Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimizing retro-reflective surfaces to untrap radiation and cool cities

Abstract

Extreme heat and its various impacts are a growing threat to cities and their residents, and it is increasingly clear that portfolios of solutions are needed to mitigate the resulting risks. Here we comprehensively evaluate and optimize the application of existing retro-reflective (RR) materials, which reflect incoming solar radiation back to the sky, on urban surfaces to cool them. Using detailed energy budget models, we show that RR walls and pavements decrease urban canyon surface temperatures by up to 20 °C and canyon air temperatures by up to 2.6 °C, outperforming highly reflective surfaces, with a notable improvement in pedestrian thermal comfort (up to 0.55 °C and 153 W m−2 reductions in human skin temperature and net radiative gain, respectively). We then develop optimized RR design guidelines for diverse climatic conditions, latitudes, seasons and urban geometries. On the basis of our analysis, we recommend RR pavements for open, low-rise areas and propose specific RR wall design strategies for compact, high-rise areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Total reflectance and retro-reflectance of three surfaces in urban environments.
Fig. 2: Maximum surface temperature reductions and maximum canyon air temperature reductions by RR walls and RR ground.
Fig. 3: Effects of albedo and retro-reflectivity on temperature and thermal comfort in urban canyons.
Fig. 4: Effect of different aspect ratios on the maximum canyon air temperature reduction by HR and RR surfaces.
Fig. 5: Maximum reduction in street canyon net shortwave radiation.
Fig. 6: Optimization matrix of the most effective RR surfaces.

Similar content being viewed by others

Data availability

The simulation data for this study are available in the open-access Zenodo repository56 at https://doi.org/10.5281/zenodo.10638146.

Code availability

The core MATLAB codes used for incorporating retro-reflectivity in shortwave radiation can be accessed via the open-access Zenodo repository56 at https://doi.org/10.5281/zenodo.10638146. The whole UCM codes used in this study are available upon request from the corresponding author or X.H. (e-mail: xjhuang@princeton.edu).

References

  1. Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    Google Scholar 

  2. Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 207, 109482 (2020).

    Article  Google Scholar 

  3. Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).

    Article  Google Scholar 

  4. Santamouris, M. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703 (2014).

    Article  Google Scholar 

  5. Sen, S. & Khazanovich, L. Limited application of reflective surfaces can mitigate urban heat pollution. Nat. Commun. 12, 3491 (2021).

    Article  Google Scholar 

  6. Akbari, H. & Levinson, R. Evolution of cool-roof standards in the US. Adv. Build. Energy Res. 2, 1–32 (2008).

    Article  Google Scholar 

  7. Shultz, D. Los Angeles paints streets white to stay cool. Science https://www.science.org/content/article/los-angeles-paints-streets-white-stay-cool (2017).

  8. Schneider, F. A., Ortiz, J. C., Vanos, J. K., Sailor, D. J. & Middel, A. Evidence-based guidance on reflective pavement for urban heat mitigation in Arizona. Nat. Commun. 14, 1467 (2023).

    Article  Google Scholar 

  9. Erell, E., Pearlmutter, D., Boneh, D. & Kutiel, P. B. Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Clim. 10, 367–386 (2014).

    Article  Google Scholar 

  10. Wang, C., Wang, Z.-H., Kaloush, K. E. & Shacat, J. Cool pavements for urban heat island mitigation: a synthetic review. Renew. Sustain. Energy Rev. 146, 111171 (2021).

    Article  Google Scholar 

  11. Yang, J. & Bou-Zeid, E. Scale dependence of the benefits and efficiency of green and cool roofs. Landsc. Urban Plan. 185, 127–140 (2019).

    Article  Google Scholar 

  12. Rossi, F. et al. Retroreflective façades for urban heat island mitigation: experimental investigation and energy evaluations. Appl. Energy 145, 8–20 (2015).

    Article  Google Scholar 

  13. Yuan, J., Emura, K., Farnham, C. & Sakai, H. Application of glass beads as retro-reflective facades for urban heat island mitigation: experimental investigation and simulation analysis. Build. Environ. 105, 140–152 (2016).

    Article  Google Scholar 

  14. Levinson, R. et al. Design, characterization, and fabrication of solar-retroreflective cool-wall materials. Sol. Energy Mater. Sol. Cells 206, 110117 (2020).

    Article  Google Scholar 

  15. Garshasbi, S. & Santamouris, M. Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating. Sol. Energy Mater. Sol. Cells 191, 21–32 (2019).

    Article  Google Scholar 

  16. Fabiani, C., Pisello, A. L., Bou-Zeid, E., Yang, J. & Cotana, F. Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance. Appl. Energy 247, 155–170 (2019).

    Article  Google Scholar 

  17. Mandal, J., Yang, Y., Yu, N. & Raman, A. P. Paints as a scalable and effective radiative cooling technology for buildings. Joule 4, 1350–1356 (2020).

    Article  Google Scholar 

  18. Yin, X., Yang, R., Tan, G. & Fan, S. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791 (2020).

    Article  Google Scholar 

  19. Castellani, B., Morini, E., Anderini, E., Filipponi, M. & Rossi, F. Development and characterization of retro-reflective colored tiles for advanced building skins. Energy Build. 154, 513–522 (2017).

    Article  Google Scholar 

  20. Liu, S., Wang, J. & Meng, X. Spectral properties of retro-reflective materials from experimental measurements. Case Stud. Therm. Eng. 39, 102434 (2022).

    Article  Google Scholar 

  21. Mauri, L., Battista, G., de Lieto Vollaro, E. & de Lieto Vollaro, R. Retroreflective materials for building’s façades: experimental characterization and numerical simulations. Sol. Energy 171, 150–156 (2018).

    Article  Google Scholar 

  22. Akbari, H. & Touchaei, A. G. Modeling and labeling heterogeneous directional reflective roofing materials. Sol. Energy Mater. Sol. Cells 124, 192–210 (2014).

    Article  Google Scholar 

  23. Manni, M., Lobaccaro, G., Goia, F. & Nicolini, A. An inverse approach to identify selective angular properties of retro-reflective materials for urban heat island mitigation. Sol. Energy 176, 194–210 (2018).

    Article  Google Scholar 

  24. Rossi, F. et al. Experimental evaluation of urban heat island mitigation potential of retro-reflective pavement in urban canyons. Energy Build. 126, 340–352 (2016).

    Article  Google Scholar 

  25. Ichinose, M., Inoue, T. & Nagahama, T. Effect of retro-reflecting transparent window on anthropogenic urban heat balance. Energy Build. 157, 157–165 (2017).

    Article  Google Scholar 

  26. Han, Y., Taylor, J. E. & Pisello, A. L. Toward mitigating urban heat island effects: investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings. Energy Build. 102, 380–389 (2015).

  27. Meng, X. et al. Effect of retro-reflective materials on building indoor temperature conditions and heat flow analysis for walls. Energy Build. 127, 488–498 (2016).

    Article  Google Scholar 

  28. Castellani, B., Gambelli, A. M., Nicolini, A. & Rossi, F. Optic-energy and visual comfort analysis of retro-reflective building plasters. Build. Environ. 174, 106781 (2020).

    Article  Google Scholar 

  29. Xu, L., Zhang, W., Wang, W., Gao, B. & Chen, M. Impact of different improvement measures on the thermal performance of ultra-thin envelopes. Energy 203, 117802 (2020).

    Article  Google Scholar 

  30. Wang, J., Liu, S., Meng, X., Gao, W. & Yuan, J. Application of retro-reflective materials in urban buildings: a comprehensive review. Energy Build. 247, 111137 (2021).

    Article  Google Scholar 

  31. Lipson, M. J. et al. Evaluation of 30 urban land surface models in the Urban-PLUMBER project: phase 1 results. Q. J. R. Meteorol. Soc. 150, 126–169 (2024).

    Article  Google Scholar 

  32. Grimmond, C. S. B. et al. The international urban energy balance models comparison project: first results from phase 1. J. Appl. Meteorol. Climatol. 49, 1268–1292 (2010).

    Article  Google Scholar 

  33. Grimmond, C. S. B. et al. Initial results from phase 2 of the international urban energy balance model comparison. Int. J. Climatol. 31, 244–272 (2011).

    Article  Google Scholar 

  34. Oleson, K. W. & Feddema, J. Parameterization and surface data improvements and new capabilities for the community land model urban (CLMU). J. Adv. Model. Earth Syst. 12, e2018MS001586 (2020).

    Article  Google Scholar 

  35. Wang, Z.-H., Bou‐Zeid, E. & Smith, J. A. A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Q. J. R. Meteorol. Soc. 139, 1643–1657 (2013).

    Article  Google Scholar 

  36. Ryu, Y.-H., Bou-Zeid, E., Wang, Z.-H. & Smith, J. A. Realistic representation of trees in an urban canopy model. Bound. Layer Meteorol. 159, 193–220 (2016).

    Article  Google Scholar 

  37. Sun, T., Bou-Zeid, E., Wang, Z.-H., Zerba, E. & Ni, G.-H. Hydrometeorological determinants of green roof performance via a vertically-resolved model for heat and water transport. Build. Environ. 60, 211–224 (2013).

    Article  Google Scholar 

  38. Li, D. & Bou-Zeid, E. Quality and sensitivity of high-resolution numerical simulation of urban heat islands. Environ. Res. Lett. 9, 055001 (2014).

    Article  Google Scholar 

  39. Ramamurthy, P. et al. Influence of subfacet heterogeneity and material properties on the urban surface energy budget. J. Appl. Meteorol. Climatol. 53, 2114–2129 (2014).

    Article  Google Scholar 

  40. Yuan, J., Farnham, C. & Emura, K. Development of a retro-reflective material as building coating and evaluation on albedo of urban canyons and building heat loads. Energy Build. 103, 107–117 (2015).

    Article  Google Scholar 

  41. Sakai, H., Kobayashi, H., Emura, K. & Igawa, N. Outdoor measurement of solar reflective performance of retroreflective materials. J. Struct. Constr. Eng. 73, 1713–1718 (2008).

    Article  Google Scholar 

  42. Sakai, H., Emura, K. & Igawa, N. Reduction of reflected heat by retroreflective materials. J. Struct. Constr. Eng. 73, 1239–1244 (2008).

    Article  Google Scholar 

  43. Hagander, L. G., Midani, H. A., Kuskowski, M. A. & Parry, G. J. G. Quantitative sensory testing: effect of site and skin temperature on thermal thresholds. Clin. Neurophysiol. 111, 17–22 (2000).

    Article  Google Scholar 

  44. Rossi, F., Pisello, A. L., Nicolini, A., Filipponi, M. & Palombo, M. Analysis of retro-reflective surfaces for urban heat island mitigation: a new analytical model. Appl. Energy 114, 621–631 (2014).

    Article  Google Scholar 

  45. Yuan, J., Emura, K. & Farnham, C. Evaluation of retro-reflective properties and upward to downward reflection ratio of glass bead retro-reflective material using a numerical model. Urban Clim. 36, 100774 (2021).

    Article  Google Scholar 

  46. Ramamurthy, P. & Bou-Zeid, E. Heatwaves and urban heat islands: a comparative analysis of multiple cities. J. Geophys. Res. Atmos. 122, 168–178 (2017).

    Article  Google Scholar 

  47. Yang, J. & Bou-Zeid, E. Should cities embrace their heat islands as shields from extreme cold? J. Appl. Meteorol. Climatol. 57, 1309–1320 (2018).

    Article  Google Scholar 

  48. Masson, V. A physically-based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol. 94, 357–397 (2000).

    Article  Google Scholar 

  49. Song, Y. An improvement of the Louis scheme for the surface layer in an atmospheric modelling system. Bound. Layer Meteorol. 88, 239–254 (1998).

    Article  Google Scholar 

  50. Wang, Z.-H., Bou-Zeid, E. & Smith, J. A. A spatially-analytical scheme for surface temperatures and conductive heat fluxes in urban canopy models. Bound. Layer Meteorol. 138, 171–193 (2011).

    Article  Google Scholar 

  51. Pigliautile, I., Pisello, A. L. & Bou-Zeid, E. Humans in the city: representing outdoor thermal comfort in urban canopy models. Renew. Sustain. Energy Rev. 133, 110103 (2020).

    Article  Google Scholar 

  52. Li, D., Bou-Zeid, E. & Oppenheimer, M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett. 9, 055002 (2014).

    Article  Google Scholar 

  53. Kusaka, H., Kondo, H., Kikegawa, Y. & Kimura, F. A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound. Layer Meteorol. 101, 329–358 (2001).

    Article  Google Scholar 

  54. Daneshyar, M. Solar radiation statistics for Iran. Sol. Energy 21, 345–349 (1978).

    Article  Google Scholar 

  55. 2009 ASHRAE Handbook: Fundamentals (American Society of Heating, Refrigeration and Air-Conditioning Engineers, 2009).

  56. Huang, X. Data and code for retro-reflective surface paper. Zenodo https://doi.org/10.5281/zenodo.10638146 (2024).

Download references

Acknowledgments

X.H. and E.B.-Z. acknowledge support from Princeton University’s School of Engineering Innovation Funds and the Dean of Research Innovation Fund for Exploratory Energy Research. A.L.P. thanks the European Research Council for supporting her research in the framework of the Horizon Europe Programme (ERC, HELIOS, G.A. 101041255). I.P. thanks the Italian funding program Fondo Sociale Europeo REACT EU – Programma Operativo Nazionale Ricerca e Innovazione 2014–2020 (D.M. n.1062 del 10 agosto 2021) for supporting her research through the “Red-To-Green” project. J.M. acknowledges support from Princeton University’s SEAS start-up funds.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and E.B.-Z. designed the methodology and scientific questions. E.B.-Z. and A.L.P. conceived the idea of using RR materials for cooling. X.H. developed the RR model, and I.P. developed the human thermal comfort model. X.H. analyzed and visualized the data. J.M. contributed to refining the methodology and presentation. X.H. and E.B.-Z. led the writing. All authors contributed to the writing and presentation of the results and gave final approval for publication.

Corresponding author

Correspondence to Elie Bou-Zeid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks Mattia Manni, Chaoqun Zhuang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Bou-Zeid, E., Pigliautile, I. et al. Optimizing retro-reflective surfaces to untrap radiation and cool cities. Nat Cities 1, 275–285 (2024). https://doi.org/10.1038/s44284-024-00047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44284-024-00047-3

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene