Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Subcutaneous drug delivery from nanoscale systems

Abstract

Various types of nanoscale drug delivery systems (DDSs) have been developed for therapeutic and/or diagnostic applications. However, most systems have been designed for intravenous or intramuscular delivery, which may have drawbacks such as pain during injection, the inability for self-administration and the requirement for hospitalization, causing patient discomfort and high treatment costs. The subcutaneous route of administration is an attractive approach to circumvent many of these drawbacks. However, the subcutaneous route remains underexplored and is not yet used to its full potential. In this Review, we present key advances in the design of nanoscale DDSs (polymer–drug conjugates, liposomes, nanoparticles, micelles) for subcutaneous delivery. Additionally, we discuss nanoscale DDS-loaded hydrogels to create drug depots after subcutaneous administration, and outline relevant predictive in vitro, ex vivo, in silico and in vivo preclinical models for subcutaneous delivery. Finally, we highlight subcutaneous nanoscale DDSs in clinical trials and on the market and outline translational opportunities.

Key points

  • Subcutaneous (SC) drug delivery can bypass limitations of intravenous and intramuscular administration, particularly in terms of patient comfort, treatment costs and drug delivery modalities.

  • The SC Drug Delivery & Development Consortium, composed of academic and industry experts, has identified opportunities in SC drug delivery development to improve and extend the applications of SC technology.

  • SC delivery can be applied to a range of nanoscale drug delivery systems (DDSs), including polymer–drug conjugates, liposomes, nanoparticles, micelles and hydrogel-embedded nanoscale DDSs.

  • By specifically designing nanoscale DDSs for SC delivery, different therapeutic effects can be obtained, such as lymph node targeting, rapid systemic absorption, sustained release of drugs from the SC tissue and vaccination.

  • Several nanoscale DDSs for SC delivery have reached the clinical trial stage and some are available on the market.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of the skin and comparison of administration routes.
Fig. 2: Polymer–drug conjugates and liposomes for subcutaneous administration.
Fig. 3: Nanoscale drug delivery system-loaded thermosensitive hydrogels for subcutaneous administration.
Fig. 4: Comparison of the main preclinical models for subcutaneous administration.

Similar content being viewed by others

References

  1. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Shi, J., Votruba, A. R., Farokhzad, O. C. & Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10, 3223–3230 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nano 5, 42–47 (2010).

    Article  CAS  Google Scholar 

  5. Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N. & Couvreur, P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42, 1147–1235 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  ADS  CAS  Google Scholar 

  8. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Ekladious, I., Colson, Y. L. & Grinstaff, M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18, 273–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Rohiwal, S. S., Tiwari, A. P. & Ellederova, Z. in Nanopharmacokinetics: Routes of Administration and Predictive Models for Nanopharmacokinetics (eds Thorat, N. D. & Kumar, N.) Ch. 2 (Academic, 2021).

  11. Pond, S. M. & Tozer, T. N. First-pass elimination basic concepts and clinical consequences. Clin. Pharmacokinet. 9, 1–25 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Hoekstra, M. et al. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J. Rheumatol. 31, 645–648 (2004).

    CAS  PubMed  Google Scholar 

  13. Guerrini, G., Magrì, D., Gioria, S., Medaglini, D. & Calzolai, L. Characterization of nanoparticles-based vaccines for COVID-19. Nat. Nano 17, 570–576 (2022).

    Article  CAS  Google Scholar 

  14. Jones, G. B., Collins, D. S., Harrison, M. W., Thyagarajapuram, N. R. & Wright, J. M. Subcutaneous drug delivery: an evolving enterprise. Sci. Transl. Med. 9, eaaf9166 (2017).

    Article  PubMed  Google Scholar 

  15. Jin, J. F. et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence 9, 923–942 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Collins, D. S., Sánchez-Félix, M., Badkar, A. V. & Mrsny, R. Accelerating the development of novel technologies and tools for the subcutaneous delivery of biotherapeutics. J. Control. Rel. 321, 475–482 (2020). This review article presents the Subcutaneous Drug Delivery & Development Consortium and discusses the eight problem statements that have been identified to accelerate the SC delivery of biotherapeutics.

    Article  CAS  Google Scholar 

  17. Leveque, D. Subcutaneous administration of anticancer agents. Anticancer Res. 34, 1579–1586 (2014).

    CAS  PubMed  Google Scholar 

  18. Badkar, A. V., Gandhi, R. B., Davis, S. P. & LaBarre, M. J. Subcutaneous delivery of high-dose/volume biologics: current status and prospect for future advancements. Drug Des. Devel. Ther. 15, 159–170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aitken, M. & Kleinrock, M. Global oncology trend report: a review of 2015 and outlook to 2020. IMS Institute for Healthcare Informatics https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/global-oncology-trend-report-2016.pdf (2016).

  20. Kiss, L. et al. Kinetic analysis of the toxicity of pharmaceutical excipients Cremophor EL and RH40 on endothelial and epithelial cells. J. Pharm. Sci. 102, 1173–1181 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Koh, D. B., Gowardman, J. R., Rickard, C. M., Robertson, I. K. & Brown, A. Prospective study of peripheral arterial catheter infection and comparison with concurrently sited central venous catheters. Crit. Care Med. 36, 397–402 (2008).

    Article  PubMed  Google Scholar 

  22. Pujol, M. et al. Clinical epidemiology and outcomes of peripheral venous catheter-related bloodstream infections at a university-affiliated hospital. J. Hosp. Infect. 67, 22–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, K. C., Landgren, O., Arend, R. C., Chou, J. & Jacobs, I. A. Humanistic and economic impact of subcutaneous versus intravenous administration of oncology biologics. Future Oncol. 15, 3267–3281 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Stoner, K. L., Harder, H., Fallowfield, L. J. & Jenkins, V. A. Intravenous versus subcutaneous drug administration. Which do patients prefer? A systematic review. Patient 8, 145–153 (2015).

    Article  Google Scholar 

  25. Pivot, X. et al. Preference for subcutaneous or intravenous administration of trastuzumab in patients with HER2-positive early breast cancer (PrefHer): an open-label randomised study. Lancet Oncol. 14, 962–970 (2013). This article shows that SC injection of trastuzumab is a well-tolerated treatment option for HER2-positive breast cancer and is the preferred treatment of patients.

    Article  CAS  PubMed  Google Scholar 

  26. De Cock, E. et al. Time savings with rituximab subcutaneous injection versus rituximab intravenous infusion: a time and motion study in eight countries. PloS ONE 11, e0157957 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rummel, M. et al. Preference for subcutaneous or intravenous administration of rituximab among patients with untreated CD20+ diffuse large B-cell lymphoma or follicular lymphoma: results from a prospective, randomized, open-label, crossover study (PrefMab). Ann. Oncol. 28, 836–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Dychter, S. S., Gold, D. A. & Haller, M. F. Subcutaneous drug delivery: a route to increased safety, patient satisfaction, and reduced costs. J. Infus. Nurs. 35, 154–160 (2012).

    Article  PubMed  Google Scholar 

  29. Richter, W. F., Bhansali, S. G. & Morris, M. E. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 14, 559–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gradel, A. K. J. et al. Factors affecting the absorption of subcutaneously administered insulin: effect on variability. J. Diabetes Res. 2018, 1205121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chambers, E. S. & Vukmanovic-Stejic, M. Skin barrier immunity and ageing. Immunology 160, 116–125 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal, S. & Krishnamurthy, K. Histology, Skin (StatPearls, 2019).

  33. Wong, R., Geyer, S., Weninger, W., Guimberteau, J.-C. & Wong, J. K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 25, 92–98 (2016).

    Article  PubMed  Google Scholar 

  34. Kinnunen, H. M. & Mrsny, R. J. Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J. Control. Rel. 182, 22–32 (2014).

    Article  CAS  Google Scholar 

  35. Mathaes, R., Koulov, A., Joerg, S. & Mahler, H.-C. Subcutaneous injection volume of biopharmaceuticals — pushing the boundaries. J. Pharm. Sci. 105, 2255–2259 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Richter, W. F. & Jacobsen, B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab. Dispos. 42, 1881–1889 (2014).

    Article  PubMed  Google Scholar 

  37. Bittner, B., Richter, W. & Schmidt, J. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. BioDrugs 32, 425–440 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sánchez-Félix, M., Burke, M., Chen, H. H., Patterson, C. & Mittal, S. Predicting bioavailability of monoclonal antibodies after subcutaneous administration: open innovation challenge. Adv. Drug Del. Rev. 167, 66–77 (2020).

    Article  Google Scholar 

  39. Datta-Mannan, A. et al. Influence of physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. mAbs 12, 1770028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Patel, H. M., Boodle, K. M. & Vaughan-Jones, R. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim. Biophys. Acta 801, 76–86 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Marupudi, N. I. et al. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf. 6, 609–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Supersaxo, A., Hein, W. R. & Steffen, H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm. Res. 7, 167–169 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Del. Rev. 50, 3–20 (2001).

    Article  CAS  Google Scholar 

  44. Cheng, Z., Que, H., Chen, L., Sun, Q. & Wei, X. Nanomaterial-based drug delivery system targeting lymph nodes. Pharmaceutics 14, 1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCright, J., Naiknavare, R., Yarmovsky, J. & Maisel, K. Targeting lymphatics for nanoparticle drug delivery. Front. Pharmacol. 13, 887402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh, I. et al. (eds) Focal Controlled Drug Delivery in Delivery Systems for Lymphatic Targeting 429–458 (Springer, 2014).

  47. Rohner, N. A. & Thomas, S. N. Flexible macromolecule versus rigid particle retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS Biomater. Sci. Eng. 3, 153–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Veronese, F. M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).

    Article  CAS  Google Scholar 

  50. Kong, J. H., Oh, E. J., Chae, S. Y., Lee, K. C. & Hahn, S. K. Long acting hyaluronate–exendin 4 conjugate for the treatment of type 2 diabetes. Biomaterials 31, 4121–4128 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Cai, S., Xie, Y., Bagby, T. R., Cohen, M. S. & Forrest, M. L. Intralymphatic chemotherapy using a hyaluronan-cisplatin conjugate. J. Surg. Res. 147, 247–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cai, S. et al. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J. Control. Rel. 146, 212–218 (2010).

    Article  CAS  Google Scholar 

  53. Cohen, S. M. et al. Subcutaneous delivery of nanoconjugated doxorubicin and cisplatin for locally advanced breast cancer demonstrates improved efficacy and decreased toxicity at lower doses than standard systemic combination therapy in vivo. Am. J. Surg. 202, 646–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vogus, D. R. et al. A hyaluronic acid conjugate engineered to synergistically and sequentially deliver gemcitabine and doxorubicin to treat triple negative breast cancer. J. Control. Rel. 267, 191–202 (2017).

    Article  CAS  Google Scholar 

  55. Kulkarni, A. et al. Linear cyclodextrin polymer prodrugs as novel therapeutics for Niemann-Pick type C1 disorder. Sci. Rep. 8, 9547 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Bordat, A. et al. A polymer prodrug strategy to switch from intravenous to subcutaneous cancer therapy for irritant/vesicant drugs. J. Am. Chem. Soc. 144, 18844–18860 (2022). This article reports a polymer prodrug strategy for the SC injection of irritant or vesicant anticancer drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harrisson, S. et al. Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew. Chem. Int. Ed. Engl. 52, 1678–1682 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Nicolas, J. Drug-initiated synthesis of polymer prodrugs: combining simplicity and efficacy in drug delivery. Chem. Mater. 28, 1591–1606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harris, J. M. et al. Tuning drug release from polyoxazoline-drug conjugates. Eur. Polym. J. 120, 109241 (2019).

    Article  CAS  Google Scholar 

  60. Denmeade, S. R. et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl Cancer Inst. 95, 990–1000 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Janssen, S. et al. Pharmacokinetics, biodistribution, and antitumor efficacy of a human glandular kallikrein 2 (hK2)‐activated thapsigargin prodrug. Prostate 66, 358–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Peng, M. et al. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 9, 663–673 (2016).

    Article  CAS  Google Scholar 

  63. Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Del. Rev. 65, 36–48 (2013).

    Article  CAS  Google Scholar 

  64. Oussoren, C. & Storm, G. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Del. Rev. 50, 143–156 (2001).

    Article  CAS  Google Scholar 

  65. Allen, T. M., Hansen, C. B. & Guo, L. S. Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim. Biophys. Acta 1150, 9–16 (1993). This article reports that small, PEGylated liposomes reach the systemic circulation faster than bare liposomes and exhibit reduced retention in lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  66. Oussoren, C., Zuidema, J., Crommelin, D. J. & Storm, G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. II. Influence of liposomal size, lipid composition and lipid dose. Biochim. Biophys. Acta 1328, 261–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. da Costa-Silva, T. A., Galisteo, A. J. Jr, Lindoso, J. A., Barbosa, L. R. & Tempone, A. G. Nanoliposomal buparvaquone immunomodulates Leishmania infantum-infected macrophages and is highly effective in a murine model. Antimicrob. Agents Chemother. 61, e02297–e02316 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Kaur, C. D., Nahar, M. & Jain, N. K. Lymphatic targeting of zidovudine using surface-engineered liposomes. J. Drug Target. 16, 798–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Tiantian, Y. et al. Study on intralymphatic-targeted hyaluronic acid-modified nanoliposome: influence of formulation factors on the lymphatic targeting. Int. J. Pharm. 471, 245–257 (2014).

    Article  PubMed  Google Scholar 

  70. Ye, T. et al. Low molecular weight heparin mediating targeting of lymph node metastasis based on nanoliposome and enzyme-substrate interaction. Carbohydr. Polym. 122, 26–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Phillips, W. T., Klipper, R. & Goins, B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J. Pharmacol. Exp. Ther. 295, 309–313 (2000).

    CAS  PubMed  Google Scholar 

  72. Wang, N., Chen, M. & Wang, T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J. Control. Rel. 303, 130–150 (2019).

    Article  CAS  Google Scholar 

  73. Wurz, G. T., Kao, C. J., Wolf, M. & DeGregorio, M. W. Tecemotide: an antigen-specific cancer immunotherapy. Hum. Vaccines Immunother. 10, 3383–3393 (2014).

    Article  Google Scholar 

  74. Xia, W., Wang, J., Xu, Y., Jiang, F. & Xu, L. L-BLP25 as a peptide vaccine therapy in non-small cell lung cancer: a review. J. Thorac. Dis. 6, 1513–1520 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Henriksen-Lacey, M. et al. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Rel. 142, 180–186 (2010).

    Article  CAS  Google Scholar 

  76. Henriksen-Lacey, M. et al. Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[N-(N′,N′-dimethylaminoethane)carbomyl] cholesterol (DC-Chol), and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. Mol. Pharm. 8, 153–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, K. S., Kim, H. S., Park, J. S., Kwon, Y. G. & Park, Y. S. Inhibition of B16BL6 tumor progression by coadministration of recombinant angiostatin K1-3 and endostatin genes with cationic liposomes. Cancer Gene Ther. 11, 441–449 (2004).

    Article  PubMed  Google Scholar 

  78. Oussoren, C. & Storm, G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: III. Influence of surface modification with poly(ethyleneglycol). Pharm. Res. 14, 1479–1484 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Bestman-Smith, J., Gourde, P., Désormeaux, A., Tremblay, M. J. & Bergeron, M. G. Sterically stabilized liposomes bearing anti-HLA-DR antibodies for targeting the primary cellular reservoirs of HIV-1. Biochim. Biophys. Acta 1468, 161–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Moghimi, S. M. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes. Biomaterials 27, 136–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Zhuang, Y. et al. PEGylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J. Control. Rel. 159, 135–142 (2012).

    Article  CAS  Google Scholar 

  82. Moghimi, S. M. & Moghimi, M. Enhanced lymph node retention of subcutaneously injected IgG1-PEG2000-liposomes through pentameric IgM antibody-mediated vesicular aggregation. Biochim. Biophys. Acta 1778, 51–55 (2008). This article reports the design of surface-functionalized small-sized PEGylated liposomes for the targeting of the lymph nodes after SC administration.

    Article  CAS  PubMed  Google Scholar 

  83. Gagné, J.-F., Désormeaux, A., Perron, S., Tremblay, M. J. & Bergeron, M. G. Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim. Biophys. Acta 1558, 198–210 (2002).

    Article  PubMed  Google Scholar 

  84. Yan, Z. et al. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J. Control. Rel. 157, 118–125 (2012).

    Article  CAS  Google Scholar 

  85. Allen, T. M., Hansen, C. B. & Peliowski, A. Subcutaneous administration of sterically stabilized (stealth) liposomes is an effective sustained release system for 1-β-d-arabinofuranosylcytosine. Drug Deliv. 1, 55–60 (1993).

    Article  CAS  Google Scholar 

  86. Corvo, M. L. et al. Subcutaneous administration of superoxide dismutase entrapped in long circulating liposomes: in vivo fate and therapeutic activity in an inflammation model. Pharm. Res. 17, 600–606 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Ulmansky, R. et al. Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines. J. Control. Rel. 160, 299–305 (2012).

    Article  CAS  Google Scholar 

  88. Celia, C. et al. Sustained zero‐order release of intact ultra‐stable drug‐loaded liposomes from an implantable nanochannel delivery system. Adv. Health. Mater. 3, 230–238 (2014).

    Article  Google Scholar 

  89. Angst, M. S. & Drover, D. R. Pharmacology of drugs formulated with DepoFoam™: a sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin. Pharmacokinet. 45, 1153–1176 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Bulbake, U., Doppalapudi, S., Kommineni, N. & Khan, W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9, e09394 (2017).

    Article  Google Scholar 

  91. da Silva, C. M. G. et al. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient) liposomal system promotes extended anesthesia time. PloS ONE 12, e0185828 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Ramprasad, M. P., Anantharamaiah, G., Garber, D. W. & Katre, N. V. Sustained-delivery of an apolipoproteinE–peptidomimetic using multivesicular liposomes lowers serum cholesterol levels. J. Control. Rel. 79, 207–218 (2002).

    Article  CAS  Google Scholar 

  93. Langston, M. V., Ramprasad, M. P., Kararli, T. T., Galluppi, G. R. & Katre, N. V. Modulation of the sustained delivery of myelopoietin (leridistim) encapsulated in multivesicular liposomes (DepoFoam). J. Control. Rel. 89, 87–99 (2003).

    Article  CAS  Google Scholar 

  94. Nakamura, T. et al. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17, 944–953 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Rao, D. A., Forrest, M. L., Alani, A. W., Kwon, G. S. & Robinson, J. R. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J. Pharm. Sci. 99, 2018–2031 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Koker, S. et al. Engineering polymer hydrogel nanoparticles for lymph node‐targeted delivery. Angew. Chem. Int. Ed. Engl. 128, 1356–1361 (2016).

    Article  Google Scholar 

  97. Zhan, X., Tran, K. K. & Shen, H. Effect of the poly(ethylene glycol) (PEG) density on the access and uptake of particles by antigen-presenting cells (APCs) after subcutaneous administration. Mol. Pharm. 9, 3442–3451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaminskas, L. M. et al. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J. Control. Rel. 140, 108–116 (2009).

    Article  CAS  Google Scholar 

  99. Freeling, J. P., Koehn, J., Shu, C., Sun, J. & Ho, R. J. Anti-HIV drug-combination nanoparticles enhance plasma drug exposure duration as well as triple-drug combination levels in cells within lymph nodes and blood in primates. AIDS Res. Hum. Retrovir. 31, 107–114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Harivardhan Reddy, L., Sharma, R. K., Chuttani, K., Mishra, A. K. & Murthy, R. S. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J. Control. Rel. 105, 185–198 (2005).

    Article  CAS  Google Scholar 

  101. Wilson, K. D. et al. Effects of intravenous and subcutaneous administration on the pharmacokinetics, biodistribution, cellular uptake and immunostimulatory activity of CpG ODN encapsulated in liposomal nanoparticles. Int. Immunopharmacol. 7, 1064–1075 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Mishra, D. et al. Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis B surface antigen for vaccination using subcutaneous route. J. Pharm. Pharm. Sci. 13, 495–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, S. et al. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. J. Control. Rel. 196, 106–112 (2014).

    Article  CAS  Google Scholar 

  104. Davies, N. et al. Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein. Mol. Ther. Nucleic Acids 24, 369–384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Elbrink, K. et al. Application of solid lipid nanoparticles as a long-term drug delivery platform for intramuscular and subcutaneous administration: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 163, 158–170 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Miura, R., Tahara, Y., Sawada, S.-I., Sasaki, Y. & Akiyoshi, K. Structural effects and lymphocyte activation properties of self-assembled polysaccharide nanogels for effective antigen delivery. Sci. Rep. 8, 16464 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, C. et al. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J. Control. Rel. 256, 170–181 (2017).

    Article  CAS  Google Scholar 

  108. Shi, G.-N. et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 113, 191–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Singh, Y. et al. Subcutaneously administered ultrafine PLGA nanoparticles containing doxycycline hydrochloride target lymphatic filarial parasites. Mol. Pharm. 13, 2084–2094 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, H. et al. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 164, 38–53 (2018). This article reports the use of TLR7/8 agonist-loaded biodegradable polymer nanoparticles as vaccine adjuvants for cancer immunotherapy following SC administration.

    Article  CAS  PubMed  Google Scholar 

  111. Saravanan, S. et al. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats. Int. J. Biol. Macromol. 95, 1190–1198 (2017).

    Article  CAS  Google Scholar 

  112. Rahimian, S. et al. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J. Control. Rel. 203, 16–22 (2015).

    Article  CAS  Google Scholar 

  113. Sudha, T. et al. Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac. Nanomedicine 12, 195–205 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Reddy, L. H., Sharma, R. & Murthy, R. Enhanced tumour uptake of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles in mice bearing Dalton’s lymphoma tumour. J. Drug Target. 12, 443–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Mura, S., Fattal, E. & Nicolas, J. From poly (alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J. Drug Target. 27, 470–501 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Tasset, C. et al. Polyisobutylcyanoacrylate nanoparticles as sustained release system for calcitonin. J. Control. Rel. 33, 23–30 (1995).

    Article  CAS  Google Scholar 

  117. Gautier, J. et al. Biodegradable nanoparticles for subcutaneous administration of growth hormone releasing factor (hGRF). J. Control. Rel. 20, 67–77 (1992).

    Article  CAS  Google Scholar 

  118. Mesiha, M. S., Sidhom, M. B. & Fasipe, B. Oral and subcutaneous absorption of insulin poly (isobutylcyanoacrylate) nanoparticles. Int. J. Pharm. 288, 289–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Grangier, J. L., Puygrenier, M., Gautier, J. C. & Couvreur, P. Nanoparticles as carriers for growth hormone releasing factor. J. Control. Rel. 15, 3–13 (1991).

    Article  CAS  Google Scholar 

  120. Lenaerts, V. et al. Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5, 65–68 (1984).

    Article  CAS  PubMed  Google Scholar 

  121. Dhandhukia, J. P. et al. Berunda polypeptides: multi-headed fusion proteins promote subcutaneous administration of rapamycin to breast cancer in vivo. Theranostics 7, 3856–3872 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ferrando, R. M., Lay, L. & Polito, L. Gold nanoparticle-based platforms for vaccine development. Drug Discov. Today Technol. 38, 57–67 (2020).

    Article  Google Scholar 

  123. Brinas, R. P. et al. Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines. Bioconj. Chem. 23, 1513–1523 (2012).

    Article  CAS  Google Scholar 

  124. Sanchez-Villamil, J. I., Tapia, D. & Torres, A. G. Development of a gold nanoparticle vaccine against enterohemorrhagic Escherichia coli O157: H7. mBio 10, e01869-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gulla, S. K. et al. In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles. Biomat. Sci. 7, 773–788 (2019).

    Article  CAS  Google Scholar 

  126. Sábio, R. M., Meneguin, A. B., dos Santos, A. M., Monteiro, A. S. & Chorilli, M. Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration. Micropor. Mesopor. Mat. 312, 110774 (2021).

    Article  Google Scholar 

  127. Elbialy, N. S., Aboushoushah, S. F., Sofi, B. F. & Noorwali, A. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Micropor. Mesopor. Mat. 291, 109540 (2020).

    Article  CAS  Google Scholar 

  128. Wang, L. et al. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. J. Control. Rel. 318, 197–209 (2020).

    Article  CAS  Google Scholar 

  129. Zhang, Y. et al. A versatile theranostic nanoplatform based on mesoporous silica. Mater. Sci. Eng. C 98, 560–571 (2019).

    Article  ADS  CAS  Google Scholar 

  130. Nguyen, T. L., Cha, B. G., Choi, Y., Im, J. & Kim, J. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials 239, 119859 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Nguyen, T. L., Choi, Y. & Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 31, 1803953 (2019).

    Article  Google Scholar 

  132. Skrastina, D. et al. Silica nanoparticles as the adjuvant for the immunisation of mice using hepatitis B core virus-like particles. PloS ONE 9, e114006 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  133. Hajizade, A., Salmanian, A. H., Amani, J., Ebrahimi, F. & Arpanaei, A. EspA-loaded mesoporous silica nanoparticles can efficiently protect animal model against enterohaemorrhagic E. coli O157: H7. Artif. Cell Nanomed. Biotechnol. 46, 1067–1075 (2018).

    Article  Google Scholar 

  134. Grootendorst, D. J. et al. Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra‐operative nodal staging. Contrast Media Mol. Imaging 8, 83–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Grootendorst, D. J. et al. Intra‐operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion. J. Biophotonics 6, 493–504 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Perumal, S., Atchudan, R. & Lee, W. A review of polymeric micelles and their applications. Polymers 14, 2510 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dong, J., Song, X., Lian, X., Fu, Y. & Gong, T. Subcutaneously injected ivermectin-loaded mixed micelles: formulation, pharmacokinetics and local irritation study. Drug Deliv. 23, 2220–2227 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Lim, S. B., Rubinstein, I., Sadikot, R. T., Artwohl, J. E. & Önyüksel, H. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharm. Res. 28, 662–672 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Li, X. et al. MPEG-DSPE polymeric micelle for translymphatic chemotherapy of lymph node metastasis. Int. J. Pharm. 487, 8–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Trubetskoy, V. S., Frank-Kamenetsky, M. D., Whiteman, K. R., Wolf, G. L. & Torchilin, V. P. Stable polymeric micelles: lymphangiographic contrast media for gamma scintigraphy and magnetic resonance imaging. Acad. Radiol. 3, 232–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Zeng, Q. et al. Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. J. Control. Rel. 200, 1–12 (2015).

    Article  CAS  Google Scholar 

  142. Zeng, Q. et al. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials 122, 105–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Peng, J. et al. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci. 5, 1700891 (2018).

    Article  Google Scholar 

  144. Li, H. et al. Rational design of polymeric hybrid micelles to overcome lymphatic and intracellular delivery barriers in cancer immunotherapy. Theranostics 7, 4383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cui, L., Osada, K., Imaizumi, A., Kataoka, K. & Nakano, K. Feasibility of a subcutaneously administered block/homo-mixed polyplex micelle as a carrier for DNA vaccination in a mouse tumor model. J. Control. Rel. 206, 220–231 (2015).

    Article  CAS  Google Scholar 

  146. Li, C. et al. Synthetic polymeric mixed micelles targeting lymph nodes trigger enhanced cellular and humoral immune responses. ACS Appl. Mater. Interfaces 10, 2874–2889 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Jones, M.-C., Gao, H. & Leroux, J.-C. Reverse polymeric micelles for pharmaceutical applications. J. Control. Rel. 132, 208–215 (2008).

    Article  CAS  Google Scholar 

  148. Hu, Q., Prakash, J., Rijcken, C. J., Hennink, W. E. & Storm, G. High systemic availability of core-crosslinked polymeric micelles after subcutaneous administration. Int. J. Pharm. 514, 112–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Liu, X. et al. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Appl. Bio Mater. 3, 1598–1606 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Jeong, B., Kim, S. W. & Bae, Y. H. Thermosensitive sol–gel reversible hydrogels. Adv. Drug Del. Rev. 64, 154–162 (2012).

    Article  Google Scholar 

  151. Jin, K.-M. & Kim, Y.-H. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J. Control. Rel. 127, 249–256 (2008).

    Article  CAS  Google Scholar 

  152. Kim, J. K., Won, Y.-W., Lim, K. S. & Kim, Y.-H. Low-molecular-weight methylcellulose-based thermo-reversible gel/pluronic micelle combination system for local and sustained docetaxel delivery. Pharm. Res. 29, 525–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Sharma, G., Italia, J., Sonaje, K., Tikoo, K. & Kumar, M. R. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats. J. Control. Rel. 118, 27–37 (2007).

    Article  CAS  Google Scholar 

  154. Peng, Q., Zhang, Z.-R., Gong, T., Chen, G.-Q. & Sun, X. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials 33, 1583–1588 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Peng, Q. et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater. 9, 5063–5069 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Gou, M. et al. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int. J. Pharm. 359, 228–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Matanović, M. R. et al. Development and preclinical pharmacokinetics of a novel subcutaneous thermoresponsive system for prolonged delivery of heparin. Int. J. Pharm. 496, 583–592 (2015).

    Article  PubMed  Google Scholar 

  158. Yu, L., Chang, G. T., Zhang, H. & Ding, J. D. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int. J. Pharm. 348, 95–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Cai, X. et al. Huperzine A–phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release. Int. J. Pharm. 433, 102–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, Y. et al. Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy. ACS Appl. Mater. Interfaces 9, 23428–23440 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Cao, D. et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif. Cell Nanomed. Biotechnol. 47, 181–191 (2019).

    Article  CAS  Google Scholar 

  162. Nagahama, K. et al. Self-assembling polymer micelle/clay nanodisk/doxorubicin hybrid injectable gels for safe and efficient focal treatment of cancer. Biomacromolecules 16, 880–889 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Dong, X. et al. Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery. Colloids Surf. B 154, 253–262 (2017).

    Article  CAS  Google Scholar 

  164. Park, M.-R. et al. Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery. Biomaterials 31, 1349–1359 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Seo, B.-B., Park, M.-R. & Song, S.-C. Sustained release of exendin 4 using injectable and ionic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus. ACS Appl. Mater. Interfaces 11, 15201–15211 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Seo, B.-B., Park, M.-R., Chun, C., Lee, J.-Y. & Song, S.-C. The biological efficiency and bioavailability of human growth hormone delivered using injectable, ionic, thermosensitive poly (organophosphazene)-polyethylenimine conjugate hydrogels. Biomaterials 32, 8271–8280 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Park, M.-R. et al. Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. J. Control. Rel. 147, 359–367 (2010).

    Article  CAS  Google Scholar 

  168. Park, M.-R., Seo, B.-B. & Song, S.-C. Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials 34, 1327–1336 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Kim, Y. M. & Song, S. C. Targetable micelleplex hydrogel for long-term, effective, and systemic siRNA delivery. Biomaterials 35, 7970–7977 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Zhang, Z.-Q., Kim, Y.-M. & Song, S.-C. Injectable and quadruple-functional hydrogel as an alternative to intravenous delivery for enhanced tumor targeting. ACS Appl. Mater. Interfaces 11, 34634–34644 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Viola, M. et al. Subcutaneous delivery of monoclonal antibodies: how do we get there? J. Control. Rel. 286, 301–314 (2018).

    Article  CAS  Google Scholar 

  172. McDonald, T. A., Zepeda, M. L., Tomlinson, M. J., Bee, W. H. & Ivens, I. A. Subcutaneous administration of biotherapeutics: current experience in animal models. Curr. Opin. Mol. Ther. 12, 461–470 (2010).

    CAS  PubMed  Google Scholar 

  173. Li, D. et al. Simulate subQ: the methods and the media. J. Pharm. Sci. 112, 1492–1508 (2021).

    Article  PubMed  Google Scholar 

  174. Kinnunen, H. M. et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J. Control. Rel. 214, 94–102 (2015). This article describes the SCISSOR instrument and its application to predict the SC delivery of therapeutic molecules.

    Article  CAS  Google Scholar 

  175. Song, J. Y. et al. Glatiramer acetate persists at the injection site and draining lymph nodes via electrostatically-induced aggregation. J. Control. Rel. 293, 36–47 (2019).

    Article  CAS  Google Scholar 

  176. Thati, S. et al. Novel applications of an in vitro injection model system to study bioperformance: case studies with different drug modalities. J. Pharm. Innov. 15, 268–280 (2020).

    Article  Google Scholar 

  177. Bown, H. K. et al. In vitro model for predicting bioavailability of subcutaneously injected monoclonal antibodies. J. Control. Rel. 273, 13–20 (2018).

    Article  CAS  Google Scholar 

  178. Mathes, S. H., Ruffner, H. & Graf-Hausner, U. The use of skin models in drug development. Adv. Drug Del. Rev. 69, 81–102 (2014).

    Article  Google Scholar 

  179. Choudhury, S. & Das, A. Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy 23, 1–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Chandran Suja, V. et al. A biomimetic chip to assess subcutaneous bioavailability of monoclonal antibodies in humans. Proc. Natl Acad. Sci. USA Nexus 2, pgad317 (2023). This article reports an in vitro coculture subcutaneous tissue model to evaluate transport and pharmacokinetics of subcutaneously injected drugs.

    Google Scholar 

  181. Descargues, P. System for keeping alive and transporting skin biopsies and applications of said system. US Patent 14/398,587 (2017).

  182. Kagan, L. Pharmacokinetic modeling of the subcutaneous absorption of therapeutic proteins. Drug Metab. Dispos. 42, 1890–1905 (2014).

    Article  PubMed  Google Scholar 

  183. Dubbelboer, I. R. & Sjögren, E. Physiological based pharmacokinetic and biopharmaceutics modelling of subcutaneously administered compounds — an overview of in silico models. Int. J. Pharm. 621, 121808 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Reddy, K. R., Modi, M. W. & Pedder, S. Use of peginterferon alfa-2a (40 KD)(Pegasys®) for the treatment of hepatitis C. Adv. Drug Del. Rev. 54, 571–586 (2002).

    Article  Google Scholar 

  185. Wang, Y.-S. et al. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Del. Rev. 54, 547–570 (2002).

    Article  CAS  Google Scholar 

  186. Piedmonte, D. M. & Treuheit, M. J. Formulation of Neulasta®(pegfilgrastim). Adv. Drug Del. Rev. 60, 50–58 (2008).

    Article  CAS  Google Scholar 

  187. Molineux, G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®). Curr. Pharm. Des. 10, 1235–1244 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Rosa, J., Sabelli, M. & Soriano, E. R. Prefilled certolizumab pegol (Cimzia®) syringes for self-use in the treatment of rheumatoid arthritis. Med. Devices Evid. Res. 3, 25–31 (2010).

    CAS  Google Scholar 

  189. Connock, M. et al. Certolizumab pegol (CIMZIA®) for the treatment of rheumatoid arthritis. Health Technol. Assess. 14, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Moreadith, R. W. et al. Clinical development of a poly (2-oxazoline)(POZ) polymer therapeutic for the treatment of Parkinson’s disease — proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 88, 524–552 (2017).

    Article  CAS  Google Scholar 

  191. Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. Vyas, K. S. et al. Systematic review of liposomal bupivacaine (Exparel) for postoperative analgesia. Plast. Reconstr. Surg. 138, 748e–756e (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Ginosar, Y. et al. Proliposomal ropivacaine oil: pharmacokinetic and pharmacodynamic data after subcutaneous administration in volunteers. Anesth. Analg. 122, 1673–1680 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Belogurov, A. et al. CD206-targeted liposomal myelin basic protein peptides in patients with multiple sclerosis resistant to first-line disease-modifying therapies: a first-in-human, proof-of-concept dose-escalation study. Neurotherapeutics 13, 895–904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kitano, S. et al. HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin. Cancer Res. 12, 7397–7405 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Kawabata, R. et al. Antibody response against NY‐ESO‐1 in CHP‐NY‐ESO‐1 vaccinated patients. Int. J. Cancer 120, 2178–2184 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. Gonella, A., Grizot, S., Liu, F., López Noriega, A. & Richard, J. Long-acting injectable formulation technologies: challenges and opportunities for the delivery of fragile molecules. Expert Opin. Expert Opin. Drug Deliv. 19, 927–944 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Locke, K. W., Maneval, D. C. & LaBarre, M. J. ENHANZE® drug delivery technology: a novel approach to subcutaneous administration using recombinant human hyaluronidase PH20. Drug Deliv. 26, 98–106 (2019). This review article reports the ENHANZE technology and its applications to SC administration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Soundararajan, R., Wang, G., Petkova, A., Uchegbu, I. F. & Schätzlein, A. G. Hyaluronidase coated molecular envelope technology nanoparticles enhance drug absorption via the subcutaneous route. Mol. Pharm. 17, 2599–2611 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Jarvi, N. L. & Balu-Iyer, S. V. Immunogenicity challenges associated with subcutaneous delivery of therapeutic proteins. Biodrugs 35, 125–146 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Rel. 244, 184–193 (2016).

    Article  CAS  Google Scholar 

  202. Zhao, Y. et al. A frustrating problem: accelerated blood clearance of PEGylated solid lipid nanoparticles following subcutaneous injection in rats. Eur. J. Pharm. Biopharm. 81, 506–513 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Ganson, N. J., Kelly, S. J., Scarlett, E., Sundy, J. S. & Hershfield, M. S. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly (ethylene glycol)(PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthrit. Res. Ther. 8, R12 (2005).

    Article  Google Scholar 

  204. Longo, N. et al. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet 384, 37–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chan, L. J. et al. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration. Mol. Pharm. 12, 794–809 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49, 6288–6308 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Barz, M., Luxenhofer, R., Zentel, R. & Vicent, M. J. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym. Chem. 2, 1900–1918 (2011).

    Article  CAS  Google Scholar 

  208. Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nano 13, 777–785 (2018).

    Article  CAS  Google Scholar 

  210. Luiz, M. T. et al. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur. J. Pharm. Biopharm. 165, 127–148 (2021).

    Article  Google Scholar 

  211. Hassanzadeh, P., Atyabi, F. & Dinarvand, R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Del. Rev. 151152, 169–190 (2019).

    Article  Google Scholar 

  212. Nuhn, L. Artificial intelligence assists nanoparticles to enter solid tumours. Nat. Nanotech. 18, 550–551 (2023).

    Article  ADS  CAS  Google Scholar 

  213. Kieseier, B. C. & Calabresi, P. A. PEGylation of interferon-β-1a: a promising strategy in multiple sclerosis. CNS Drugs 26, 205–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Moore, D. J., Adi, Y., Connock, M. J. & Bayliss, S. Clinical effectiveness and cost-effectiveness of pegvisomant for the treatment of acromegaly: a systematic review and economic evaluation. BMC Endocr. Disord. 9, 20 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Thomas, J. et al. Pegvaliase for the treatment of phenylketonuria: results of a long-term phase 3 clinical trial program (PRISM). Mol. Genet. Metab. 124, 27–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Sanchez-Fructuoso, A. et al. Anemia control in kidney transplant patients treated with methoxy polyethylene glycol-epoetin beta (mircera): the Anemiatrans Group. Transplant. Proc. 42, 2931–2934 (2010).

    Article  CAS  PubMed  Google Scholar 

  217. Valliant, A. & Hofmann, R. M. Managing dialysis patients who develop anemia caused by chronic kidney disease: focus on peginesatide. Int. J. Nanomed. 8, 3297–3307 (2013).

    Google Scholar 

  218. Hukshorn, C. J. et al. Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. J. Clin. Endocrinol. Metab. 85, 4003–4009 (2000).

    Article  CAS  PubMed  Google Scholar 

  219. Hukshorn, C. et al. The effect of pegylated recombinant human leptin (PEG-OB) on weight loss and inflammatory status in obese subjects. Int. J. Obes. 26, 504–509 (2002).

    Article  CAS  Google Scholar 

  220. Mertz, N., Østergaard, J., Yaghmur, A. & Larsen, S. W. Transport characteristics in a novel in vitro release model for testing the performance of intra-articular injectables. Int. J. Pharm. 566, 445–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Milak, S., Chemelli, A., Glatter, O. & Zimmer, A. Vancomycin ocular delivery systems based on glycerol monooleate reversed hexagonal and reversed cubic liquid crystalline phases. Eur. J. Pharm. Biopharm. 139, 279–290 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Bender, C. et al. Evaluation of in vitro tools to predict the in vivo absorption of biopharmaceuticals following subcutaneous administration. J. Pharm. Sci. 111, 2514–2524 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The PhD fellowships of L.T. and M.F. and some results described in this Review have been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 771829). The National Centre for Scientific Research (CNRS) and Université Paris-Saclay are also acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Julien Nicolas.

Ethics declarations

Competing interests

J.N. is a co-founder of the startup company Imescia. The other authors have no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EpiDerm: https://www.mattek.com/products/epiderm

EpiSkin/Human Epidermis: https://www.episkin.com/Episkin

Genoskin. HypoSkin - Skin model for subcutaneous injections: https://genoskin.com/en/tissue-samples/skin-model-subcutaneous-injections

Subcutaneous Drug Development & Delivery Consortium: https://subcutaneousconsortium.org

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomasini, L., Ferrere, M. & Nicolas, J. Subcutaneous drug delivery from nanoscale systems. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00161-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00161-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research