S. et al. Artificial intelligence-based methods for renewable power system operation. Nat Rev Electr Eng 1, 163–179 (2024). https://doi.org/10.1038/s44287-024-00018-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00018-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing