Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liquid-metal transfer from an anode to a cathode without short circuiting

Abstract

Droplets of liquid metals attached to an anode in an electrochemical cell move toward the cathode since electrochemical oxidation lowers the interfacial tension of the metal. When the droplet reaches the cathode, it wraps around the cathode but does not touch it despite the electrostatic attraction between the positively charged liquid metal and the negatively charged cathode. The combination of electrochemical oxidation of the liquid-metal anode and hydrogen production on the cathode prevents contact, thus avoiding a short circuit between the two electrodes. Consequently, the liquid metal continues to flow toward the cathode and surrounds it until finally the metal completely detaches from the anode and transfers to the cathode. Such manipulation depends on the distance between the cathode and the liquid metal; only the closest liquid-metal droplet will detach and transfer. During this process, the liquid can adopt surprising shapes that resemble tentacles. We demonstrate and characterize the unique ability to detach and transfer liquid metal using a low applied voltage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and implementation for the selective detachment and transfer of LMDs.
Fig. 2: Experimental results and analysis for the selective detachment and transfer of one LMD and two LMDs.
Fig. 3: Underlying mechanism for the selective detachment and transfer of LMDs.
Fig. 4: Potential applications based on the selective detachment and transfer of LMDs.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Creton, C. Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434–439 (2003).

    Article  CAS  Google Scholar 

  2. Zhao, Y. et al. Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 22, 707–710 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Farhan, N. M. & Tafreshi, H. V. Using magnetic field to measure detachment force between a nonmagnetic droplet and fibers. Langmuir 35, 8490–8499 (2019).

    CAS  PubMed  Google Scholar 

  4. Dai, H. et al. Controllable high‐speed electrostatic manipulation of water droplets on a superhydrophobic surface. Adv. Mater. 31, 1905449 (2019).

    Article  CAS  Google Scholar 

  5. Roux, J. M., Fouillet, Y. & Achard, J. L. 3D droplet displacement in microfluidic systems by electrostatic actuation. Sens. Actuators A 134, 486–493 (2007).

    Article  CAS  Google Scholar 

  6. Serra, P. & Piqué, A. Laser‐induced forward transfer: fundamentals and applications. Adv. Mater. Technol. 4, 1800099 (2019).

    Article  Google Scholar 

  7. Visser, C. W. et al. Toward 3D printing of pure metals by laser‐induced forward transfer. Adv. Mater. 27, 4087–4092 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Article  Google Scholar 

  9. Ladd, C., So, J. H., Muth, J. & Dickey, M. D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081–5085 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Q., Yu, Y., Yang, J. & Liu, J. Fast fabrication of flexible functional circuits based on liquid metal dual‐trans printing. Adv. Mater. 27, 7109–7116 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, S. et al. Liquid metal composites. Matter 2, 1446–1480 (2020).

    Article  Google Scholar 

  12. Ma, J. Shaping a soft future: patterning liquid metals. Adv. Mater. 35, 2205196 (2022).

    Article  Google Scholar 

  13. Shen, Q. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Johnston, L. et al. Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics. J. Mater. Chem. C 10, 921–931 (2022).

    Article  CAS  Google Scholar 

  15. Yuan, B. et al. Liquid metal machine triggered violin‐like wire oscillator. Adv. Sci. 3, 1600212 (2016).

    Article  Google Scholar 

  16. Tang, J. et al. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv. Sci. 4, 1700024 (2017).

    Article  Google Scholar 

  17. Idrus-Saidi, S. A. Liquid metal synthesis solvents for metallic crystals. Science 378, 1118–1124 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Khan, M. R., Eaker, C. B., Bowden, E. F. & Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl Acad. Sci. USA 111, 14047–14051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yun, F. F. et al. Voltage-induced penetration effect in liquid metals at room temperature. Natl Sci. Rev. 7, 366–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. He, Y. et al. Noncontact rotation, levitation, and acceleration of flowing liquid metal wires. Proc. Natl Acad. Sci. USA 119, e2117535119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, Z. et al. Discovery of a voltage-stimulated heartbeat effect in droplets of liquid gallium. Phys. Rev. Lett. 121, 024302 (2018).

    Article  PubMed  Google Scholar 

  22. Eaker, C. B. & Dickey, M. D. Liquid metal actuation by electrical control of interfacial tension. Appl. Phys. Rev. 3, 031103 (2016).

    Article  Google Scholar 

  23. He, Y., You, J., Dickey, M. D. & Wang, X. Controllable flow and manipulation of liquid metals. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202309614 (2023).

  24. Song, M., Daniels, K. E., Kiani, A., Rashid‐Nadimi, S. & Dickey, M. D. Interfacial tension modulation of liquid metal via electrochemical oxidation. Adv. Intell. Syst. 3, 2100024 (2021).

    Article  Google Scholar 

  25. Hillaire, K. D. et al. Interfacial tension hysteresis of eutectic gallium-indium. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202311501 (2023).

  26. Yu, Z. W., Chen, Y. C., Yun, F. F. & Wang, X. L. Simultaneous fast deformation and solidification in supercooled liquid gallium at room temperature. Adv. Eng. Mater. 19, 1700190 (2017).

    Article  Google Scholar 

  27. Eaker, C. B. et al. Oxidation-mediated fingering in liquid metals. Phys. Rev. Lett. 119, 174502 (2017).

    Article  PubMed  Google Scholar 

  28. Hou, Y. et al. Coloration of liquid-metal soft robots: from silver-white to iridescent. ACS Appl. Mater. Interfaces 10, 41627–41636 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Tang, S. Y. et al. Electrochemically induced actuation of liquid metal marbles. Nanoscale 5, 5949–5957 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J., Yao, Y., Sheng, L. & Liu, J. Self‐fueled biomimetic liquid metal mollusk. Adv. Mater. 27, 2648–2655 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Sheng, L., Zhang, J. & Liu, J. Diverse transformations of liquid metals between different morphologies. Adv. Mater. 26, 6036–6042 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Mohammed, M., Sundaresan, R. & Dickey, M. D. Self-running liquid metal drops that delaminate metal films at record velocities. ACS Appl. Mater. Interfaces 7, 23163–23171 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Tan, S. C. et al. Galvanic corrosion couple-induced Marangoni flow of liquid metal. Soft Matter 13, 2309–2314 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Tang, S. Y. et al. Liquid metal enabled pump. Proc. Natl Acad. Sci. USA 111, 3304–3309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abercrombie, M. Contact inhibition and malignancy. Nature 281, 259–262 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Adler, J. Chemotaxis in bacteria. Annu. Rev. Biochem. 44, 341–356 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.W. is grateful for support under the Australian Research Council (ARC) Center of Excellence in Future Low-Energy Electronic Technologies (FLEET) (CE170100039).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and Y.H. conceived the project. X.W., M.D.D. and Y.H. designed the experiments. Y.H. and J.Y. carried out the experiments and recorded videos of the results. Y.H., X.W. and M.D.D. conducted the discussion and analysis of the mechanism, and all authors participated in the preparation of the paper.

Corresponding authors

Correspondence to Michael D. Dickey or Xiaolin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Yukun Ren, Xuechang Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Legends for Supplementary Videos 1–11; Supplementary Figs. 1–25, Table 1, Discussion and calculation details.

Supplementary Video 1

‘Poking’ the cathode into the anodic LM without short circuiting using a voltage of 5 V.

Supplementary Video 2

Detachment and transfer of one LMD using a voltage of 5 V and a distance of 3.3 cm.

Supplementary Video 3

Short circuit observed for one LMD using a voltage of 2.5 V and a distance of 1.5 cm.

Supplementary Video 4

Selective detachment and transfer of equidistant multi-LMDs using a voltage of 5 V and a distance of 3.3 cm.

Supplementary Video 5

Selective detachment and transfer of non-equidistant multi-LMDs using a voltage of 5 V and a distance of 3.3 cm.

Supplementary Video 6

Continuous transfer process using a transferred LMD as a new cathode with a voltage of 5 V.

Supplementary Video 7

Thick oxide layer preventing the LM from getting close to the cathode with a large gap (~5 mm) under a voltage of 11 V.

Supplementary Video 8

Continuous back-and-forth transfer of one LMD using a voltage of 5 V.

Supplementary Video 9

Controllable transfer position of one LMD between electrodes using a voltage of 5 V.

Supplementary Video 10

Liquid tentacles for grabbing metallic parts using a voltage of 5 V.

Supplementary Video 11

Analogous ‘contact inhibition’ of two LMDs arriving at a cathode at the same time using a voltage of 5 V.

Source data

Source Data Fig. 1

Image source data.

Source Data Fig. 2

Numerical source data.

Source Data Fig. 3

Numerical source data.

Source Data Fig. 4

Image source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., You, J., Dickey, M.D. et al. Liquid-metal transfer from an anode to a cathode without short circuiting. Nat Chem Eng 1, 293–300 (2024). https://doi.org/10.1038/s44286-024-00045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00045-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing