Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Model-based modular hydrogel design

Abstract

Hydrogels — water-insoluble, three-dimensional networks of polymer chains — are used as biomaterials in various biomedical and clinical applications. Their modularity and versatility have led to the development of increasingly complex hydrogels, which can dynamically respond to their environment, release drugs and regenerate cells and tissues. In this Review, we present a model-based modular hydrogel design framework that is application-driven and considers clinical translation early in the design process. In this approach, every component of the hydrogel formulation is optimized towards multifaceted design criteria of the target application, identifying how multiple properties can be integrated into a single formulation. We highlight the fundamental models of polymer physics that provide the basis of modular hydrogel design and examine how synthetic polymer precursors can be integrated to achieve such modularity. Finally, we discuss clinically approved hydrogel formulations, and investigate how challenges in clinical translation may be addressed by a modular design approach.

Key points

  • Hydrogels can be applied as biomaterials for various applications, benefiting from their versatility, their mechanical and structural properties, and their modularity.

  • The clinical translation of hydrogels may be accelerated by a model-driven modular design approach, considering how modular changes affect multiple structure–property interactions.

  • Modular components can be consistently incorporated into hydrogels using fundamental models to optimize their multiple properties.

  • Theoretical models need to be refined to predict relevant properties of hydrogels, and validated with a diverse dataset of well characterized and newly designed hydrogels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Addressing clinical translational challenges of hydrogels.
Fig. 2: Iterative cycle for model-based modular hydrogel design.

Similar content being viewed by others

References

  1. Wu, D. T., Jeffreys, N., Diba, M. & Mooney, D. J. Viscoelastic biomaterials for tissue regeneration. Tissue Eng. C 28, 289–300 (2022).

    Article  Google Scholar 

  2. Blache, U. et al. Engineered hydrogels for mechanobiology. Nat. Rev. Meth. Prim. 2, 98 (2022).

    Article  Google Scholar 

  3. Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article  Google Scholar 

  4. Correa, S. et al. Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021).

    Article  Google Scholar 

  5. Yin, S. & Cao, Y. Hydrogels for large-scale expansion of stem cells. Acta Biomater. 128, 1–20 (2021).

    Article  Google Scholar 

  6. Aguado, B. A., Grim, J. C., Rosales, A. M., Watson-Capps, J. J. & Anseth, K. S. Engineering precision biomaterials for personalized medicine. Sci. Transl. Med. 10, eaam8645 (2018).

    Article  Google Scholar 

  7. Charlet, A., Bono, F. & Amstad, E. Mechanical reinforcement of granular hydrogels. Chem. Sci. 13, 3082–3093 (2022).

    Article  Google Scholar 

  8. Clegg, J. R. et al. Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Prog. Mater. Sci. 106, 100589 (2019).

    Article  Google Scholar 

  9. Wancura, M. et al. PEG-based hydrogel coatings: design tools for biomedical applications. Ann. Biomed. Eng. https://doi.org/10.1007/s10439-023-03154-9 (2023).

    Article  Google Scholar 

  10. Suthiwanich, K. & Hagiwara, M. Localization of multiple hydrogels with multiCUBE platform spatially guides 3D tissue morphogenesis in vitro. Adv. Mater. Technol. 8, 2201660 (2023).

    Article  Google Scholar 

  11. de Paiva Narciso, N. et al. Design parameters for injectable biopolymeric hydrogels with dynamic covalent chemistry crosslinks. Adv. Healthc. Mater. 12, e2301265 (2023).

    Article  Google Scholar 

  12. Richbourg, N. R. & Peppas, N. A. The swollen polymer network hypothesis: quantitative models of hydrogel swelling, stiffness, and solute transport. Prog. Polym. Sci. 105, 101243 (2020).

    Article  Google Scholar 

  13. Richbourg, N. R., Ravikumar, A. & Peppas, N. A. Solute transport dependence on 3D geometry of hydrogel networks. Macromol. Chem. Phys. 222, 2100138 (2021).

    Article  Google Scholar 

  14. Graham, T. XXXV. — On the properties of silicic acid and other analogous colloidal substances. J. Chem. Soc. 17, 318–327 (1864).

    Article  Google Scholar 

  15. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  16. Flory, P. J. & Rehner, J. Statistical mechanics of cross‐linked polymer networks. I. Rubberlike elasticity. J. Chem. Phys. 11, 512–520 (1943).

    Article  Google Scholar 

  17. Flory, P. J. & Rehner, J. Statistical mechanics of cross‐linked polymer networks. II. Swelling. J. Chem. Phys. 11, 521–526 (1943).

    Article  Google Scholar 

  18. Wichterle, O. & LÍM, D. Hydrophilic gels for biological use. Nature 185, 117–118 (1960).

    Article  Google Scholar 

  19. Wichterle, O. & Lim, D. Process for producing shaped articles from three-dimensional hydrophilic high polymers. US patent US2976576A (1961).

  20. Treloar, L. R. G. The Physics of Rubber Elasticity (Oxford Univ. Press, 1975).

  21. Peppas, N. A. & Merrill, E. W. Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J. Appl. Polym. Sci. 21, 1763–1770 (1977).

    Article  Google Scholar 

  22. Bray, J. C. & Merrill, E. W. Poly(vinyl alcohol) hydrogels. Formation by electron beam irradiation of aqueous solutions and subsequent crystallization. J. Appl. Polym. Sci. 17, 3779–3794 (1973).

    Article  Google Scholar 

  23. Erman, B. & Mark, J. E. Structures and Properties of Rubberlike Networks (Oxford Univ. Press, 1997).

  24. Amsden, B. Solute diffusion within hydrogels. mechanisms and models. Macromolecules 31, 8382–8395 (1998).

    Article  Google Scholar 

  25. Flory, P. J. Statistical Mechanics of Chain Molecules (Interscience, 1980).

  26. Canal, T. & Peppas, N. A. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 23, 1183–1193 (1989).

    Article  Google Scholar 

  27. De Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

  28. Lustig, S. R. & Peppas, N. A. Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. J. Appl. Polym. Sci. 36, 735–747 (1988).

    Article  Google Scholar 

  29. Ogston Alexander, G., Preston, B. N., Wells, J. D. & Snowden, J. M. On the transport of compact particles through solutions of chain-polymers. Proc. R. Soc. London. A 333, 297–316 (1973).

    Article  Google Scholar 

  30. Axpe, E. et al. A multiscale model for solute diffusion in hydrogels. Macromolecules 52, 6889–6897 (2019).

    Article  Google Scholar 

  31. Richbourg, N. R. et al. Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Sci. Adv. 7, eabe3245 (2021).

    Article  Google Scholar 

  32. Richbourg, N. R. & Peppas, N. A. High-throughput FRAP analysis of solute diffusion in hydrogels. Macromolecules 54, 10477–10486 (2021).

    Article  Google Scholar 

  33. Richbourg, N. R. & Peppas, N. A. Solute diffusion and partitioning in multi-arm poly(ethylene glycol) hydrogels. J. Mater. Chem. B https://doi.org/10.1039/D2TB02004A (2023).

    Article  Google Scholar 

  34. Richbourg, N. R., Rausch, M. K. & Peppas, N. A. Cross-evaluation of stiffness measurement methods for hydrogels. Polymer 258, 125316 (2022).

    Article  Google Scholar 

  35. Richbourg, N. R. & Peppas, N. A. Structurally decoupled stiffness and solute transport in multi-arm poly(ethylene glycol) hydrogels. Biomaterials 301, 122272 (2023).

    Article  Google Scholar 

  36. Bello, A. B., Kim, D., Kim, D., Park, H. & Lee, S.-H. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng. B 26, 164–180 (2020).

    Article  Google Scholar 

  37. Spearman, B. S. et al. Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. J. Biomed. Mater. Res. A 108, 279–291 (2020).

    Article  Google Scholar 

  38. Padmavathi, N. C. & Chatterji, P. R. Structural characteristics and swelling behavior of poly(ethylene glycol) diacrylate hydrogels. Macromolecules 29, 1976–1979 (1996).

    Article  Google Scholar 

  39. Tibbitt, M. W., Kloxin, A. M., Sawicki, L. A. & Anseth, K. S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46, 2785–2792 (2013).

    Article  Google Scholar 

  40. Beamish, J. A., Zhu, J., Kottke-Marchant, K. & Marchant, R. E. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering. J. Biomed. Mater. Res. A 92, 441–450 (2010).

    Article  Google Scholar 

  41. Pathak, C. P., Sawhney, A. S. & Hubbell, J. A. Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. J. Am. Chem. Soc. 114, 8311–8312 (1992).

    Article  Google Scholar 

  42. Hossainy, S. F. A. & Hubbell, J. A. Molecular weight dependence of calcification of polyethylene glycol hydrogels. Biomaterials 15, 921–925 (1994).

    Article  Google Scholar 

  43. Cruise, G. M., Scharp, D. S. & Hubbell, J. A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19, 1287–1294 (1998).

    Article  Google Scholar 

  44. Cha, C., Jeong, J. H., Shim, J. & Kong, H. Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Acta Biomater. 7, 3719–3728 (2011).

    Article  Google Scholar 

  45. Browning, M. B., Wilems, T., Hahn, M. S. & Cosgriff-Hernandez, E. Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size. J. Biomed. Mater. Res. A 98, 268–273 (2011).

    Article  Google Scholar 

  46. Munoz-Pinto, D. J., Samavedi, S., Grigoryan, B. & Hahn, M. S. Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer 77, 227–238 (2015).

    Article  Google Scholar 

  47. Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002).

    Article  Google Scholar 

  48. Choi, J. R., Yong, K. W., Choi, J. Y. & Cowie, A. C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques 66, 40–53 (2019).

    Article  Google Scholar 

  49. Moore, E. M. & West, J. L. Bioactive poly(ethylene glycol) acrylate hydrogels for regenerative engineering. Regen. Eng. Transl. Med. 5, 167–179 (2019).

    Article  Google Scholar 

  50. Hamidi, M., Azadi, A. & Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliv. Rev. 60, 1638–1649 (2008).

    Article  Google Scholar 

  51. Huang, Y., Szleifer, I. & Peppas, N. A. A molecular theory of polymer gels. Macromolecules 35, 1373–1380 (2002).

    Article  Google Scholar 

  52. Sakai, T. et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008).

    Article  Google Scholar 

  53. Andreopoulos, F. M. et al. Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiators. J. Am. Chem. Soc. 118, 6235–6240 (1996).

    Article  Google Scholar 

  54. Zhao, X. & Harris, J. M. Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein. J. Pharm. Sci. 87, 1450–1458 (1998).

    Article  Google Scholar 

  55. Keys, K. B., Andreopoulos, F. M. & Peppas, N. A. Poly(ethylene glycol) star polymer hydrogels. Macromolecules 31, 8149–8156 (1998).

    Article  Google Scholar 

  56. Lutolf, M. P. & Hubbell, J. A. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4, 713–722 (2003).

    Article  Google Scholar 

  57. Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).

    Article  Google Scholar 

  58. Raza, A. & Lin, C.-C. The influence of matrix degradation and functionality on cell survival and morphogenesis in PEG-based hydrogels. Macromol. Biosci. 13, 1048–1058 (2013).

    Article  Google Scholar 

  59. Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24, 64–70 (2012).

    Article  Google Scholar 

  60. Darling, N. J., Hung, Y.-S., Sharma, S. & Segura, T. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials 101, 199–206 (2016).

    Article  Google Scholar 

  61. Jansen, L. E., Negrón-Piñeiro, L. J., Galarza, S. & Peyton, S. R. Control of thiol-maleimide reaction kinetics in PEG hydrogel networks. Acta Biomater. 70, 120–128 (2018).

    Article  Google Scholar 

  62. Paez, J. I., Farrukh, A., Valbuena-Mendoza, R., Włodarczyk-Biegun, M. K. & del Campo, A. Thiol-methylsulfone-based hydrogels for 3D cell encapsulation. ACS Appl. Mater. Interf. 12, 8062–8072 (2020).

    Article  Google Scholar 

  63. Rizzo, R., Petelinšek, N., Bonato, A. & Zenobi-Wong, M. From free-radical to radical-free: a paradigm shift in light-mediated biofabrication. Adv. Sci. 10, 2205302 (2023).

    Article  Google Scholar 

  64. Farahani, P. E., Adelmund, S. M., Shadish, J. A. & DeForest, C. A. Photomediated oxime ligation as a bioorthogonal tool for spatiotemporally-controlled hydrogel formation and modification. J. Mater. Chem. B 5, 4435–4442 (2017).

    Article  Google Scholar 

  65. Lee, S., Tong, X. & Yang, F. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomater. Sci. 4, 405–411 (2016).

    Article  Google Scholar 

  66. Rehmann, M. S. et al. Tuning and predicting mesh size and protein release from step growth hydrogels. Biomacromolecules 18, 3131–3142 (2017).

    Article  Google Scholar 

  67. Yavitt, F. M. et al. The effect of thiol structure on allyl sulfide photodegradable hydrogels and their application as a degradable scaffold for organoid passaging. Adv. Mater. 32, 1905366 (2020).

    Article  Google Scholar 

  68. Jansen, L. E. et al. A poly(ethylene glycol) three-dimensional bone marrow hydrogel. Biomaterials 280, 121270 (2022).

    Article  Google Scholar 

  69. Galarza, S., Crosby, A. J., Pak, C. & Peyton, S. R. Control of astrocyte quiescence and activation in a synthetic brain hydrogel. Adv. Healthc. Mater. 9, 1901419 (2020).

    Article  Google Scholar 

  70. Koetting, M. C., Peters, J. T., Steichen, S. D. & Peppas, N. A. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R 93, 1–49 (2015).

    Article  Google Scholar 

  71. Qu, M. et al. Stimuli-responsive delivery of growth factors for tissue engineering. Adv. Healthc. Mater. 9, 1901714 (2020).

    Article  Google Scholar 

  72. Culver, H. R., Clegg, J. R. & Peppas, N. A. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50, 170–178 (2017).

    Article  Google Scholar 

  73. Sharpe, L. A., Daily, A. M., Horava, S. D. & Peppas, N. A. Therapeutic applications of hydrogels in oral drug delivery. Expert. Opin. Drug. Deliv. 11, 901–915 (2014).

    Article  Google Scholar 

  74. Alvarez-Lorenzo, C., Anguiano-Igea, S., Varela-García, A., Vivero-Lopez, M. & Concheiro, A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater. 84, 49–62 (2018).

    Article  Google Scholar 

  75. Webber, M. J. & Tibbitt, M. W. Dynamic and reconfigurable materials from reversible network interactions. Nat. Rev. Mater. 127, 167–184 (2022).

    Google Scholar 

  76. Dimatteo, R., Darling, N. J. & Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug. Deliv. Rev. 127, 167–184 (2018).

    Article  Google Scholar 

  77. Bovone, G., Dudaryeva, O. Y., Marco-Dufort, B. & Tibbitt, M. W. Engineering hydrogel adhesion for biomedical applications via chemical design of the junction. ACS Biomater. Sci. Eng. 7, 4048–4076 (2021).

    Article  Google Scholar 

  78. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  Google Scholar 

  79. Jons, C. K. et al. Yield-stress and creep control depot formation and persistence of injectable hydrogels following subcutaneous administration. Adv. Funct. Mater. 32, 2203402 (2022).

    Article  Google Scholar 

  80. Muir, V. G. & Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121, 10908–10949 (2021).

    Article  Google Scholar 

  81. Li, F., Tang, J., Geng, J., Luo, D. & Yang, D. Polymeric DNA hydrogel: design, synthesis and applications. Prog. Polym. Sci. 98, 101163 (2019).

    Article  Google Scholar 

  82. Gačanin, J., Synatschke, C. V. & Weil, T. Biomedical applications of DNA-based hydrogels. Adv. Funct. Mater. 30, 1906253 (2020).

    Article  Google Scholar 

  83. Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106 (2012).

    Article  Google Scholar 

  84. Bai, R., Yang, J. & Suo, Z. Fatigue of hydrogels. Eur. J. Mech. A 74, 337–370 (2019).

    Article  Google Scholar 

  85. Zhao, X. Designing toughness and strength for soft materials. Proc. Natl Acad. Sci. USA 114, 8138 (2017).

    Article  Google Scholar 

  86. Freedman, B. R. et al. Degradable and removable tough adhesive hydrogels. Adv. Mater. 33, 2008553 (2021).

    Article  Google Scholar 

  87. Lanier, O. L., D’Andrea, A. P., Shodeinde, A. & Peppas, N. A. siRNA delivery from cationic nanocarriers prepared by diffusion-assisted loading in the presence and absence of electrostatic interactions. J. Appl. Polym. Sci. 141, e55029 (2024).

    Article  Google Scholar 

  88. Clegg, J. R., Ludolph, C. M. & Peppas, N. A. QCM-D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels. J. Appl. Polym. Sci. 137, 48655 (2019).

    Article  Google Scholar 

  89. Zhong Justin, X., Clegg John, R., Ander Eric, W. & Peppas Nicholas, A. Tunable poly(methacrylic acid‐co‐acrylamide) nanoparticles through inverse emulsion polymerization. J. Biomed. Mater. Res. A 106, 1677–1686 (2018).

    Article  Google Scholar 

  90. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug. Discov. 20, 101–124 (2021).

    Article  Google Scholar 

  91. Ramirez-Velez, I. & Belardi, B. Storming the gate: new approaches for targeting the dynamic tight junction for improved drug delivery. Adv. Drug. Deliv. Rev. 199, 114905 (2023).

    Article  Google Scholar 

  92. Cuggino, J. C., Blanco, E. R. O., Gugliotta, L. M., Alvarez Igarzabal, C. I. & Calderón, M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release 307, 221–246 (2019).

    Article  Google Scholar 

  93. Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).

    Article  Google Scholar 

  94. Wechsler, M. E. et al. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed. Microdevices 21, 31 (2019).

    Article  Google Scholar 

  95. Riley, L. et al. Void volume fraction of granular scaffolds. Small 19, 2303466 (2023).

    Article  Google Scholar 

  96. Muir, V. G., Qazi, T. H., Shan, J., Groll, J. & Burdick, J. A. Influence of microgel fabrication technique on granular hydrogel properties. ACS Biomater. Sci. Eng. 7, 4269–4281 (2021).

    Article  Google Scholar 

  97. Muir, V. G. et al. Influence of microgel and interstitial matrix compositions on granular hydrogel composite properties. Adv. Sci. 10, 2206117 (2023).

    Article  Google Scholar 

  98. Zhao, Z. et al. Composite hydrogels in three-dimensional in vitro models. Front. Bioeng. Biotechnol. 8, 611 (2020).

    Article  Google Scholar 

  99. Widener, A. E., Roberts, A. & Phelps, E. A. Single versus dual microgel species for forming guest–host microporous annealed particle PEG-MAL hydrogel. J. Biomed. Mater. Res. A 111, https://doi.org/10.1002/jbm.a.37540 (2023).

  100. Lavrador, P., Esteves, M. R., Gaspar, V. M. & Mano, J. F. Stimuli-responsive nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater. 31, 2005941 (2021).

    Article  Google Scholar 

  101. Omar, J., Ponsford, D., Dreiss, C. A., Lee, T.-C. & Loh, X. J. Supramolecular hydrogels: design strategies and contemporary biomedical applications. Chem. Asian J. 17, e202200081 (2022).

    Article  Google Scholar 

  102. Bernhard, S. & Tibbitt, M. W. Supramolecular engineering of hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 171, 240–256 (2021).

    Article  Google Scholar 

  103. Li, Y., Zhu, C., Dong, Y. & Liu, D. Supramolecular hydrogels: mechanical strengthening with dynamics. Polymer 210, 122993 (2020).

    Article  Google Scholar 

  104. Bovone, G. et al. Supramolecular reinforcement of polymer–nanoparticle hydrogels for modular materials design. Adv. Mater. 34, 2106941 (2021).

    Article  Google Scholar 

  105. Kirchhof, S., Goepferich, A. M. & Brandl, F. P. Hydrogels in ophthalmic applications. Eur. J. Pharm. Biopharm. 95, 227–238 (2015).

    Article  Google Scholar 

  106. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

    Article  Google Scholar 

  107. Fogg, K. C. et al. Roadmap on biomaterials for women’s health. J. Phys. Mater. 6, 012501 (2022).

    Article  Google Scholar 

  108. Oyen, M. L. Biomaterials science and engineering to address unmet needs in women’s health. MRS Bull. 47, 864–871 (2022).

    Article  Google Scholar 

  109. Cascone, S. & Lamberti, G. Hydrogel-based commercial products for biomedical applications: a review. Int. J. Pharm. 573, 118803 (2020).

    Article  Google Scholar 

  110. Mitura, S., Sionkowska, A. & Jaiswal, A. Biopolymers for hydrogels in cosmetics: review. J. Mater. Sci. Mater. Med. 31, 50 (2020).

    Article  Google Scholar 

  111. Stapleton, F., Stretton, S., Papas, E., Skotnitsky, C. & Sweeney, D. F. Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf. 4, 24–43 (2006).

    Article  Google Scholar 

  112. DiPasquale, S. A. et al. One week sustained in vivo therapeutic release and safety of novel extended-wear silicone hydrogel contact lenses. Adv. Healthc. Mater. 11, 2101263 (2022).

    Article  Google Scholar 

  113. DiPasquale, S. A., Uricoli, B., DiCerbo, M. C., Brown, T. L. & Byrne, M. E. Controlled release of multiple therapeutics from silicone hydrogel contact lenses for post-cataract/post-refractive surgery and uveitis treatment. Transl. Vis. Sci. Technol. 10, 5 (2021).

    Article  Google Scholar 

  114. Pall, B., Gomes, P., Yi, F. & Torkildsen, G. Management of ocular allergy itch with an antihistamine-releasing contact lens. Cornea 38, 713–717 (2019).

    Article  Google Scholar 

  115. Takamatsu, T., Chen, Y., Yoshimasu, T., Nishizawa, M. & Miyake, T. Highly efficient, flexible wireless-powered circuit printed on a moist, soft contact lens. Adv. Mater. Technol. 4, 1800671 (2019).

    Article  Google Scholar 

  116. Mandal, A., Clegg, J. R., Anselmo, A. C. & Mitragotri, S. Hydrogels in the clinic. Bioeng. Transl. Med. 5, e10158 (2020).

    Article  Google Scholar 

  117. Townsend, J. M., Beck, E. C., Gehrke, S. H., Berkland, C. J. & Detamore, M. S. Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog. Polym. Sci. 91, 126–140 (2019).

    Article  Google Scholar 

  118. Peppas, N. A. & Hoffman, A. S. In Biomaterials Science 4th edn (eds Wagner, W. R., Sakiyama-Elbert, S. E., Zhang, G. & Yaszemski, M. J.) 153–166 (Academic Press, 2020).

  119. Reisener, M.-J., Pumberger, M., Shue, J., Girardi, F. P. & Hughes, A. P. Trends in lumbar spinal fusion — a literature review. J. Spine Surg. 6, https://doi.org/10.21037/jss-20-492 (2020).

  120. Vernengo, J., Fussell, G. W., Smith, N. G. & Lowman, A. M. Evaluation of novel injectable hydrogels for nucleus pulposus replacement. J. Biomed. Mater. Res. B 84, 64–69 (2008).

    Article  Google Scholar 

  121. Fusco, A. et al. 168. Minimally invasive hydrogel nucleoplasty in a goat model of moderate severity disc degeneration. Spine J. 21, S84 (2021).

    Article  Google Scholar 

  122. Hunter, D. J. Viscosupplementation for osteoarthritis of the knee. N. Engl. J. Med. 372, 1040–1047 (2015).

    Article  Google Scholar 

  123. Finelli, I., Chiessi, E., Galesso, D., Renier, D. & Paradossi, G. Gel-like structure of a hexadecyl derivative of hyaluronic acid for the treatment of osteoarthritis. Macromol. Biosci. 9, 646–653 (2009).

    Article  Google Scholar 

  124. Alonso, J. M., Andrade del Olmo, J., Perez Gonzalez, R. & Saez-Martinez, V. Injectable hydrogels: from laboratory to industrialization. Polymers 13, 650 (2021).

    Article  Google Scholar 

  125. Finn, J. C. & Cox, S. Fillers in the periorbital complex. Facial Plastic Surg. Clin. North. Am. 15, 123–132 (2007).

    Article  Google Scholar 

  126. Sokol Eric, R., Karram Mickey, M. & Dmochowski, R. Efficacy and safety of polyacrylamide hydrogel for the treatment of female stress incontinence: a randomized, prospective, multicenter North American Study. J. Urol. 192, 843–849 (2014).

    Article  Google Scholar 

  127. Lose, G., Mouritsen, L. & Nielsen, J. B. A new bulking agent (polyacrylamide hydrogel) for treating stress urinary incontinence in women. BJU Int. 98, 100–104 (2006).

    Article  Google Scholar 

  128. Freedman, B. R. & Mooney, D. J. Biomaterials to mimic and heal connective tissues. Adv. Mater. 31, 1806695 (2019).

    Article  Google Scholar 

  129. Kehoe, S., Zhang, X. F. & Boyd, D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43, 553–572 (2012).

    Article  Google Scholar 

  130. Serban, M. A. Translational biomaterials — the journey from the bench to the market — think ‘product’. Curr. Opin. Biotechnol. 40, 31–34 (2016).

    Article  Google Scholar 

  131. Peppas, N. A. & Khademhosseini, A. Make better, safer biomaterials. Nature 540, 335 (2016).

    Article  Google Scholar 

  132. Madl, C. M., Katz, L. M. & Heilshorn, S. C. Tuning bulk hydrogel degradation by simultaneous control of proteolytic cleavage kinetics and hydrogel network architecture. ACS Macro Lett. 7, 1302–1307 (2018).

    Article  Google Scholar 

  133. Benoit, D. S. W., Durney, A. R. & Anseth, K. S. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng. 12, 1663–1673 (2006).

    Article  Google Scholar 

  134. Li, X. et al. Precise control and prediction of hydrogel degradation behavior. Macromolecules 44, 3567–3571 (2011).

    Article  Google Scholar 

  135. Reid, B. et al. PEG hydrogel degradation and the role of the surrounding tissue environment. J. Tissue Eng. Regen. Med. 9, 315–318 (2015).

    Article  Google Scholar 

  136. Pearce, H. A. et al. Evaluating the physicochemical effects of conjugating peptides into thermogelling hydrogels for regenerative biomaterials applications. Regen. Biomater. 8, rbab073 (2021).

    Article  Google Scholar 

  137. Shen, J. et al. Hydrolytically degradable POSS-PEG hybrid hydrogels prepared in aqueous phase with tunable mechanical properties, swelling ratio and degradation rate. Reactive Funct. Polym. 123, 91–96 (2018).

    Article  Google Scholar 

  138. Huang, W. et al. Maleimide–thiol adducts stabilized through stretching. Nat. Chem. 11, 310–319 (2019).

    Article  Google Scholar 

  139. Bretherton, R. C. et al. User-controlled 4D biomaterial degradation with substrate-selective sortase transpeptidases for single-cell biology. Adv. Mater. 35, e2209904 (2023).

    Article  Google Scholar 

  140. Gilchrist, A. E. et al. Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel. Acta Biomater. 131, 138–148 (2021).

    Article  Google Scholar 

  141. Wiley, K. L., Sutherland, B. P., Ogunnaike, B. A. & Kloxin, A. M. Rational design of hydrogel networks with dynamic mechanical properties to mimic matrix remodeling. Adv. Healthc. Mater. 11, 2101947 (2022).

    Article  Google Scholar 

  142. Zhang, W. et al. Fracture toughness and fatigue threshold of tough hydrogels. ACS Macro Lett. 8, 17–23 (2019).

    Article  Google Scholar 

  143. Lin, S. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019).

    Article  Google Scholar 

  144. Rodriguez-Rivera, G. J., Green, M., Shah, V., Leyendecker, K. & Cosgriff-Hernandez, E. A user’s guide to degradation testing of polyethylene glycol-based hydrogels: from in vitro to in vivo studies. J. Biomed. Mater. Res. A https://doi.org/10.1002/jbm.a.37609 (2023).

    Article  Google Scholar 

  145. Swartzlander, M. D. et al. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 41, 26–36 (2015).

    Article  Google Scholar 

  146. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  Google Scholar 

  147. Nian, G., Kim, J., Bao, X. & Suo, Z. Making highly elastic and tough hydrogels from doughs. Adv. Mater. 34, e2206577 (2022).

    Article  Google Scholar 

  148. GhavamiNejad, A., Ashammakhi, N., Wu, X. Y. & Khademhosseini, A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small 16, e2002931 (2020).

    Article  Google Scholar 

  149. Riley, L., Schirmer, L. & Segura, T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr. Opin. Biotechnol. 60, 1–8 (2019).

    Article  Google Scholar 

  150. Kharaziha, M., Baidya, A. & Annabi, N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 33, 2100176 (2021).

    Article  Google Scholar 

  151. Lee, B. M., Park, S. J., Noh, I. & Kim, C.-H. The effects of the molecular weights of hyaluronic acid on the immune responses. Biomater. Res. 25, 27 (2021).

    Article  Google Scholar 

  152. Browne, S., Hossainy, S. & Healy, K. Hyaluronic acid macromer molecular weight dictates the biophysical properties and in vitro cellular response to semisynthetic hydrogels. ACS Biomater. Sci. Eng. 6, 1135–1143 (2020).

    Article  Google Scholar 

  153. Snetkov, P., Zakharova, K., Morozkina, S., Olekhnovich, R. & Uspenskaya, M. Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers 12, 1800 (2020).

    Article  Google Scholar 

  154. Qazi, T. H. et al. Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell https://doi.org/10.1016/j.stem.2022.03.013 (2022).

    Article  Google Scholar 

  155. Zhang, K. et al. Evidence-based biomaterials research. Bioact. Mater. 15, 495–503 (2022).

    Google Scholar 

  156. Axpe, E., Orive, G., Franze, K. & Appel, E. A. Towards brain-tissue-like biomaterials. Nat. Commun. 11, 3423 (2020).

    Article  Google Scholar 

  157. Bej, R. & Haag, R. Mucus-inspired dynamic hydrogels: synthesis and future perspectives. J. Am. Chem. Soc. 144, 20137–20152 (2022).

    Article  Google Scholar 

  158. Bierman-Duquette, R. D. et al. Engineering tissues of the central nervous system: interfacing conductive biomaterials with neural stem/progenitor cells. Adv. Healthc. Mater. 11, 2101577 (2022).

    Article  Google Scholar 

  159. Gilchrist, A. E. & Harley, B. A. C. Engineered tissue models to replicate dynamic interactions within the hematopoietic stem cell niche. Adv. Healthc. Mater. 11, e2102130 (2021).

    Article  Google Scholar 

  160. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  Google Scholar 

  161. Li, J., Xing, R., Bai, S. & Yan, X. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 15, 1704–1715 (2019).

    Article  Google Scholar 

  162. Yang, C. et al. An injectable antibiotic hydrogel that scavenges proinflammatory factors for the treatment of severe abdominal trauma. Adv. Funct. Mater. 32, 2111698 (2022).

    Article  Google Scholar 

  163. Tu, Z. et al. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022).

    Article  Google Scholar 

  164. Francis, R. M. & DeForest, C. A. 4D biochemical photocustomization of hydrogel scaffolds for biomimetic tissue engineering. Acc. Mater. Res. 8, 704–715 (2023).

    Article  Google Scholar 

  165. Dhand, A. P., Galarraga, J. H. & Burdick, J. A. Enhancing biopolymer hydrogel functionality through interpenetrating networks. Trends Biotechnol. 39, 519–538 (2021).

    Article  Google Scholar 

  166. Wang, H. & Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 27, 3717–3736 (2015).

    Article  Google Scholar 

  167. Anthis, A. H. C. et al. Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment. Nat. Commun. 13, 7311 (2022).

    Article  Google Scholar 

  168. Wang, Y., Yan, J. & Goult, B. T. Force-dependent binding constants. Biochemistry 58, 4696–4709 (2019).

    Article  Google Scholar 

  169. Lele, T. P., Brock, A. & Peyton, S. R. Emerging concepts and tools in cell mechanomemory. Ann. Biomed. Eng. 48, 2103–2112 (2020).

    Article  Google Scholar 

  170. Mussel, M., Basser, P. J. & Horkay, F. Ion-induced volume transition in gels and its role in biology. Gels 7, 20 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of the Dean of the Cockrell School of Engineering at The University of Texas at Austin for the Institute for Biomaterials, Drug Delivery and Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to drafting and editing the manuscript before submission.

Corresponding author

Correspondence to Nicholas A. Peppas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Matthew Webber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Swollen polymer network model: www.hydrogeldesign.org

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richbourg, N., Wechsler, M.E., Rodriguez-Cruz, J.J. et al. Model-based modular hydrogel design. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00167-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00167-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research