Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Intelligent block copolymer self-assembly towards IoT hardware components

Abstract

The Internet of Things (IoT) has emerged as the principal element for hyperconnectivity in the era of the fourth industrial revolution, in which low-power and self-sustainable operation, miniaturization and communication are the main requirements for advanced systems. Highly functional nanoscale structures, together with fabrication processes on the sub-100-nm scale, can be useful for the development of versatile miniaturized IoT devices. In this Perspective, we introduce block copolymer (BCP) self-assembly as a tool for the fabrication of high-performance IoT hardware components. Tailored material design of BCPs in terms of chemical diversity and molecular architectures enables the dense integration of physical and chemical functionalities below the tens of nanometres scale. BCPs can be used as nanoscale templates for surface nanopatterning, as soft 3D nanoporous structures or as nanopatterned substrates for spatially selective chemical functionalities. We summarize advances in technological areas relevant to the IoT, such as sensing, energy harvesting, user interfaces and information security systems. We also consider the limitations and open challenges that must be addressed, and we outline future research directions towards the use of BCP assembly for the next generation of IoT systems.

Key points

  • Block copolymer (BCP) self-assembly, traditionally focused on semiconductor nanolithography, is evolving into a promising material platform for Internet of Things (IoT) hardware components.

  • BCP nanopatterning aids in creating highly sensitive IoT sensors with enlarged surface areas and tunable electronic and/or optical properties.

  • Well-defined nanopatterns produced by BCP self-assembly can promote the energy conversion efficiencies of photovoltaics, triboelectric and/or thermoelectric nanogenerators, and osmotic energy converters.

  • Dynamic self-assembly of BCPs can be used for smart IoT user interfaces by means of environment-interactive displays and interactive tactile interfaces.

  • Non-deterministic BCP self-assembly offers physically unclonable functions for high information security and versatile identification methodologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Smart home as an example of a ubiquitous Internet of Things system.
Fig. 2: Enhancement of sensing performance with block copolymer (BCP)-nanopatterned devices.
Fig. 3: Energy harvesting with block copolymer (BCP) nanopatterned devices for self-sustainable Internet of Things systems.
Fig. 4: Environment-interactive user interface and optical components fabricated with block copolymer (BCP) self-assembly.
Fig. 5: Physical unclonable functions (PUF) for an information security system using non-deterministic nanopattern formation by block copolymer (BCP) self-assembly.

Similar content being viewed by others

References

  1. Hassan, Q. F. Internet of Things A to Z: Technologies and Applications (Wiley, 2018).

  2. Zhao, X., Askari, H. & Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 5, 1391–1431 (2021).

    Article  Google Scholar 

  3. Kim, B. H. et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y. Multi-tier computing networks for intelligent IoT. Nat. Electron. 2, 4–5 (2019).

    Article  Google Scholar 

  6. Kang, Y., Walish, J. J., Gorishnyy, T. & Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Balaji, S., Nathani, K. & Santhakumar, R. IoT technology, applications and challenges: a contemporary survey. Wirel. Pers. Commun. 108, 363–388 (2019).

    Article  Google Scholar 

  8. Liu, X. Y. et al. Overview of spintronic sensors with Internet of Things for smart living. IEEE Trans. Magn. 55, 0800222 (2019).

    Article  CAS  Google Scholar 

  9. Alabdulatif, A., Thilakarathne, N. N., Lawal, Z. K., Fahim, K. E. & Zakari, R. Y. Internet of Nano-Things (IoNT): a comprehensive review from architecture to security and privacy challenges. Sensors 23, 2807 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zheng, L.-R., Tenhunen, H. & Zou, Z. Smart Electronic Systems: Heterogeneous Integration of Silicon and Printed Electronics (Wiley-VCH, 2018).

  11. Moore, S. K. & Schneider, D. The state of the transistor: in 75 years, it’s become tiny, mighty, ubiquitous, and just plain weird. IEEE Spectr. 59, 30–31 (2022).

    Article  Google Scholar 

  12. Zhao, H., Fang, H., Wang, F. & Liu, J. Realtime multimedia services over Starlink: a reality check. In NOSSDAV ‘23: Proc. 33rd Workshop on Network and Operating System Support for Digital Audio and Video 43–49 (2023).

  13. Chaudhry, A. U. & Yanikomeroglu, H. Laser intersatellite links in a Starlink constellation: a classification and analysis. IEEE Veh. Technol. Mag. 16, 48–56 (2021).

    Article  Google Scholar 

  14. Kassas, Z. M. et al. Navigation with multi-constellation LEO satellite signals of opportunity: Starlink, OneWeb, Orbcomm, and Iridium. In IEEE/ION Position, Location and Navigation Symposium (PLANS), 338–343 (IEEE, 2023).

  15. Dang, S., Amin, O., Shihada, B. & Alouini, M.-S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Article  Google Scholar 

  16. Verma, D. et al. Internet of Things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens. Bioelectron. X 11, 100153 (2022).

    CAS  Google Scholar 

  17. Yin, J., Hinchet, R., Shea, H. & Majidi, C. Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31, 2007428 (2021).

    Article  CAS  Google Scholar 

  18. Baig, N., Kammakakam, I., Falath, W. & Kammakakam, I. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021).

    Article  Google Scholar 

  19. Hu, H. Q., Gopinadhan, M. & Osuji, C. O. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10, 3867–3889 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980). This paper defined the theoretical phase diagram for diblock copolymer self-assembly.

    Article  CAS  Google Scholar 

  21. Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    Article  CAS  Google Scholar 

  22. Bates, F. S. & Fredrickson, G. H. Block copolymer thermodynamics — theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990). This review explores BCP thermodynamics by integrating theoretical models to elucidate the BCP phase behaviours and properties.

    Article  CAS  PubMed  Google Scholar 

  23. Bates, F. S. Polymer–polymer phase-behavior. Science 251, 898–905 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Cochran, E. W., Garcia-Cervera, C. J. & Fredrickson, G. H. Stability of the gyroid phase in diblock copolymers at strong segregation. Macromolecules 39, 2449–2451 (2006).

    Article  CAS  Google Scholar 

  25. Matsen, M. W. & Bates, F. S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29, 1091–1098 (1996).

    Article  CAS  Google Scholar 

  26. Sinturel, C., Bates, F. S. & Hillmyer, M. A. High χ–low N block polymers: how far can we go? ACS Macro Lett. 4, 1044–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Jung, Y. S., Chang, J. B., Verploegen, E., Berggren, K. K. & Ross, C. A. A path to ultranarrow patterns using self-assembled lithography. Nano Lett. 10, 1000–1005 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Li, M. Q. & Ober, C. K. Block copolymer patterns and templates. Mater. Today 9, 30–39 (2006).

    Article  CAS  Google Scholar 

  29. Xia, Y., Olsen, B. D., Kornfield, J. A. & Grubbs, R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side-chain arrangement. J. Am. Chem. Soc. 131, 18525–18532 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, G. G. et al. Block copolymer nanopatterning for nonsemiconductor device applications. ACS Appl. Mater. Interfaces 14, 12011–12037 (2022). This review discusses the application of BCP nanopatterning for non-semiconducting thin-film-based devices.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, H. C., Park, S. M. & Hinsberg, W. D. Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem. Rev. 110, 146–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, G., Petrosko, S. H., Zheng, Z. & Mirkin, C. A. Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discovery. Chem. Rev. 120, 6009–6047 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Feng, H. B. et al. Optimized design of block copolymers with covarying properties for nanolithography. Nat. Mater. 21, 1426–1433 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Lofstrand, A. et al. Sequential infiltration synthesis and pattern transfer using 6 nm half-pitch carbohydrate-based fingerprint block copolymer. Adv. Patterning Mater. Process. XXXVIII 11612, 205–213 (2021).

    Google Scholar 

  36. Jeong, S. J., Kim, J. Y., Kim, B. H., Moon, H. S. & Kim, S. O. Directed self-assembly of block copolymers for next generation nanolithography. Mater. Today 16, 468–476 (2013).

    Article  CAS  Google Scholar 

  37. Kim, J. H. et al. Smart nanostructured materials based on self-assembly of block copolymers. Adv. Funct. Mater. 30, 1902049 (2020).

    Article  CAS  Google Scholar 

  38. Neisser, M. International roadmap for devices and systems lithography roadmap. J. Micro-Nanopattern. 20, 044601–044601 (2021).

    Google Scholar 

  39. Liu, C. C. et al. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 1, 562–569 (2018). This paper reports the use of BCP self-assembly to build integrated circuits, combined with top-down processes, validating its potential applicability in large-area device fabrication.

    Article  CAS  Google Scholar 

  40. Liu, C. C. et al. Electrical validation of the integration of 193i and DSA for sub-20nm metal cut patterning. Proc. SPIE 10958, 70–78 (2019).

    Google Scholar 

  41. Chen, Y. & Xiong, S. Directed self-assembly of block copolymers for sub-10 nm fabrication. Int. J. Extreme Manuf. 2, 032006 (2020).

    Article  CAS  Google Scholar 

  42. Li, W. & Müller, M. Defects in the self-assembly of block copolymers and their relevance for directed self-assembly. Annu. Rev. Chem. Biomol. Eng. 6, 187–216 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003). This paper contributed to the development of defect-free directed self-assembly, introducing epitaxial self-assembly, and provided insights into the use of molecular self-assembly for semiconductor lithography.

    Article  CAS  PubMed  Google Scholar 

  44. Bita, I. et al. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 321, 939–943 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Stoykovich, M. P. et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Segalman, R. A., Yokoyama, H. & Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13, 1152–1155 (2001).

    Article  CAS  Google Scholar 

  47. Hu, X.-H. & Xiong, S. Fabrication of nanodevices through block copolymer self-assembly. Front. Nanotechnol. 4, 762996 (2022).

    Article  Google Scholar 

  48. Cummins, C. et al. Enabling future nanomanufacturing through block copolymer self-assembly: a review. Nano Today 35, 100936 (2020).

    Article  CAS  Google Scholar 

  49. Yang, G. G. et al. Multilevel Self-assembly of block copolymers and polymer colloids for a transparent and sensitive gas sensor platform. ACS Nano 16, 18767–18776 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, D. et al. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 12, 331–338 (2015).

    Article  CAS  Google Scholar 

  51. Werner, J. G., Rodriguez-Calero, G. G., Abruna, H. D. & Wiesner, U. Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy Environ. Sci. 11, 1261–1270 (2018). This paper demonstrates a monolithic lithium-ion battery with a bicontinuous 3D network fabricated using a BCP gyroid.

    Article  CAS  Google Scholar 

  52. Lang, C. et al. Nanostructured block copolymer muscles. Nat. Nanotechnol. 17, 752–758 (2022). This paper demonstrates the fabrication of highly stretchable artificial muscles using amphiphilic BCPs and provides insight into their application in soft robotics.

    Article  CAS  PubMed  Google Scholar 

  53. Kim, J. H. et al. Nanoscale physical unclonable function labels based on block copolymer self-assembly. Nat. Electron. 5, 433–442 (2022). This paper demonstrated the fabrication of nanoscale physical unclonable function labels exploiting non-predictable randomized BCP self-assembly, providing insights into the applicability of randomized BCP nanopatterns.

    Article  CAS  Google Scholar 

  54. Yoshida, K. et al. Facile and efficient modification of polystyrene-block-poly(methyl methacrylate) for achieving sub-10 nm feature size. Macromolecules 51, 8064–8072 (2018).

    Article  CAS  Google Scholar 

  55. Liao, Y. J., Liu, K. P., Chen, W. C., Wei, B. & Borsali, R. Robust sub-10 nm pattern of standing sugar cylinders via rapid ‘microwave cooking’. Macromolecules 52, 8751–8758 (2019).

    Article  CAS  Google Scholar 

  56. Şentürk, Ş., Kök, B. & Şentürk, F. Internet of Nano and Bio-Nano Things: a review. In Semantic Intelligence: Select Proc. ISIC 2022, 265–276 (LNEE, Springer, 2023).

  57. Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. & Koucheryavy, Y. The Internet of Bio-Nano Things. IEEE Commun. Mag. 53, 32–40 (2015).

    Article  Google Scholar 

  58. Radamson, H. H. et al. Miniaturization CMOS. Micromachines 10, 293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meile, L., Ulrich, A. & Magno, M. Wireless power transmission powering miniaturized low power IoT devices: a review. In 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), 321–317 (IEEE, 2019).

  60. Portilla, L. et al. Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10–17 (2023). This perspective describes the development of sustainable power supply, wirelessly powered sensors, and effective architecture design for the Internet of Things.

    Google Scholar 

  61. Pecunia, V., Occhipinti, L. G. & Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable Internet of Things. Adv. Energy Mater. 11, 2100698 (2021).

    Article  CAS  Google Scholar 

  62. Kang, D. H. P., Chen, M. J. & Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47, 5495–5503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, O., Kim, H., Choi, U. H. & Park, M. J. One-volt-driven superfast polymer actuators based on single-ion conductors. Nat. Commun. 7, 13576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cha, S. K. et al. Au–Ag core–shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS Nano 9, 5536–5543 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Sen, A. et al. Probing the efficacy of large-scale nonporous IGZO for visible-to-NIR detection capability: an approach toward high-performance image sensor circuitry. ACS Nano 16, 9267–9277 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Park, H. et al. Ultrasensitive and selective field-effect transistor-based biosensor created by rings of MoS2 nanopores. ACS Nano 16, 1826–1835 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Jeong, C. K. et al. Electrical biomolecule detection using nanopatterned silicon via block copolymer lithography. Small 10, 337–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Hu, Q., Chen, S., Solomon, P. & Zhang, Z. Ion sensing with single charge resolution using sub-10-nm electrical double layer–gated silicon nanowire transistors. Sci. Adv. 7, eabj6711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo, S. et al. De. Massively parallel arrays of size-controlled metallic nanogaps with gap-widths down to the sub-3-nm level. Adv. Mater. 33, 2100491 (2021).

    Article  CAS  Google Scholar 

  70. Wang, K. et al. Self-assembled colloidal nanopatterns toward unnatural optical meta-materials. Adv. Funct. Mater. 31, 2008246 (2021).

    Article  CAS  Google Scholar 

  71. Stefik, M. et al. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev. 44, 5076–5091 (2015). This review discusses the working principles of BCP-based photonics and its relevant applications.

    Article  CAS  PubMed  Google Scholar 

  72. Alvarez-Fernandez, A. et al. Block copolymer directed metamaterials and metasurfaces for novel optical devices. Adv. Opt. Mater. 9, 2100175 (2021).

    Article  CAS  Google Scholar 

  73. Kim, J. Y. et al. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat. Commun. 7, 12911 (2016). This manuscript reports a high-refractive-index metasurface fabricated using BCP-pattern shrinkage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin, H. M. et al. Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS. ACS Appl. Mater. Interfaces 10, 44660–44667 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, N. et al. Self-assembled nano-lotus pod metasurface for light trapping. ACS Photonics 8, 1616–1622 (2021).

    Article  CAS  Google Scholar 

  76. Lu, Y. C. et al. Fabrication of gyroid-structured metal/semiconductor nanoscaffolds with ultrasensitive SERS detection via block copolymer templating. Adv. Opt. Mater. 11, 2202280 (2022).

    Article  Google Scholar 

  77. Rahman, A. et al. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells. Nat. Commun. 6, 5963 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Mokarian-Tabari, P. et al. Large block copolymer self-assembly for fabrication of subwavelength nanostructures for applications in optics. Nano Lett. 17, 2973–2978 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Park, T. H., Yu, S., Park, J. & Park, C. Interactive structural color displays of nano-architectonic 1-dimensional block copolymer photonic crystals. Sci. Technol. Adv. Mat. 24, 2 (2023).

    Article  Google Scholar 

  80. Kang, H. S. et al. 3D touchless multiorder reflection structural color sensing display. Sci. Adv. 6, eabb5769 (2020). This paper demonstrated a sustainable and interactive touchless display fabricated from BCP photonic crystals by using inkjet printing.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mayer, M. & Baeumner, A. J. A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the Internet of Things. Chem. Rev. 119, 7996–8027 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Ullo, S. L. & Sinha, G. R. Advances in smart environment monitoring systems using IoT and sensors. Sensors 20, 3113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Janjua, M. B., Duranay, A. E. & Arslan, H. Role of wireless communication in healthcare system to cater disaster situations under 6G vision. Front. Comms. Net. 1, 610879 (2020).

    Article  Google Scholar 

  84. Zou, Y. et al. sp2-hybridized carbon-containing block copolymer templated synthesis of mesoporous semiconducting metal oxides with excellent gas sensing property. Acc. Chem. Res. 52, 714–725 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Jung, Y. S., Jung, W., Tuller, H. L. & Ross, C. A. Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography. Nano Lett. 8, 3776–3780 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Yun, T. et al. 2D metal chalcogenide nanopatterns by block copolymer lithography. Adv. Funct. Mater. 28, 1804508 (2018).

    Article  Google Scholar 

  87. Park, H. et al. A wafer-scale nanoporous 2D active pixel image sensor matrix with high uniformity, high sensitivity, and rapid switching. Adv. Mater. 35, 2210715 (2023).

    Article  CAS  Google Scholar 

  88. Ren, Y. et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 19, 203–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Liekhus, K. J., Zlochower, I. A., Cashdollar, K. L., Djordjevic, S. M. & Loehr, C. A. Flammability of gas mixtures containing volatile organic compounds and hydrogen. J. Loss Prev. Process Ind. 13, 377–384 (2000).

    Article  Google Scholar 

  90. Han, K. H. et al. Highly aligned carbon nanowire array by E-field directed assembly of PAN-containing block copolymers. ACS Appl. Mater. Interfaces 12, 58113–58121 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Cagliani, A. et al. Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Res. 7, 743–754 (2014).

    Article  CAS  Google Scholar 

  92. Wang, R. et al. Janus mesoporous sensor devices for simultaneous multivariable gases detection. Matter 1, 1274–1284 (2019).

    Article  Google Scholar 

  93. Dai, C. H., Liu, Y. Q. & Wei, D. C. Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122, 10319–10392 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, W. et al. Spread spectrum SERS allows label-free detection of attomolar neurotransmitters. Nat. Commun. 12, 1–10 (2021).

    Google Scholar 

  95. Park, H. J., Cho, S., Kim, M. & Jung, Y. S. Carboxylic acid-functionalized, graphitic layer-coated three-dimensional SERS substrate for label-free analysis of Alzheimer’s disease biomarkers. Nano Lett. 20, 2576–2584 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, J.-A. et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 10, 5321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Guselnikova, O. et al. SERS platform for detection of lipids and disease markers prepared using modification of plasmonic-active gold gratings by lipophilic moieties. Sens. Actuators, B 265, 182–192 (2018).

    Article  CAS  Google Scholar 

  98. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ding, S. Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  CAS  Google Scholar 

  100. Chai, J., Wang, D., Fan, X. N. & Buriak, J. M. Assembly of aligned linear metallic patterns on silicon. Nat. Nanotechnol. 2, 500–506 (2007).

    Article  PubMed  Google Scholar 

  101. Jeong, J. W. et al. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv. Mater. 28, 8695–8704 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Shin, D. O. et al. A plasmonic biosensor array by block copolymer lithography. J. Mater. Chem. 20, 7241–7247 (2010).

    Article  CAS  Google Scholar 

  103. Lee, S. Y. et al. Freestanding and arrayed nanoporous microcylinders for highly active 3D SERS substrate. Chem. Mater. 25, 2421–2426 (2013).

    Article  CAS  Google Scholar 

  104. Guerrero-Ibáñez, J., Zeadally, S. & Contreras-Castillo, J. Sensor technologies for intelligent transportation systems. Sensors 18, 1212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Karim, A. & Andersson, J. Y. Infrared detectors: advances, challenges and new technologies. IOP Conf. Ser. Mater. Sci. Eng. 51, 012001 (2013).

    Article  CAS  Google Scholar 

  107. Son, J. G. et al. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv. Mater. 25, 4723–4728 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Park, H. et al. Nano-patterning on multilayer MoS2 via block copolymer lithography for highly sensitive and responsive phototransistors. Commun. Mater. 2, 94 (2021).

    Article  CAS  Google Scholar 

  109. Kim, U. J. et al. Plasmon-assisted designable multi-resonance photodetection by graphene via nanopatterning of block copolymer. ACS Photonics 2, 506–514 (2015).

    Article  CAS  Google Scholar 

  110. Sparks, P. The Route to a Trillion Devices. White Paper (ARM, 2017).

  111. Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).

    Article  CAS  Google Scholar 

  112. Crossland, E. J. W. et al. A bicontinuous double gyroid hybrid solar cell. Nano Lett. 9, 2807–2812 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Mitchell, V. D. & Jones, D. J. Advances toward the effective use of block copolymers as organic photovoltaic active layers. Polym. Chem. 9, 795–814 (2018).

    Article  CAS  Google Scholar 

  114. Hu, Y. Y., Wang, J. Y., Yan, C. Q. & Cheng, P. The multifaceted potential applications of organic photovoltaics. Nat. Rev. Mater. 7, 836–838 (2022).

    Article  CAS  Google Scholar 

  115. Liao, H. C. et al. Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16, 326–336 (2013).

    Article  CAS  Google Scholar 

  116. Kim, T., Choi, J., Kim, H. J., Lee, W. & Kim, B. J. Comparative study of thermal stability, morphology, and performance of all-polymer, fullerene–polymer, and ternary blend solar cells based on the same polymer donor. Macromolecules 50, 6861–6871 (2017).

    Article  CAS  Google Scholar 

  117. Wu, Y. et al. Non-fullerene acceptor doped block copolymer for efficient and stable organic solar cells. ACS Energy Lett. 7, 2196–2202 (2022).

    Article  CAS  Google Scholar 

  118. Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  CAS  Google Scholar 

  119. Seo, M.-S. et al. Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale 8, 11472–11479 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Wu, W. Z. & Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016).

    Article  CAS  Google Scholar 

  121. Xu, C., Song, Y., Han, M. D. & Zhang, H. X. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 7, 25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cao, X. et al. Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nano-Micro Lett. 15, 14 (2023).

    Article  CAS  Google Scholar 

  123. Jeong, C. K. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14, 7031–7038 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Oh, J. et al. Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy 35, 26–35 (2017).

    Article  CAS  Google Scholar 

  125. Oh, J., Kim, Y., Chung, S., Kim, H. & Son, J. G. Fabrication of a MoS2/graphene nanoribbon heterojunction network for improved thermoelectric properties. Adv. Mater. Interfaces 6, 1901333 (2019).

    Article  CAS  Google Scholar 

  126. Tang, J. Y. et al. Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Tambo, N. et al. Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure. Sci. Adv. 6, eabc0075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, C. et al. Enhanced reduction of thermal conductivity in amorphous silicon nitride-containing phononic crystals fabricated using directed self-assembly of block copolymers. ACS Nano 14, 6980–6989 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Chandel, R., Singh Chandel, S., Prasad, D. & Prakash Dwivedi, R. Review on thermoelectric systems for enhancing photovoltaic power generation. Sustain. Energy Technol. Assess. 53, 102585 (2022).

    Google Scholar 

  130. Kabanov, A. & Kramar, V. Marine Internet of Things platforms for interoperability of marine robotic agents: an overview of concepts and architectures. J. Mar. Sci. Eng. 10, 1279 (2022).

    Article  Google Scholar 

  131. Zhang, Z., Wen, L. P. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639 (2021).

    Article  CAS  Google Scholar 

  132. Li, C. et al. Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 7, eabg2183 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Z. et al. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 28, 144–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Lin, X. et al. Heterogeneous MXene/PS‐b‐P2VP nanofluidic membranes with controllable ion transport for osmotic energy conversion. Adv. Funct. Mater. 31, 2105013 (2021).

    Article  CAS  Google Scholar 

  135. Zhang, Z. et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 139, 8905–8914 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, H. W., Lee, J. H., Lin, B. Y., Chen, S. & Wu, S. T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  CAS  Google Scholar 

  138. Mapas, J. K. D., Thomay, T., Cartwright, A. N., Ilavsky, J. & Rzayev, J. Ultrahigh molecular weight linear block copolymers: rapid access by reversible-deactivation radical polymerization and self-assembly into large domain nanostructures. Macromolecules 49, 3733–3738 (2016).

    Article  CAS  Google Scholar 

  139. Kim, T. et al. Self-powered finger motion-sensing structural color display enabled by block copolymer photonic crystal. Nano Energy 92, 106688 (2022).

    Article  CAS  Google Scholar 

  140. Park, T. H. et al. Block copolymer structural color strain sensor. NPG Asia Mater. 10, 328–339 (2018).

    Article  CAS  Google Scholar 

  141. Zhang, R., Qiang, Z. & Wang, M. Integration of polymer synthesis and self-assembly for controlled periodicity and photonic properties. Adv. Funct. Mater. 31, 2005819 (2021).

    Article  CAS  Google Scholar 

  142. Kim, E. et al. Directed assembly of high molecular weight block copolymers: highly ordered line patterns of perpendicularly oriented lamellae with large periods. ACS Nano 7, 1952–1960 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Kulkarni, A. A. & Doerk, G. S. Hierarchical, self-assembled metasurfaces via exposure-controlled reflow of block copolymer-derived nanopatterns. ACS Appl. Mater. Interfaces 14, 27466–27475 (2022).

    Article  CAS  Google Scholar 

  144. Liberman-Martin, A. L. et al. Application of bottlebrush block copolymers as photonic crystals. Macromol. Rapid Commun. 38, 1700058 (2017).

    Article  Google Scholar 

  145. Apsite, I., Salehi, S. & Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 122, 1349–1415 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Hines, L., Petersen, K., Lum, G. Z. & Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 29, 1603483 (2017).

    Article  Google Scholar 

  147. Min, J., Barpuzary, D., Ham, H., Kang, G. C. & Park, M. J. Charged block copolymers: from fundamentals to electromechanical applications. Acc. Chem. Res. 54, 4024–4035 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Kim, O., Kim, S. J. & Park, M. J. Low-voltage-driven soft actuators. Chem. Commun. 54, 4895–4904 (2018).

    Article  CAS  Google Scholar 

  149. Nguyen, V. H. et al. Electroactive artificial muscles based on functionally antagonistic core–shell polymer electrolyte derived from PS-b-PSS block copolymer. Adv. Sci. 6, 1801196 (2019).

    Article  Google Scholar 

  150. Agogino, A. K., SunSpiral, V. & Atkinson, D. Super Ball Bot — Structures for Planetary Landing and Exploration. NASA Technical Report (NASA, 2018).

  151. Kim, I. H. et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol. 17, 1198–1205 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cai, F., Yang, B., Yu, M., Zeng, S. & Yu, H. Photocontrollable liquid-crystalline block copolymers: design, photo-directed self-assembly and applications. J. Mater. Chem. C. 11, 3180–3196 (2023).

    Article  CAS  Google Scholar 

  153. Cai, F., Yang, B., Lv, X. D., Feng, W. & Yu, H. F. Mechanically mutable polymer enabled by light. Sci. Adv. 8, eabo11626 (2022).

    Article  Google Scholar 

  154. Ma, S., Li, X., Huang, S., Hu, J. & Yu, H. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface. Angew. Chem. Int. Ed. Engl. 58, 2655–2659 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Li, Y. et al. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX 3, 29 (2022).

    Article  Google Scholar 

  156. Li, Z. Y. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen, W. T., Zhu, A. D. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article  Google Scholar 

  158. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11, 1991 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim, R. et al. Metal nanoparticle array as a tunable refractive index material over broad visible and infrared wavelengths. ACS Photonics 5, 1188–1195 (2018).

    Article  CAS  Google Scholar 

  162. Raut, H. K., Ganesh, V. A., Nair, A. S. & Ramakrishna, S. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci. 4, 3779–3804 (2011).

    Article  CAS  Google Scholar 

  163. Neuman, B. C. & Tso, T. Kerberos: an authentication service for computer networks. IEEE Commun. Mag. 32, 33–38 (1994).

    Article  Google Scholar 

  164. Ling, Z. et al. Security vulnerabilities of Internet of Things: a case study of the smart plug system. IEEE Internet Things J. 4, 1899–1909 (2017).

    Article  Google Scholar 

  165. Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S. & Mustaqim, M. Internet of Things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access. 8, 23022–23040 (2020).

    Article  Google Scholar 

  166. Karie, N. M., Sahri, N. M., Yang, W. C., Valli, C. & Kebande, V. R. A review of security standards and frameworks for IoT-based smart environments. IEEE Access. 9, 121975–121995 (2021).

    Article  Google Scholar 

  167. Gao, Y. S., Al-Sarawi, S. F. & Abbott, D. Physical unclonable functions. Nat. Electron. 3, 81–91 (2020).

    Article  Google Scholar 

  168. Arppe, R. & Sorensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 1, 0031 (2017).

    Article  CAS  Google Scholar 

  169. Pappu, R., Recht, R., Taylor, J. & Gershenfeld, N. Physical one-way functions. Science 297, 2026–2030 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Gu, Y. Q. et al. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Nat. Commun. 11, 516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Devadas, S. et al. Design and implementation of PUF-based ‘unclonable’ RFID ICs for anti-counterfeiting and security applications. 2008 IEEE Int. Conf. RFID 10.1109/RFID.2008.4519377 (2008).

  172. Bae, H. J. et al. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv. Mater. 27, 2083–2089 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Tang, Z. L. et al. Unclonable anti-counterfeiting labels based on plasmonic-patterned manostructures. Adv. Eng. Mater. 24, 2101701 (2022).

    Article  MathSciNet  CAS  Google Scholar 

  174. Ji, S. X., Wan, L., Liu, C. C. & Nealey, P. F. Directed self-assembly of block copolymers on chemical patterns: a platform for nanofabrication. Prog. Polym. Sci. 54-55, 76–127 (2016).

    Article  CAS  Google Scholar 

  175. Yi, H. et al. Flexible control of block copolymer directed self-assembly using small, topographical templates: potential lithography solution for integrated circuit contact hole patterning. Adv. Mater. 24, 3107–3114 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Chang, J.-B. et al. Design rules for self-assembled block copolymer patterns using tiled templates. Nat. Commun. 5, 3305 (2014).

    Article  PubMed  Google Scholar 

  177. Stein, A., Wright, G., Yager, K. G., Doerk, G. S. & Black, C. T. Selective directed self-assembly of coexisting morphologies using block copolymer blends. Nat. Commun. 7, 12366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cha, S. K. et al. Nanopatterns with a square symmetry from an orthogonal lamellar assembly of block copolymers. ACS Appl. Mater. Interfaces 11, 20265–20271 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Tavakkoli KG, A. et al. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 336, 1294–1298 (2012).

    Article  CAS  Google Scholar 

  180. Yang, G. G. et al. Conformal 3D nanopatterning by block copolymer lithography with vapor-phase deposited neutral adlayer. ACS Nano 13, 13092–13099 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Jin, H. M. et al. Flash light millisecond self-assembly of high χ block copolymers for wafer-scale sub-10 nm nanopatterning. Adv. Mater. 29, 1700595 (2017).

    Article  Google Scholar 

  182. Majewski, P. W. & Yager, K. G. Millisecond ordering of block copolymer films via photothermal gradients. ACS Nano 9, 3896–3906 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Jacobs, A. G., Jung, B. K., Jiang, J., Ober, C. K. & Thompson, M. O. Control of polystyrene-block-poly(methyl methacrylate) directed self-assembly by laser-induced millisecond thermal annealing. J. Micro/Nanolithogr. MEMS MOEMS 14, 031205 (2015).

    Article  Google Scholar 

  184. Singer, J. P. et al. Alignment and reordering of a block copolymer by solvent-enhanced thermal laser direct write. Polymer 55, 1875–1882 (2014).

    Article  CAS  Google Scholar 

  185. Bates, C. M. & Bates, F. S. 50th anniversary perspective: block polymers — pure potential. Macromolecules 50, 3–22 (2017).

    Article  CAS  Google Scholar 

  186. Angelescu, D. E. et al. Macroscopic orientation of block copolymer cylinders in single‐layer films by shearing. Adv. Mater. 16, 1736–1740 (2004).

    Article  CAS  Google Scholar 

  187. Blinder, P. et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Aledhari, M., Razzak, R., Qolomany, B., Al-Fuqaha, A. & Saeed, F. Biomedical IoT: enabling technologies, architectural elements, challenges, and future directions. IEEE Access. 10, 31306–31339 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Rejeb, A. et al. The Internet of Things (IoT) in healthcare: taking stock and moving forward. Internet Things 22, 100721 (2023).

    Article  Google Scholar 

  191. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Konwar, G., Saxena, P., Rahi, S. & Tiwari, S. P. Edible dielectric composite for the enhancement of performance and electromechanical stability of eco-friendly flexible organic transistors. ACS Appl. Electron. Mater. 4, 5055–5064 (2022).

    Article  CAS  Google Scholar 

  193. Chiu, Y. C., Otsuka, I., Halila, S., Borsali, R. & Chen, W. C. High-performance nonvolatile transistor memories of pentacence using the green electrets of sugar-based block copolymers and their supramolecules. Adv. Funct. Mater. 24, 4240–4249 (2014).

    Article  CAS  Google Scholar 

  194. Cao, Y. & Uhrich, K. E. Biodegradable and biocompatible polymers for electronic applications: a review. J. Bioact. Compat. Polym. 34, 3–15 (2019).

    Article  CAS  Google Scholar 

  195. Soto, F., Wang, J., Ahmed, R. & Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 7, 2002203 (2020).

    Article  CAS  Google Scholar 

  196. Onses, M. S. et al. Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nat. Nanotechnol. 8, 667–675 (2013). This paper showed the possiblity of using 3D printing to fabricate BCP self-assembled structures.

    Article  CAS  PubMed  Google Scholar 

  197. Xie, R. et al. Room temperature 3D printing of super-soft and solvent-free elastomers. Sci. Adv. 6, eabc6900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Weidinger, B. et al. 3D printing hierarchically nano‐ordered structures. Adv. Sci. 10, e2302756 (2023).

    Article  Google Scholar 

  199. Zhou, N. et al. Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 5, eaav8141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Creative Research Initiative (CRI) Center for Multi-Dimensional Directed Nanoscale Assembly (2015R1A3A2033061) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science.

Author information

Authors and Affiliations

Authors

Contributions

G.G.Y. and H.J.C. researched data for the article. G.G.Y., H.J.C., S.L., J.H.K., K.K., H.M.J., B.H.K. and S.O.K. wrote the article. S.O.K. initiated and supervised the entire project. All authors contributed substantially to the discussion of content and edited the manuscript before submission.

Corresponding authors

Correspondence to Bong Hoon Kim or Sang Ouk Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Haifeng Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G.G., Choi, H.J., Li, S. et al. Intelligent block copolymer self-assembly towards IoT hardware components. Nat Rev Electr Eng 1, 124–138 (2024). https://doi.org/10.1038/s44287-024-00017-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00017-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing