Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Germanium-telluride-based thermoelectrics

Abstract

Germanium telluride (GeTe)-based compounds have drawn attention as one of the most promising thermoelectrics for mid-to-high-temperature applications such as heat recovery from automotive exhaust emissions and radioisotope thermoelectric generators. The thermoelectric performance of GeTe-based materials can be improved by general methods such as band engineering and phonon engineering. However, further progress has been made to optimize thermoelectric performance using targeted strategies that take advantage of the structural properties of GeTe. We consider the targeted phase, defect and entropy engineering strategies used to optimize the electrical and thermal properties of GeTe-based materials. We also showcase the potential of GeTe-based materials for practical thermoelectric applications. Finally, we discuss the existing challenges and prospects for GeTe thermoelectrics and their modules in future research.

Key points

  • GeTe thermoelectrics exhibit high thermoelectric performance, which can be further enhanced through targeted methods driven by a deeper understanding of their atomic structure.

  • Phase engineering of GeTe can leverage the high Seebeck coefficient and low lattice thermal conductivity of the near-cubic phase to increase thermoelectric efficiencies.

  • Quantum gaps formed by Ge vacancies in GeTe can decouple carrier and phonon transport, which improves thermoelectric performance.

  • Entropy engineering in GeTe, capable of simultaneously augmenting the power factor and lowering the lattice thermal conductivity, can lead to improved thermoelectric performance in GeTe-based materials.

  • GeTe-based thermoelectric modules have reached an efficiency of more than 13%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The average figure of merit of the mid-to-high-temperature thermoelectrics and the theoretical thermoelectric-conversion efficiency.
Fig. 2: Phase transition of GeTe and its influence on the Seebeck coefficient and lattice thermal conductivity.
Fig. 3: Quantum gap engineering in GeTe-based materials.
Fig. 4: Physical mechanisms of GeTe-based high entropy alloys.
Fig. 5: Working modules of GeTe materials.

Similar content being viewed by others

References

  1. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  PubMed  Google Scholar 

  2. Nolas, G. S., Poon, J. & Kanatzidis, M. Recent developments in bulk thermoelectric materials. MRS Bull. 31, 199–205 (2006).

    Article  CAS  Google Scholar 

  3. Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Edn Engl. 48, 8616–8639 (2009).

    Article  CAS  Google Scholar 

  4. Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Pichanusakorn, P. & Bandaru, P. Nanostructured thermoelectrics. Mater. Sci. Eng. R 67, 19–63 (2010).

    Article  Google Scholar 

  6. Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147–5162 (2012).

    Article  Google Scholar 

  7. Mehdizadeh Dehkordi, A., Zebarjadi, M., He, J. & Tritt, T. M. Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R 97, 1–22 (2015).

    Article  Google Scholar 

  8. Zeier, W. G. et al. Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Edn Engl. 55, 6826–6841 (2016).

    Article  CAS  Google Scholar 

  9. Mao, J. et al. Advances in thermoelectrics. Adv. Phys. 67, 69–147 (2018).

    Article  ADS  Google Scholar 

  10. Jiang, M. et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds. Natl Sci. Rev. 10, nwad095 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu, S. J., Sun, Y. C., Xia, Q. C., Gai, X. T. & Yang, C. J. Improving the efficiency and pressure resistance of inorganic sealant-filled thermoelectric module. J. Electron. Mater. 52, 5000–5012 (2023).

    Article  CAS  ADS  Google Scholar 

  12. Song, K., Yin, D. S. & Schiavone, P. Conversion efficiency and effective properties of particulate-reinforced thermoelectric composites. Z. Angew. Math. Phys. 71, 54 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  13. Karbaschi, H., Nouri, N., Rezaei, M. & Rashedi, G. Thermoelectric power generation efficiency of zigzag monolayer nanoribbon of bismuth. Nanotechnology 31, 375403 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Shtern, M. Y. Current trends in improving the efficiency of thermoelectric generators. In Proc. 2019 IEEE Conf. Russian Young Researchers In Electrical and Electronic Engineering (EIConRus) 1914–1919 (IEEE, 2019).

  15. Zhu, Q., Song, S. W., Zhu, H. T. & Ren, Z. F. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials. J. Power Sources 414, 393–400 (2019).

    Article  CAS  ADS  Google Scholar 

  16. Liu, W., Bai, L. & Wang, Y. H. Thermodynamic efficiency of mesoscopic thermoelectric generators with broken time-reversal symmetry: insights from an ecological optimization. Mod. Phys. Lett. B 34, https://doi.org/10.1142/S0217984920502620 (2020).

  17. Rogolino, P. & Cimmelli, V. A. Thermal conductivity and enhanced thermoelectric efficiency of composition-graded SicGe1-c alloys. Z. Angew. Math. Phys. 71, https://doi.org/10.1007/s00033-020-01311-x (2020).

  18. Lee, M. Y., Seo, J. H., Lee, H. S. & Garud, K. S. Power generation, efficiency and thermal stress of thermoelectric module with leg geometry, material, segmentation and two-stage arrangement. Symmetry 12, https://doi.org/10.3390/sym12050786 (2020).

  19. Li, W. J. et al. Toward high conversion efficiency of thermoelectric modules through synergistical optimization of layered materials. Adv. Mater. 35, e2210407 (2023).

    Article  PubMed  Google Scholar 

  20. Zhang, D. et al. High thermoelectric performance in earth-abundant Cu3SbS4 by promoting doping efficiency via rational vacancy design. Adv. Funct. Mater. 33, https://doi.org/10.1002/adfm.202214163 (2023).

  21. Nazri, N. S. et al. Electrical efficiency enhancement of thermal-thermoelectric photovoltaic hybrid solar system (PVT-TE) by thermoelectric effect. Sains Malaysiana 51, 4111–4124 (2022).

    Article  CAS  Google Scholar 

  22. Song, K. et al. Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium. Energy 239, 122440 (2022).

    Article  Google Scholar 

  23. Olivares-Robles, M. A., Badillo-Ruiz, C. A. & Ruiz-Ortega, P. E. Iso efficiency in nanostructured thermoelectric materials. Energy Convers. Manag. 266, 115857 (2022).

    Article  CAS  Google Scholar 

  24. Lee, N. et al. Method for predicting thermoelectric module efficiency using MATLAB/Simulink. Kor. J. Met. Mater. 59, 829–837 (2021).

    Article  CAS  Google Scholar 

  25. Inoue, H., Kato, M., Udono, H. & Kobayashi, T. Power generation efficiency of thermoelectric elements with a trapezoidal section. J. Electron. Mater. 50, 346–351 (2021).

    Article  CAS  ADS  Google Scholar 

  26. Cui, C. F. et al. Bayesian optimization-based design of defect gamma-graphyne nanoribbons with high thermoelectric conversion efficiency. Carbon 176, 52–60 (2021).

    Article  CAS  Google Scholar 

  27. He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).

    Article  PubMed  Google Scholar 

  28. Zhu, T. et al. Compromise and synergy in high‐efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017).

    Article  Google Scholar 

  29. Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Xiao, Y. & Zhao, L.-D. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quant. Mater. 3, 55 (2018).

    Article  ADS  Google Scholar 

  31. Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J.-P. & Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003).

    Article  CAS  Google Scholar 

  32. Li, M. et al. Ultrahigh figure-of-merit of Cu2Se incorporated with carbon coated boron nanoparticles. Infomat 1, 108–115 (2019).

    Article  CAS  ADS  Google Scholar 

  33. Huang, Z. Y. et al. Achieving high thermoelectric performance of Ni/Cu modified Bi0.5Sb1.5Te3 composites by a facile electroless plating. Mater. Today Energy 9, 383–390 (2018).

    Article  Google Scholar 

  34. Peng, K. L. et al. Ultra-high average figure of merit in synergistic band engineered SnxNa1-xSe0.9S0.1 single crystals. Mater. Today 21, 501–507 (2018).

    Article  CAS  Google Scholar 

  35. Luo, Z. Z. et al. Valence disproportionation of GeS in the PbS matrix forms Pb5Ge5S12 inclusions with conduction band alignment leading to high n-type thermoelectric performance. J. Am. Chem. Soc. 144, 7402–7413 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Gu, J. M., Han, D., Zheng, M. R., Si, Z. T. & Chen, J. J. Design and experiments of a thermoelectric generator coupled to a gas cooker with energy storage module and thermosyphon cooling system. Energy Sources A https://doi.org/10.1080/15567036.2020.1745960 (2020).

  37. Uysal, F. et al. Estimating Seebeck coefficient of a p-type high temperature thermoelectric material using bee algorithm multi-layer perception. J. Electron. Mater. 46, 4931–4938 (2017).

    Article  CAS  ADS  Google Scholar 

  38. Tani, J. I. & Ishikawa, H. Thermoelectric properties of La- and Sc-doped Mg3Sb2 synthesized via pulsed electric current sintering. J. Mater. Sci. Electron. 31, 7724–7730 (2020).

    Article  CAS  Google Scholar 

  39. Liu, Z. Y., Yang, T., Wang, Y. G., Xia, A. L. & Ma, L. B. Energy band and charge-carrier engineering in skutterudite thermoelectric materials. Chin. Phys. B 31, https://doi.org/10.1088/1674-1056/ac6ee8 (2022).

  40. Tan, X. J. et al. Improving thermoelectric performance of α-MgAgSb by theoretical band engineering design. Adv. Energy Mater. 7, https://doi.org/10.1002/aenm.201700076 (2017).

  41. Xi, L. L., Yang, J., Wu, L. H., Yang, J. H. & Zhang, W. Q. Band engineering and rational design of high-performance thermoelectric materials by first-principles. J. Mater. 2, 114–130 (2016).

    Google Scholar 

  42. Khan, J. et al. High performance thermoelectric materials based on metal organic coordination polymers through first-principles band engineering. J. Comput. Chem. 39, 2582–2588 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, K. H., Kim, S. I., Kim, H. S. & Kim, S. W. Band convergence in thermoelectric materials: theoretical background and consideration on Bi-Sb-Te Alloys. ACS Appl. Energy Mater. 3, 2214–2223 (2020).

    Article  CAS  Google Scholar 

  44. Xin, N., Li, Y. F., Shen, H., Shen, L. Y. & Tang, G. H. Realizing high thermoelectric performance in hot-pressed polycrystalline AlxSn1-xSe through band engineering tuning. J. Mater. 8, 475–488 (2022).

    Google Scholar 

  45. Xiao, Y. et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci. 11, 2486–2495 (2018).

    Article  CAS  Google Scholar 

  46. König, J. D. et al. Titanium forms a resonant level in the conduction band of PbTe. Phys. Rev. B 84, 205126 (2011).

    Article  ADS  Google Scholar 

  47. Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Zhu, T. J., Hu, L. P., Zhao, X. B. & He, J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv. Sci. 3, 1600004 (2016).

    Article  Google Scholar 

  49. Zhang, Q. et al. Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering. Chem. Asian J. 15, 2775–2792 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, Y. F., Zhou, M. H. & He, J. Towards higher thermoelectric performance of Bi2Te3 via defect engineering. Scr. Mater. 111, 39–43 (2016).

    Article  CAS  ADS  Google Scholar 

  51. Zheng, Y. et al. Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. 50, 9022–9054 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Kim, W., Lee, W., Lee, S. M., Kim, D. & Park, J. Enhanced thermoelectric performance of defect engineered monolayer graphene. Nanotechnology 33, https://doi.org/10.1088/1361-6528/ac4aa6 (2022).

  53. Sun, Y. X. et al. Defects engineering driven high power factor of ZrNiSn-based half-Heusler thermoelectric materials. Chem. Phys. Lett. 755, 137770 (2020).

    Article  CAS  Google Scholar 

  54. Lee, K. H. & Kim, S. W. Design and preparation of high-performance bulk thermoelectric materials with defect structures. J. Kor. Ceram. Soc. 54, 75–85 (2017).

    Article  CAS  Google Scholar 

  55. Anno, Y., Imakita, Y., Takei, K., Akita, S. & Arie, T. Enhancement of graphene thermoelectric performance through defect engineering. 2D Mater 4, 025019 (2017).

    Article  Google Scholar 

  56. Guelou, G. et al. A scalable synthesis route for multiscale defect engineering in the sustainable thermoelectric quaternary sulfide Cu26V2Sn6S32. Acta Mater. 195, 229–239 (2020).

    Article  CAS  ADS  Google Scholar 

  57. Zhang, Y. M. et al. Enhanced thermoelectric performance of ternary compound Cu3PSe4 by defect engineering. Rare Met. 39, 1256–1261 (2020).

    Article  CAS  Google Scholar 

  58. He, J., Kanatzidis, M. G. & Dravid, V. P. High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 16, 166–176 (2013).

    Article  CAS  Google Scholar 

  59. Yu, Y. et al. Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics. Nat. Commun. 13, 5612 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Jiang, B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Lyu, W. Y. et al. The effect of rare earth element doping on thermoelectric properties of GeTe. Chem. Eng. J. 446, 137278 (2022).

    Article  CAS  Google Scholar 

  62. Zhang, X. et al. GeTe thermoelectrics. Joule 4, 986–1003 (2020).

    Article  CAS  Google Scholar 

  63. Liu, W. D. et al. High-performance GeTe-based thermoelectrics: from materials to devices. Adv. Energy Mater. 10, 2000367 (2020).

    Article  CAS  Google Scholar 

  64. Gayner, C. & Kar, K. K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382 (2016).

    Article  CAS  Google Scholar 

  65. Beretta, D. et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R 138, 210–255 (2019).

    Article  Google Scholar 

  66. Shi, X., Zou, J. & Chen, Z. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  CAS  ADS  Google Scholar 

  68. Yan, Q. & Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Yu, Y., Wu, H. & He, J. Synergistic strategies to boost lead telluride as prospective thermoelectrics. In Thin Film and Flexible Thermoelectric Generators, Devices and Sensors (eds Skipidarov, S. & Nikitin, M.) 155–189 (Springer, 2021).

  71. Wang, J. et al. Synergy of valence band modulation and grain boundary engineering leading to improved thermoelectric performance in SnTe. ACS Appl. Energy Mater. 4, 14608–14617 (2021).

    Article  CAS  Google Scholar 

  72. Xu, X. et al. Enhanced thermoelectric performance achieved in SnTe via the synergy of valence band regulation and Fermi level modulation. ACS Appl. Mater. Interf. 13, 50037–50045 (2021).

    Article  CAS  Google Scholar 

  73. Liu, S. et al. Coherent Sb/CuTe core/shell nanostructure with large strain contrast boosting the thermoelectric performance of n‐type PbTe. Adv. Funct. Mater. 31, 2007340 (2021).

    Article  CAS  Google Scholar 

  74. Fu, L. et al. Achieving a fine balance between the strong mechanical and high thermoelectric properties of n-type PbTe–3% Sb materials by alloying with PbS. J. Mater. Chem. A 7, 6304–6311 (2019).

    Article  CAS  Google Scholar 

  75. Qi, X. et al. Enhanced thermoelectric performance in GeTe-Sb2Te3 pseudo-binary via lattice symmetry regulation and microstructure stabilization. Mater. Today Phys. 21, 100507 (2021).

    Article  CAS  Google Scholar 

  76. Liu, S. et al. Strained endotaxial PbS nanoprecipitates boosting ultrahigh thermoelectric quality factor in n‐type PbTe as‐cast ingots. Small 17, 2104496 (2021).

    Article  CAS  Google Scholar 

  77. Fu, C. et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 4–10 (2015).

    Article  Google Scholar 

  78. Xia, K. et al. Short-range order in defective half-Heusler thermoelectric crystals. Energy Environ. Sci. 12, 1568–1574 (2019).

    Article  CAS  Google Scholar 

  79. Liu, C. et al. Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials. Sci. Adv. 9, eadh0713 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Xu, X. et al. Microstructural manipulation for enhanced average thermoelectric performance: a case study of tin telluride. ACS Appl. Mater. Interf. 15, 9656–9664 (2023).

    Article  CAS  Google Scholar 

  81. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Wu, H. J. et al. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  83. Hu, L., Zhu, T., Liu, X. & Zhao, X. Point defect engineering of high‐performance bismuth‐telluride‐based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014).

    Article  CAS  Google Scholar 

  84. Nshimyimana, E. et al. Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. J. Mater. Chem. A 8, 1193–1204 (2020).

    Article  CAS  Google Scholar 

  85. Hong, M. et al. Realizing zT of 2.3 in Ge1−x−ySbxInyTe via reducing the phase‐transition temperature and introducing resonant energy doping. Adv. Mater. 30, 1705942 (2018).

    Article  Google Scholar 

  86. Misra, S. et al. Band structure engineering in Sn1.03Te through an In-induced resonant level. J. Mater. Chem. C 8, 977–988 (2020).

    Article  CAS  Google Scholar 

  87. Perumal, S., Roychowdhury, S. & Biswas, K. High performance thermoelectric materials and devices based on GeTe. J. Mater. Chem. C. 4, 7520–7536 (2016).

    Article  CAS  Google Scholar 

  88. Zheng, Z. et al. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J. Am. Chem. Soc. 140, 2673–2686 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Wu, D., Xie, L., Xu, X. & He, J. High thermoelectric performance achieved in GeTe–Bi2Te3 pseudo‐binary via van der Waals gap‐induced hierarchical ferroelectric domain structure. Adv. Funct. Mater. 29, 1806613 (2019).

    Article  Google Scholar 

  90. Xu, X., Xie, L., Lou, Q., Wu, D. & He, J. Boosting the thermoelectric performance of pseudo-layered Sb2Te3(GeTe)n via vacancy engineering. Adv. Sci. 5, 1801514 (2018).

    Article  Google Scholar 

  91. Rabe, K. M. & Joannopoulos, J. D. Theory of the structural phase transition of GeTe. Phys. Rev. B 36, 6631–6639 (1987).

    Article  CAS  ADS  Google Scholar 

  92. Jeong, K. et al. Evolution of crystal structures in GeTe during phase transition. Sci. Rep. 7, 955 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  93. Bauer Pereira, P. et al. Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys. Status Solidi 250, 1300–1307 (2013).

    Article  CAS  Google Scholar 

  94. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  95. Sun, Z., Zhou, J. & Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 96, 055507 (2006).

    Article  PubMed  ADS  Google Scholar 

  96. Tran, X. Q. et al. Real-time observation of the thermally-induced phase transformation in GeTe and its thermal expansion properties. Acta Mater. 165, 327–335 (2019).

    Article  CAS  ADS  Google Scholar 

  97. Xing, T. et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 14, 995–1003 (2021).

    Article  CAS  Google Scholar 

  98. Liu, W. et al. High‐performance GeTe‐based thermoelectrics: from materials to devices. Adv. Energy Mater. 10, 2000367 (2020).

    Article  CAS  Google Scholar 

  99. Hong, M., Zou, J. & Chen, Z. G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv. Mater. 31, 1807071 (2019).

    Article  Google Scholar 

  100. Hong, M., Li, M., Wang, Y., Shi, X. L. & Chen, Z. G. Advances in versatile gete thermoelectrics from materials to devices. Adv. Mater. 35, e2208272 (2023).

    Article  PubMed  Google Scholar 

  101. Yu, Y., Xie, L., Pennycook, S. J., Bosman, M. & He, J. Strain-induced van der Waals gaps in GeTe revealed by in situ nanobeam diffraction. Sci. Adv. 8, 7690 (2022).

    Article  Google Scholar 

  102. Xu, X. et al. Highly tailored gap-like structure for excellent thermoelectric performance. Energy Environ. Sci. 15, 4058–4068 (2022).

    Article  CAS  Google Scholar 

  103. Xu, X. et al. Realizing improved thermoelectric performance in BiI3-doped Sb2Te3(GeTe)17 via introducing dual vacancy defects. Chem. Mater. 32, 1693–1701 (2020).

    Article  CAS  Google Scholar 

  104. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  105. Wu, D. et al. Realizing high figure of merit plateau in Ge1-xBixTe via enhanced Bi solution and Ge precipitation. J. Alloy. Compd. 805, 831–839 (2019).

    Article  CAS  Google Scholar 

  106. Zhang, X. et al. Perspective GeTe thermoelectrics. Joule 4, 986–1003 (2020).

    Article  CAS  Google Scholar 

  107. Bhat, D. K. & Shenoy, U. S. Resonance levels in GeTe thermoelectrics: zinc as a new multifaceted dopant. N. J. Chem. 44, 17664–17670 (2020).

    Article  Google Scholar 

  108. Qiu, Y. et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature: via entropy engineering. J. Mater. Chem. A 7, 26393–26401 (2019).

    Article  CAS  Google Scholar 

  109. Suwardi, A. et al. Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J. Mater. Chem. A 8, 18880–18890 (2020).

    Article  CAS  Google Scholar 

  110. Hong, M. et al. Realizing zT of 2.3 in Ge1−x−ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv. Mater. 30, https://doi.org/10.1002/adma.201705942 (2018).

  111. Zhang, Y. S. First-principles Debye–Callaway approach to lattice thermal conductivity. J. Mater. 2, 237–247 (2016).

    ADS  Google Scholar 

  112. Ma, H., Yang, C. L., Wang, M. S. & Ma, X. G. AgKTe: an intrinsic semiconductor material with high thermoelectric properties at room temperature. J. Alloy. Compd. 739, 35–40 (2018).

    Article  CAS  Google Scholar 

  113. Schrade, M. & Finstad, T. G. Using the Callaway model to deduce relevant phonon scattering processes: the importance of phonon dispersion. Phys. Status Solidi. 255, https://doi.org/10.1002/pssb.201800208 (2018).

  114. Yu, Y. et al. Ag-segregation to dislocations in PbTe-based thermoelectric materials. ACS Appl. Mater. Interf. 10, 3609–3615 (2018).

    Article  CAS  Google Scholar 

  115. Qader, I. N., Qadr, H. M. & Ali, P. H. Calculation of lattice thermal conductivity for Si fishbone nanowire using modified Callaway model. Semiconductors 55, 960–967 (2021).

    Article  CAS  ADS  Google Scholar 

  116. Lee, W. Y., Park, N. W., Yoon, S. G. & Lee, S. K. Analysis of thermal conductivity of antimony telluride thin films by modified Callaway and Sondheimer models. J. Nanosci. Nanotechnol. 16, 7567–7572 (2016).

    Article  CAS  Google Scholar 

  117. Zhang, X. et al. Enhanced thermoelectric properties of YbZn2Sb2-xBix through a synergistic effect via Bi-doping. Chem. Eng. J. 374, 589–595 (2019).

    Article  CAS  ADS  Google Scholar 

  118. Lee, K. H. et al. Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys. Mater. Today Energy 21, 100795 (2021).

    Article  CAS  Google Scholar 

  119. Callaway, J. & von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149 (1960).

    Article  CAS  ADS  Google Scholar 

  120. Chang, C. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778–783 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  122. Brown, D. R. et al. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. APL Mater. 1, 052107 (2013).

    Article  ADS  Google Scholar 

  123. Mi, W. et al. Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Appl. Phys. Lett. 104, 133903 (2014).

    Article  ADS  Google Scholar 

  124. Zhang, Z. Y. et al. Simultaneously enhanced strength and ductility of AlSi7Mg alloy fabricated by laser powder bed fusion with on-line static magnetic field. Virtual Phys. Prototyp. 18, e2161918 (2023).

    Article  Google Scholar 

  125. Jung, C. et al. Reduced lattice thermal conductivity through tailoring of the crystallization behavior of NbCoSn by V addition. J. Alloy. Compd. 962, 171191 (2023).

  126. Yang, X. et al. Nanostructured n-type polycrystalline SnSe materials for thermoelectric applications. ACS Appl. Nano Mater. 6, 11754–11763 (2023).

    Article  CAS  Google Scholar 

  127. Liu, Y. L. et al. Mg compensating design in the melting-sintering method for high-performance Mg3(Bi,Sb)2 thermoelectric devices. Small 19, e2303840 (2023).

    Article  PubMed  Google Scholar 

  128. Zhang, W. T. et al. Pressure induced bands convergence and strength enhancement in thermoelectric semiconductor β-InSe. J. Alloy. Compd. 947, 169687 (2023).

    Article  CAS  Google Scholar 

  129. Nehra, M. et al. Catalytic applications of phosphorene: computational design and experimental performance assessment. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2023.2224614 (2023).

  130. Shalini, V. et al. Investigating the effect of defect states and to enhance the electrical conductivity of p-type Vanadium-doped MoS2 for wearable thermoelectric application. J. Alloys Compd. 960, 170317 (2023).

    Article  CAS  Google Scholar 

  131. Han, G. Y. et al. Combinatorial screening via high-throughput preparation: thermoelectric performance optimization for n-type Bi-Te-Se film with high average ZT > 1. J. Mater. Sci. Technol. 160, 18–27 (2023).

    Article  Google Scholar 

  132. Xiao, Y. H. et al. Engineering Cu1.96S/Co9S8 with sulfur vacancy and heterostructure as an efficient bifunctional electrocatalyst for water splitting. J. Mater. Sci. Technol. 154, 1–8 (2023).

    Article  CAS  Google Scholar 

  133. Ma, X. et al. Identifying the point defects in single-crystalline Mg3Sb2. Chem. Mater. 35, 5640–5647 (2023).

    Article  CAS  Google Scholar 

  134. Lyu, W. Y. et al. Condensed point defects enhance thermoelectric performance of rare-earth Lu-doped GeTe. J. Mater. Sci. Technol. 151, 227–233 (2023).

    Article  Google Scholar 

  135. Lee, J. E. et al. Enhanced thermoelectric performance of SnSe by controlled vacancy population. Nano Converg. 10, 32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jin, Y., Ren, D., Qiu, Y. & Zhao, L. Electrical and thermal transport properties of Ge1–xPbxCuySbyTeSe2y. Adv. Funct. Mater. 33, https://doi.org/10.1002/adfm.202304512 (2023).

  137. Zhang, D. et al. Sb alloying for engineering high‐thermoelectric zT of CuGaTe2. Adv. Energy Sustain. Res. https://doi.org/10.1002/aesr.202300069 (2023).

    Article  Google Scholar 

  138. Biswas, K. et al. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Moghaddam, A. O., Fereidonnejad, R. & Cabot, A. Semi-ordered high entropy materials: the case of high entropy intermetallic compounds. J. Alloy. Compd. 960, 170802 (2023).

    Article  Google Scholar 

  140. Banko, L. et al. Microscale combinatorial libraries for the discovery of high-entropy materials. Adv. Mater. 35, e2207635 (2023).

    Article  PubMed  Google Scholar 

  141. Gaboardi, M. et al. Local structure in high-entropy transition metal diborides. Acta Mater 239, 118294 (2022).

    Article  CAS  Google Scholar 

  142. Li, Y. et al. Preliminary exploration of a WTaVTiCr high-entropy alloy as a plasma-facing material. Nucl. Fusion 62, https://doi.org/10.1088/1741-4326/ac8fa5 (2022).

  143. Dippo, O. F. & Vecchio, K. S. A universal configurational entropy metric for high-entropy materials. Scr. Mater. 201, 113974 (2021).

    Article  CAS  Google Scholar 

  144. Huang, Y., Yeh, J. W. & Yang, A. C. M. ‘High-entropy polymers’: a new route of polymer mixing with suppressed phase separation. Materialia 15, https://doi.org/10.2139/ssrn.3708726 (2021).

  145. Wang, Q. S., Velasco, L., Breitung, B. & Presser, V. High-entropy energy materials in the age of big data: a critical guide to next-generation synthesis and applications. Adv. Energy Mater. 11, 2102355 (2021).

    Article  CAS  Google Scholar 

  146. Qin, M. D. et al. High-entropy monoborides: towards superhard materials. Scr. Mater. 189, 101–105 (2020).

    Article  CAS  Google Scholar 

  147. Li, H. N. et al. Nano high-entropy materials: synthesis strategies and catalytic applications. Small Struct 1, 2000033 (2020).

    Article  Google Scholar 

  148. Chang, S. et al. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Mater. Lett. 272, 127832 (2020).

    Article  CAS  Google Scholar 

  149. Hsiao, Y. T., Tung, C. H., Lin, S. J., Yeh, J. W. & Chang, S. Y. Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: roles of enthalpy and mixing entropy. Acta Mater. 199, 107–115 (2020).

    Article  CAS  ADS  Google Scholar 

  150. Zhou, N. X. et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics. Sci. Bull. 64, 856–864 (2019).

    Article  CAS  Google Scholar 

  151. Tunes, M. A. et al. From high-entropy alloys to high-entropy ceramics: the radiation-resistant highly concentrated refractory carbide (CrNbTaTiW)C. ACTA Mater. 250, 118856 (2023).

    Article  CAS  Google Scholar 

  152. Zhang, F., Lou, H. B., Cheng, B. Y., Zeng, Z. D. & Zeng, Q. S. High-pressure induced phase transitions in high-entropy alloys: a review. Entropy 21, 239 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  153. Lu, Y. P. et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 35, 369–373 (2019).

    Article  CAS  ADS  Google Scholar 

  154. Krapivka, M. O., Myslyvchenko, O. M. & Karpets, M. V. Base alloy concept in the development of high-entropy materials. Powder Metall. Met. Ceram. 56, 589–598 (2018).

    Article  CAS  Google Scholar 

  155. Gao, M. C. et al. High-entropy functional materials. J. Mater. Res. 33, 3138–3155 (2018).

    Article  CAS  ADS  Google Scholar 

  156. Wu, C. S., Tsai, P. H., Kuo, C. M. & Tsai, C. W. Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys. Entropy 20, 967 (2018).

  157. Zhou, Y., Shen, X., Qian, T., Yan, C. & Lu, J. A review on the rational design and fabrication of nanosized high-entropy materials. Nano Res. 16, 7874–7905 (2023).

    Article  ADS  Google Scholar 

  158. Pan, Y. T., Liu, J. X., Tu, T. Z., Wang, W. Z. & Zhang, G. J. High-entropy oxides for catalysis: a diamond in the rough. Chem. Eng. J. 451, 138659 (2023).

  159. Nemani, S. K., Torkamanzadeh, M., Wyatt, B. C., Presser, V. & Anasori, B. Functional two-dimensional high-entropy materials. Commun. Mater. 4, https://doi.org/10.1038/s43246-023-00341-y (2023).

  160. Ying, T. P., Yu, T. X., Qi, Y. P., Chen, X. L. & Hosono, D. O. High entropy van der Waals materials. Adv. Sci. 9, https://doi.org/10.1002/advs.202203219 (2022).

  161. Lin, L. et al. High-entropy sulfides as electrode materials for Li-ion batteries. Adv. Energy Mater. 12, https://doi.org/10.1002/aenm.202103090 (2022).

  162. De Marco, M. L. et al. High-entropy-alloy nanocrystal based macro- and mesoporous materials. ACS Nano 16, 15837–15849 (2022).

    Article  PubMed  Google Scholar 

  163. Edalati, P. et al. High-entropy alloys as anode materials of nickel - metal hydride batteries. Scr. Mater. 209, 114387 (2022).

    Article  CAS  Google Scholar 

  164. Chang, C. & Kanatzidis, M. G. High-entropy thermoelectric materials emerging. Mater. Lab. 2, 220048 (2023).

  165. Mahmat, A. M., Koysal, Y., Yakut, Y., Atalay, T. & Ozbektas, S. Experimental and theoretical analysis of thermoelectric energy generating system collecting concentrated solar energy. Energy Sources A 44, 9184–9203 (2022).

    Article  CAS  Google Scholar 

  166. Liu, R. H. et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-35290-6 (2022).

  167. Tong, Y. F. et al. Enhanced thermoelectric properties of p-type Bi0.5Sb1.5Te3-Cu8GeSe6 composite materials. ACS Appl. Mater. Interf. 14, 55780–55786 (2022).

    Article  CAS  Google Scholar 

  168. Xia, Z. X. et al. Enhancement effect of the C60 derivative on the thermoelectric properties of n-type single-walled carbon nanotube-based films. ACS Appl. Mater. Interf. 14, 54969–54980 (2022).

    Article  CAS  Google Scholar 

  169. Ding, F. L. et al. Modeling the gradual RESET of phase change memory with confined geometry. IEEE Trans. Electron. Devices 69, 6662–6668 (2022).

    Article  CAS  ADS  Google Scholar 

  170. Bai, G. et al. Boron strengthened GeTe‐based alloys for robust thermoelectric devices with high output power density. Adv. Energy Mater. 11, 2102012 (2021).

    Article  CAS  Google Scholar 

  171. Vasil’ev, E. N. The effect of thermal resistances on the coefficient of performance of a thermoelectric cooling system. Tech. Phys. 66, 815–819 (2021).

    Article  Google Scholar 

  172. Jacob, S. et al. High-performance flexible thermoelectric modules based on high crystal quality printed TiS2/hexylamine. Sci. Technol. Adv. Mater. 22, 907–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhao, W. C., Hsu, S. N., Boudouris, B. W. & Dou, L. T. Two-dimensional organic semiconductor-incorporated perovskite (OSiP) electronics. ACS Appl. Electron. Mater. 3, 5155–5164 (2021).

    Article  Google Scholar 

  174. Qiu, J. H. et al. Enhancing the thermoelectric and mechanical properties of Bi0.5Sb1.5Te3 modulated by the texture and dense dislocation networks. ACS Appl. Mater. Interf. 13, 58974–58981 (2021).

    Article  CAS  Google Scholar 

  175. Basit, A. et al. Recent advances, challenges, and perspective of copper‐based liquid‐like thermoelectric chalcogenides: a review. EcoMat https://doi.org/10.1002/eom2.12391 (2023).

    Article  Google Scholar 

  176. Yusuf, A. et al. Experimental and theoretical investigation of the effect of filler material on the performance of flexible and rigid thermoelectric generators. ACS Appl. Mater. Interf. 13, 61275–61285 (2021).

    Article  CAS  Google Scholar 

  177. Wu, G. et al. Optimized thermoelectric properties of Bi0.48Sb1.52Te3 through AgCuTe doping for low-grade heat harvesting. ACS Appl. Mater. Interf. 13, 57514–57520 (2021).

    Article  CAS  Google Scholar 

  178. Yan, Z. P. et al. Effects of interfacial properties on conversion efficiency of Bi2Te3-based segmented thermoelectric devices. Appl. Phys. Lett. 119, 233902 (2021).

    Article  CAS  ADS  Google Scholar 

  179. Dadhich, A. et al. Physics and technology of thermoelectric materials and devices. J. Phys. D 56, 333001 (2023).

    Article  Google Scholar 

  180. Arıcıoğlu, A. K., Yakar, G. & Gürcan, A. Different-sized thermoelectric cooler modules operated by a thermoelectric generator system. Numer. Heat Transf. A https://doi.org/10.1080/10407782.2023.2235075 (2023).

  181. Wu, X. et al. Interface engineering boosting high power density and conversion efficiency in Mg2Sn0.75Ge0.25‐based thermoelectric devices. Adv. Energy Mater. https://doi.org/10.1002/aenm.202301350 (2023).

  182. You, J. X., Wang, D. D., Yan, Y. F., He, Z. Q. & Xue, Z. G. A novel two-stage thermophotovoltaic-thermoelectric system based on micro combustion. Appl. Therm. Eng. 232, 121018 (2023).

    Article  Google Scholar 

  183. Salah, N., Abdullahi, S., Baghdadi, N., Alshahrie, A. & Koumoto, K. High thermoelectric power generation below room temperature by TiS 2 compact pellet. ACS Appl. Electron. Mater. https://doi.org/10.1021/acsaelm.3c00442 (2023).

  184. Sok, R. et al. Thermoelectric generation from exhaust heat in electrified natural gas trucks: modeling and analysis of an integrated engine system performance improvement. J. Energy Resour. Technol. ASME 145, 071702 (2023).

    Article  CAS  Google Scholar 

  185. Quan, R., Wang, J. H. & Li, T. Compatibility optimization of a polyhedral-shape thermoelectric generator for automobile exhaust recovery considering backpressure effects. Heliyon 8, e12348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang, Q. H. et al. Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater. 18, 194–213 (2016).

    Article  CAS  ADS  Google Scholar 

  187. Jaziri, N., Boughamoura, A., Mueller, J., Mezghani, B. & Ismail, M. A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6, 264–287 (2019).

    Article  Google Scholar 

  188. Saber, H. H., El-Genk, M. S. & Caillat, T. Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manag. 48, 555–567 (2007).

    Article  CAS  Google Scholar 

  189. El-Genk, M. S., Saber, H. H., Caillat, T. & Sakamoto, J. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manag. 47, 174–200 (2006).

    Article  CAS  Google Scholar 

  190. Wang, H., McCarty, R., Salvador, J. R., Yamamoto, A. & König, J. Determination of thermoelectric module efficiency: a survey. J. Electron. Mater. 43, 2274–2286 (2014).

    Article  CAS  ADS  Google Scholar 

  191. Hu, X. et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci. 9, 517–529 (2016).

    Article  CAS  Google Scholar 

  192. Perumal, S. et al. Realization of high thermoelectric figure of merit in GeTe by complementary co-doping of Bi and In. Joule 3, 2565–2580 (2019).

    Article  CAS  Google Scholar 

  193. Zhang, Q. et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10, 956–963 (2017).

    Article  CAS  Google Scholar 

  194. Xing, Y. et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy Environ. Sci. 12, 3390–3399 (2019).

    Article  CAS  Google Scholar 

  195. Jiang, Y. et al. Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nat. Commun. 13, 6087 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  196. Samanta, M., Ghosh, T., Arora, R., Waghmare, U. V. & Biswas, K. Realization of both n- and p-type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying. J. Am. Chem. Soc. 141, 19505–19512 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Zhang, M. et al. Realizing n-type gete through suppressing the formation of cation vacancies and Bi-doping. Chinese Phys. Lett. 38, 127201 (2021).

    Article  CAS  ADS  Google Scholar 

  198. Xing, T. et al. Superior performance and high service stability for GeTe-based thermoelectric compounds. Natl Sci. Rev. 6, 944–954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pei, J., Cai, B., Zhuang, H.-L. & Li, J.-F. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. Natl Sci. Rev. 7, 1856–1858 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hu, C., Xia, K., Chen, X., Zhao, X. & Zhu, T. Transport mechanisms and property optimization of p-type (Zr, Hf)CoSb half-Heusler thermoelectric materials. Mater. Today Phys. 7, 69–76 (2018).

    Article  Google Scholar 

  201. Peng, S. et al. Enhanced thermoelectric and mechanical properties of p-type skutterudites with: in situ formed Fe3Si nanoprecipitate. Inorg. Chem. Front. 4, 1697–1703 (2017).

    Article  CAS  Google Scholar 

  202. Rogl, G. et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12-xXx (X = Ge, Sn) reaching ZT > 1.3. Acta Mater. 91, 227–238 (2015).

    Article  CAS  ADS  Google Scholar 

  203. Xu, X. et al. Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials. Energy Environ. Sci. 13, 5135–5142 (2020).

    Article  CAS  Google Scholar 

  204. Zhang, Q. et al. High‐performance thermoelectric material and module driven by medium‐entropy engineering in SnTe. Adv. Funct. Mater. 32, 2205458 (2022).

    Article  CAS  Google Scholar 

  205. Liu, Y. et al. Improved solubility in metavalently bonded solid leads to band alignment, ultralow thermal conductivity, and high thermoelectric performance in SnTe. Adv. Funct. Mater. 32, 2209980 (2022).

    Article  CAS  Google Scholar 

  206. Zhu, Y. et al. Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe. Energy Environ. Sci. 15, 3958–3967 (2022).

    Article  CAS  Google Scholar 

  207. Tan, G. et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 7, 12167 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  208. Liu, Z. et al. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc. Natl Acad. Sci. USA 115, 5332–5337 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  209. Li, J., Zhang, X., Lin, S., Chen, Z. & Pei, Y. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 29, 605–611 (2017).

    Article  CAS  ADS  Google Scholar 

  210. Dong, J. et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ. Sci. 12, 1396–1403 (2019).

    Article  CAS  Google Scholar 

  211. Samanta, M. & Biswas, K. Low thermal conductivity and high thermoelectric performance in (GeTe)1-2x(GeSe)x(GeS)x: competition between solid solution and phase separation. J. Am. Chem. Soc. 139, 9382–9391 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Jin, Y. et al. Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scr. Mater. 183, 22–27 (2020).

    Article  CAS  Google Scholar 

  213. Hong, M. et al. Rashba effect maximizes thermoelectric performance of GeTe derivatives. Joule 4, 2030–2043 (2020).

    Article  CAS  Google Scholar 

  214. Li, J. et al. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. J. Am. Chem. Soc. 140, 16190–16197 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Jeong, C., Kim, R., Luisier, M., Datta, S. & Lundstrom, M. On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 02370 (2010).

    Article  Google Scholar 

  216. Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    Article  CAS  ADS  Google Scholar 

  217. Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M. & Chen, G. Enhancing the thermoelectric power factor by using invisible dopants. Adv. Mater. 25, 1577–1582 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. Tian, Z., Lee, S. & Chen, G. Comprehensive review of heat transfer in thermoelectric materials and devices. Annu. Rev. Heat. Transf. 17, 425–483 (2014).

    Article  Google Scholar 

  219. Wu, H. et al. Advanced electron microscopy for thermoelectric materials. Nano Energy 13, 626–650 (2015).

    Article  CAS  Google Scholar 

  220. Shi, X., Chen, L. & Uher, C. Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 61, 379–415 (2016).

    Article  CAS  Google Scholar 

  221. Wu, H., Zhang, Y., Ning, S., Zhao, L.-D. & Pennycook, S. J. Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Mater. Horiz. 6, 1548–1570 (2019).

    Article  CAS  Google Scholar 

  222. Tan, G., Zhao, L.-D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Toberer, E. S., May, A. F. & Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2009).

    Article  Google Scholar 

  224. Franz, R. & Wiedemann, G. Ueber die Wärme‐Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853).

    Article  Google Scholar 

  225. Yu, I., Ravich, B. A. E. & Smirnov, I. A. Semiconducting Lead Chalcogenides. (1970).

  226. Kakani, S. L. Material Science (New Age, 2004).

  227. He, J. et al. Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials. Adv. Mater. 24, 4440–4444 (2012).

    Article  CAS  PubMed  Google Scholar 

  228. Hull, D. & Bacon, D. J. (eds) Introduction to Dislocations 5th edn (Elsevier, 2011).

  229. Pennycook, S. J. & Jesson, D. E. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991).

    Article  Google Scholar 

  230. Seki, T. et al. Quantitative electric field mapping in thin specimens using a segmented detector: revisiting the transfer function for differential phase contrast. Ultramicroscopy 182, 258–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Ozdol, V. B. et al. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl. Phys. Lett. 106, 253107 (2015).

    Article  ADS  Google Scholar 

  232. Xu, X. et al. Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nat. Mater. 19, 887–893 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  233. Formanek, P. & Bugiel, E. On specimen tilt for electron holography of semiconductor devices. Ultramicroscopy 106, 292–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. Latychevskaia, T., Formanek, P., Koch, C. T. & Lubk, A. Off-axis and inline electron holography: experimental comparison. Ultramicroscopy 110, 472–482 (2010).

    Article  CAS  Google Scholar 

  235. Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012).

    Article  CAS  Google Scholar 

  236. Toyama, S. et al. Quantitative electric field mapping of a p–n junction by DPC STEM. Ultramicroscopy 216, 113033 (2020).

    Article  CAS  PubMed  Google Scholar 

  237. Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 159, 124–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Saldin, D. K. & Spence, J. C. H. On the mean inner potential in high- and low-energy electron diffraction. Ultramicroscopy 55, 397–406 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 11934007), the Science and Technology Innovation Committee Foundation of Shenzhen (grant number JCYJ20200109141205978) and the Outstanding Talents Training Fund in Shenzhen (grant number 202108). We acknowledge support from the Singapore Ministry of Education via the Academic Research Fund (grant number MOE-T2EP50122-0016).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and X.X. researched data for this article. Y.Y. and X.X. wrote the article. J.H. reviewed and edited the manuscript before submission. Y.Y., X.X. and J.H. contributed substantially to the discussion of content. M.B. and K.N. offered advice on this article.

Corresponding author

Correspondence to Jiaqing He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xu, X., Bosman, M. et al. Germanium-telluride-based thermoelectrics. Nat Rev Electr Eng 1, 109–123 (2024). https://doi.org/10.1038/s44287-023-00013-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-023-00013-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing