Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic peptide branched polymers for antibacterial and biomedical applications

Abstract

Antimicrobial resistance is a major threat to human health, and this ‘invisible pandemic’ is a looming public health crisis. Accordingly, both broad-spectrum and selective antimicrobial agents that do not induce resistance are urgently required. Synthetic peptide-polymers and their mimics and in particular structurally nano-engineered antimicrobial peptide-polymers (SNAPPs) are antimicrobial materials with clinical potential as novel therapeutics to combat antimicrobial resistance due to their inherent biodegradability, biocompatibility and tuneable cytocompatibility. Macromolecular design in conjunction with rational monomer composition can direct their architecture, self-assembly and chemical behaviour, ultimately guiding the choice of appropriate application within the biomedical field. This Review focuses on several facets of antimicrobial peptide-polymers including their synthesis, diversity, physicochemical properties and bacteria-killing mechanisms. We discuss current strategies in the antimicrobial field that improve antibacterial activity in the context of their current and potential application to peptide-polymers. Further, different strategies to enhance the antibacterial activity of peptide-polymers are discussed, along with burgeoning developments in medical applications. The challenges of future applications of synthetic peptide branched polymers in biomedical engineering are highlighted.

Key points

  • Infectious diseases caused by antibiotic-resistant pathogens are one of the greatest challenges to global health care.

  • Synthetic peptide branched polymers produced by ring-opening polymerization of N-carboxyanhydride amino acids have exquisite antimicrobial efficacy while maintaining the peptide-polymer advantages of being highly biocompatible, biodegradable materials with highly potent antimicrobial activity.

  • Structurally nano-engineered antimicrobial peptide-polymers (SNAPPs) are an example of these synthetic peptide branched polymers.

  • SNAPPs, and other peptide-polymers, possess multiple mechanisms of action for killing bacteria, which reduces the ability of bacteria to develop resistance.

  • Peptide-polymers have unique synthesis advantages as their production is more cost-effective than antimicrobial peptides made by solid-phase peptide synthesis. They can also be made on a large scale and can incorporate a variety of post-modifications.

  • Synthetic peptide branched polymers might be used for drug delivery, gene therapy, tissue engineering, vaccine therapeutics and other biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic peptide branched polymers.
Fig. 2: Schematic representation of the potential secondary structure of individual SNAPP arms.
Fig. 3: Mechanisms of antimicrobial action of antimicrobial peptides and SNAPPs.
Fig. 4: Chemical modification of SNAPPs and other polymers.
Fig. 5: Schematic showing the broad range of applications of synthetic peptide branched polymers.

Similar content being viewed by others

References

  1. Cook, M. A. & Wright, G. D. The past, present, and future of antibiotics. Sci. Transl Med. 14, eabo7793 (2022).

    Article  Google Scholar 

  2. Chremos, A. & Douglas, J. F. Influence of branching on the configurational and dynamical properties of entangled polymer melts. Polymers 11, 1045 (2019).

    Article  Google Scholar 

  3. Zasloff, M. Antimicrobial peptides of multicellular organisms: my perspective. Adv. Exp. Med. Biol. 1117, 3–6 (2019).

    Article  Google Scholar 

  4. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005).

    Article  Google Scholar 

  5. Steiner, H., Hultmark, D., Engström, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248 (1981).

    Article  Google Scholar 

  6. Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl Acad. Sci. USA 84, 5449–5453 (1987).

    Article  Google Scholar 

  7. Selsted, M. E. et al. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J. Biol. Chem. 260, 4579–4584 (1985).

    Article  Google Scholar 

  8. Li, W., Separovic, F., O’Brien-Simpson, N. M. & Wade, J. D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 50, 4932–4973 (2021).

    Article  Google Scholar 

  9. Rasines Mazo, A. et al. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev. 49, 4737–4834 (2020).

    Article  Google Scholar 

  10. Shao, N. et al. Heterochiral β-peptide polymers combating multidrug-resistant cancers effectively without inducing drug resistance. J. Am. Chem. Soc. 144, 7283–7294 (2022).

    Article  Google Scholar 

  11. Cao, J. et al. Interfacial ring-opening polymerization of amino-acid-derived N-thiocarboxyanhydrides toward well-defined polypeptides. ACS Macro Lett. 6, 836–840 (2017).

    Article  Google Scholar 

  12. Tian, Z. Y., Zhang, Z., Wang, S. & Lu, H. A moisture-tolerant route to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. Nat. Commun. 12, 5810 (2021).

    Article  Google Scholar 

  13. Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 116, 786–808 (2016).

    Article  Google Scholar 

  14. Jia, F. et al. d-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim. Biophys. Sin. 49, 916–925 (2017).

    Article  Google Scholar 

  15. Kirshenbaum, K. et al. Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc. Natl Acad. Sci. USA 95, 4303–4308 (1998).

    Article  Google Scholar 

  16. Song, Z. et al. Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides. Proc. Natl Acad. Sci. USA 116, 10658–10663 (2019).

    Article  Google Scholar 

  17. Grazon, C. et al. Aqueous ring‐opening polymerization‐induced self‐assembly (ROPISA) of N‐carboxyanhydrides. Angew. Chem. 132, 632–636 (2020).

    Article  Google Scholar 

  18. Gradisar, S., Zagar, E. & Pahovnik, D. Ring-opening polymerization of N-carboxyanhydrides initiated by a hydroxyl group. ACS Macro Lett. 6, 637–640 (2017).

    Article  Google Scholar 

  19. Obeid, R. et al. The behavior of poly (amino acids) containing l‐cysteine and their block copolymers with poly (ethylene glycol) on gold surfaces. J. Polym. Sci. A 52, 248–257 (2014).

    Article  Google Scholar 

  20. Ji, S., Xu, L., Fu, X., Sun, J. & Li, Z. Light-and metal ion-induced self-assembly and reassembly based on block copolymers containing a photoresponsive polypeptide segment. Macromolecules 52, 4686–4693 (2019).

    Article  Google Scholar 

  21. Liu, S.-T., Tuan-Mu, H.-Y., Hu, J.-J. & Jan, J.-S. Genipin cross-linked PEG-block-poly (l-lysine)/disulfide-based polymer complex micelles as fluorescent probes and pH-/redox-responsive drug vehicles. RSC Adv. 5, 87098–87107 (2015).

    Article  Google Scholar 

  22. Lv, S. et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 35, 6118–6129 (2014).

    Article  Google Scholar 

  23. Wang, X. et al. Facile synthesis of helical multiblock copolypeptides: minimal side reactions with accelerated polymerization of N-carboxyanhydrides. ACS Macro Lett. 8, 1517–1521 (2019).

    Article  Google Scholar 

  24. Veronese, F. M. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22, 405–417 (2001).

    Article  Google Scholar 

  25. Webber, M. J. et al. Supramolecular PEGylation of biopharmaceuticals. Proc. Natl Acad. Sci. USA 113, 14189–14194 (2016).

    Article  Google Scholar 

  26. Le Fer, G. et al. Design and self-assembly of PBLG-b-ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides. Org. Biomol. Chem. 15, 10095–10104 (2017).

    Article  Google Scholar 

  27. Gradišar, Š., Žagar, E. & Pahovnik, D. Hybrid block copolymers of polyesters/polycarbonates and polypeptides synthesized via one-pot sequential ring-opening polymerization. Polym. Chem. 9, 4764–4771 (2018).

    Article  Google Scholar 

  28. Xu, H. et al. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Acta Biomater. 16, 156–168 (2015).

    Article  Google Scholar 

  29. Arimura, H., Ohya, Y. & Ouchi, T. The formation of biodegradable polymeric micelles from newly synthesized poly (aspartic acid)‐block‐polylactide AB‐type diblock copolymers. Macromol. Rapid Commun. 25, 743–747 (2004).

    Article  Google Scholar 

  30. Tinajero-Diaz, E., de Ilarduya, A. M. & Muñoz-Guerra, S. Synthesis and properties of diblock copolymers of ω-pentadecalactone and α-amino acids. Eur. Polym. J. 116, 169–179 (2019).

    Article  Google Scholar 

  31. Jacobs, J. et al. Facile synthesis of fluorescent latex nanoparticles with selective binding properties using amphiphilic glycosylated polypeptide surfactants. Macromolecules 47, 7303–7310 (2014).

    Article  Google Scholar 

  32. Wang, Y. & Ling, J. Synthetic protocols toward polypeptide conjugates via chain end functionalization after RAFT polymerization. RSC Adv. 5, 18546–18553 (2015).

    Article  Google Scholar 

  33. Levit, M. et al. Synthesis and characterization of well-defined poly (2-deoxy-2-methacrylamido-d-glucose) and its biopotential block copolymers via RAFT and ROP polymerization. Eur. Polym. J. 105, 26–37 (2018).

    Article  Google Scholar 

  34. Li, S.-L. et al. Phosphatase-triggered cell-selective release of a Pt (IV)-backboned prodrug-like polymer for an improved therapeutic index. Biomater. Sci. 5, 1558–1566 (2017).

    Article  Google Scholar 

  35. Quadir, M. A. et al. PEG–polypeptide block copolymers as pH-responsive endosome-solubilizing drug nanocarriers. Mol. Pharmaceut. 11, 2420–2430 (2014).

    Article  Google Scholar 

  36. Negri, G. E. & Deming, T. J. Protein complexation and pH dependent release using boronic acid containing PEG‐polypeptide copolymers. Macromol. Biosci. 17, 1600136 (2017).

    Article  Google Scholar 

  37. Chan, N. J.-A. et al. Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly. Nat. Commun. 11, 1630 (2020).

    Article  Google Scholar 

  38. Shi, S. Y. et al. Polypeptide‐b‐poly (phenyl isocyanide) hybrid rod–rod copolymers: one‐pot synthesis, self‐assembly, and cell imaging. Macromol. Rapid Commun. 36, 1511–1520 (2015).

    Article  Google Scholar 

  39. Schmid, T. E. et al. Aluminum‐catalyzed one‐pot synthesis of polyester‐b‐polypeptide block copolymers by ring‐opening polymerization. Macromol. Chem. Phys. 220, 1900040 (2019).

    Article  Google Scholar 

  40. Tappertzhofen, K. et al. Poly‐l‐lysine–poly [HPMA] block copolymers obtained by RAFT polymerization as polyplex‐transfection reagents with minimal toxicity. Macromol. Biosci. 15, 1159–1173 (2015).

    Article  Google Scholar 

  41. Hou, Y. et al. Therapeutic protein PEPylation: the helix of nonfouling synthetic polypeptides minimizes antidrug antibody generation. ACS Cent. Sci. 5, 229–236 (2019).

    Article  Google Scholar 

  42. Hou, Y., Yuan, J., Zhou, Y., Yu, J. & Lu, H. A concise approach to site-specific topological protein–poly (amino acid) conjugates enabled by in situ-generated functionalities. J. Am. Chem. Soc. 138, 10995–11000 (2016).

    Article  Google Scholar 

  43. Hou, Y. et al. Macrocyclization of interferon–poly (α-amino acid) conjugates significantly improves the tumor retention, penetration, and antitumor efficacy. J. Am. Chem. Soc. 140, 1170–1178 (2018).

    Article  Google Scholar 

  44. Fu, L., Liu, L., Ruan, Z., Zhang, H. & Yan, L. Folic acid targeted pH-responsive amphiphilic polymer nanoparticles conjugated with near infrared fluorescence probe for imaging-guided drug delivery. RSC Adv. 6, 40312–40322 (2016).

    Article  Google Scholar 

  45. Wang, H. et al. Enzyme-activatable interferon–poly (α-amino acid) conjugates for tumor microenvironment potentiation. Biomacromolecules 20, 3000–3008 (2019).

    Article  Google Scholar 

  46. Agouridas, V. et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 119, 7328–7443 (2019).

    Article  Google Scholar 

  47. Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).

    Article  Google Scholar 

  48. Conibear, A. C., Watson, E. E., Payne, R. J. & Becker, C. F. W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev. 47, 9046–9068 (2018).

    Article  Google Scholar 

  49. Morell, M. & Puiggalí, J. Hybrid block copolymers constituted by peptides and synthetic polymers: an overview of synthetic approaches, supramolecular behavior and potential applications. Polymers 5, 188–224 (2013).

    Article  Google Scholar 

  50. You, Y., Chen, Y., Hua, C. & Dong, C. M. Synthesis and thermoreversible gelation of dendron‐like polypeptide/linear poly (ε‐caprolactone)/dendron‐like polypeptide triblock copolymers. J. Polym. Sci. A 48, 709–718 (2010).

    Article  Google Scholar 

  51. Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016).

    Article  Google Scholar 

  52. Habraken, G. J., Peeters, M., Dietz, C. H., Koning, C. E. & Heise, A. How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 C? Effect of temperature on homo-, block-and graft (co) polymerization. Polym. Chem. 1, 514–524 (2010).

    Article  Google Scholar 

  53. Wibowo, S. H. et al. Assembly of free‐standing polypeptide films via the synergistic combination of hyperbranched macroinitiators, the grafting‐from approach, and cross‐chain termination. Adv. Mater. 25, 4619–4624 (2013).

    Article  Google Scholar 

  54. Blencowe, A., Tan, J. F., Goh, T. K. & Qiao, G. G. Core cross-linked star polymers via controlled radical polymerisation. Polymer 50, 5–32 (2009).

    Article  Google Scholar 

  55. Gao, H. & Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 34, 317–350 (2009).

    Article  Google Scholar 

  56. Sulistio, A., Widjaya, A., Blencowe, A., Zhang, X. & Qiao, G. Star polymers composed entirely of amino acid building blocks: a route towards stereospecific, biodegradable and hierarchically functionalized stars. Chem. Commun. 47, 1151–1153 (2011).

    Article  Google Scholar 

  57. Sulistio, A., Blencowe, A., Widjaya, A., Zhang, X. & Qiao, G. Development of functional amino acid-based star polymers. Polym. Chem. 3, 224–234 (2012).

    Article  Google Scholar 

  58. Sulistio, A. et al. Folic acid conjugated amino acid-based star polymers for active targeting of cancer cells. Biomacromolecules 12, 3469–3477 (2011).

    Article  Google Scholar 

  59. Ren, J. M. et al. Star polymers. Chem. Rev. 116, 6743–6836 (2016).

    Article  Google Scholar 

  60. Mazo, A. R. et al. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev. 49, 4737–4834 (2020).

    Article  Google Scholar 

  61. Deming, T. J. Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 6, 283–297 (2014).

    Article  Google Scholar 

  62. Pranantyo, D., Xu, L. Q., Hou, Z., Kang, E.-T. & Chan-Park, M. B. Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine. Polym. Chem. 8, 3364–3373 (2017).

    Article  Google Scholar 

  63. Chang, X., Liu, L., Guan, Y. & Dong, C. M. Disulfide‐centered star‐shaped polypeptide‐PEO block copolymers for reduction‐triggered drug release. J. Polym. Sci. A 52, 2000–2010 (2014).

    Article  Google Scholar 

  64. Pu, Y., Zhang, L., Zheng, H., He, B. & Gu, Z. Synthesis and drug release of star‐shaped poly (benzyl l‐aspartate)‐block‐poly (ethylene glycol) copolymers with POSS cores. Macromol. Biosci. 14, 289–297 (2014).

    Article  Google Scholar 

  65. Dürr, C. J., Hlalele, L., Kaiser, A., Brandau, S. & Barner-Kowollik, C. Mild and efficient modular synthesis of poly (acrylonitrile-co-butadiene) block and miktoarm star copolymer architectures. Macromolecules 46, 49–62 (2013).

    Article  Google Scholar 

  66. Müllner, M. Molecular polymer brushes in nanomedicine. Macromol. Chem. Phys. 217, 2209–2222 (2016).

    Article  Google Scholar 

  67. Yu, H. et al. Poly (l-lysine)-graft-chitosan copolymers: synthesis, characterization, and gene transfection effect. Biomacromolecules 8, 1425–1435 (2007).

    Article  Google Scholar 

  68. Chi, P., Wang, J. & Liu, C. Synthesis and characterization of polycationic chitosan-graft-poly (l-lysine). Mater. Lett. 62, 147–150 (2008).

    Article  Google Scholar 

  69. Li, P. et al. Cationic peptidopolysaccharides show excellent broad‐spectrum antimicrobial activities and high selectivity. Adv. Mater. 24, 4130–4137 (2012).

    Article  Google Scholar 

  70. Perdih, P. et al. Synthesis of chitosan-graft-poly (sodium-l-glutamate) for preparation of protein nanoparticles. Cellulose 21, 3469–3485 (2014).

    Article  Google Scholar 

  71. Bielawski, C. W. & Grubbs, R. H. Highly efficient ring‐opening metathesis polymerization (ROMP) using new ruthenium catalysts containing N‐heterocyclic carbene ligands. Angew. Chem. Int. Edn Engl. 39, 2903–2906 (2000).

    Article  Google Scholar 

  72. Lummiss, J. A., Ireland, B. J., Sommers, J. M. & Fogg, D. E. Amine‐mediated degradation in olefin metathesis reactions that employ the second‐generation Grubbs catalyst. ChemCatChem 6, 459–463 (2014).

    Article  Google Scholar 

  73. Lu, H., Wang, J., Lin, Y. & Cheng, J. One-pot synthesis of brush-like polymers via integrated ring-opening metathesis polymerization and polymerization of amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 131, 13582–13583 (2009).

    Article  Google Scholar 

  74. Engler, A. C., Lee, H. I. & Hammond, P. T. Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angew. Chem. 121, 9498–9502 (2009).

    Article  Google Scholar 

  75. Zhou, C. et al. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett. 2, 1021–1025 (2013).

    Article  Google Scholar 

  76. Fu, X., Ma, Y., Sun, J. & Li, Z. Biodegradable thermal-and redox-responsive poly (l-glutamate) with Y-shaped oligo (ethylene glycol) side-chain and tunable phase transition temperature. RSC Adv. 6, 70243–70250 (2016).

    Article  Google Scholar 

  77. Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

    Article  Google Scholar 

  78. Hancock, R. E. & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    Article  Google Scholar 

  79. Cui, Z. et al. Molecular engineering of antimicrobial peptide (AMP)–polymer conjugates. Biomater. Sci. 9, 5069–5091 (2021).

    Article  Google Scholar 

  80. Silva, A. R. P. et al. Recent advances in the design of antimicrobial peptide conjugates. J. Mater. Chem. B 10, https://doi.org/10.1039/D1TB02757C (2022).

  81. Han, Y., Zhang, M., Lai, R. & Zhang, Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides 146, 170666 (2021).

    Article  Google Scholar 

  82. Hamley, I. W. PEG–peptide conjugates. Biomacromolecules 15, 1543–1559 (2014).

    Article  Google Scholar 

  83. Sun, H. et al. Synthesis, self-assembly, and biomedical applications of antimicrobial peptide–polymer conjugates. Biomacromolecules 19, 1701–1720 (2018).

    Article  Google Scholar 

  84. Morris, C. J. et al. Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Antimicrob. Agents Chemother. 56, 3298–3308 (2012).

    Article  Google Scholar 

  85. Yu, W. et al. PEGylation of the antimicrobial peptide PG-1: a link between propensity for nanostructuring and capacity of the antitrypsin hydrolytic ability. J. Med. Chem. 64, 10469–10481 (2021).

    Article  Google Scholar 

  86. Pelegri-O’Day, E. M. et al. PEG analogs synthesized by ring-opening metathesis polymerization for reversible bioconjugation. Bioconjug. Chem. 29, 3739–3745 (2018).

    Article  Google Scholar 

  87. Hou, Z. et al. Nanoparticles of short cationic peptidopolysaccharide self-assembled by hydrogen bonding with antibacterial effect against multidrug-resistant bacteria. ACS Appl. Mater. Interf. 9, 38288–38303 (2017).

    Article  Google Scholar 

  88. Chen, Y. et al. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 20, 2230–2240 (2019).

    Article  Google Scholar 

  89. Pranantyo, D., Xu, L. Q., Kang, E.-T., Mya, M. K. & Chan-Park, M. B. Conjugation of polyphosphoester and antimicrobial peptide for enhanced bactericidal activity and biocompatibility. Biomacromolecules 17, 4037–4044 (2016).

    Article  Google Scholar 

  90. Palermo, E. F. & Kuroda, K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 10, 1416–1428 (2009).

    Article  Google Scholar 

  91. Palermo, E. F., Lee, D.-K., Ramamoorthy, A. & Kuroda, K. Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J. Phys. Chem. B 115, 366–375 (2011).

    Article  Google Scholar 

  92. Wang, H. et al. Antibacterial activity of geminized amphiphilic cationic homopolymers. Langmuir 31, 13469–13477 (2015).

    Article  Google Scholar 

  93. Ergene, C., Yasuhara, K. & Palermo, E. F. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym. Chem. 9, 2407–2427 (2018).

    Article  Google Scholar 

  94. Zhang, R., Zheng, N., Song, Z., Yin, L. & Cheng, J. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials 35, 3443–3454 (2014).

    Article  Google Scholar 

  95. Rothbard, J. B., Jessop, T. C. & Wender, P. A. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv. Drug Delivery Rev. 57, 495–504 (2005).

    Article  Google Scholar 

  96. Song, Z. et al. Polypeptides with quaternary phosphonium side chains: synthesis, characterization, and cell-penetrating properties. Biomacromolecules 15, 1491–1497 (2014).

    Article  Google Scholar 

  97. Kuroda, K., Caputo, G. A. & DeGrado, W. F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem. Eur. J. 15, 1123–1133 (2009).

    Article  Google Scholar 

  98. Chen, Q. et al. Homo-catiomer integration into PEGylated polyplex micelle from block-catiomer for systemic anti-angiogenic gene therapy for fibrotic pancreatic tumors. Biomaterials 33, 4722–4730 (2012).

    Article  Google Scholar 

  99. Ikeda, T., Hirayama, H., Yamaguchi, H., Tazuke, S. & Watanabe, M. Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother. 30, 132–136 (1986).

    Article  Google Scholar 

  100. Kanazawa, A., Ikeda, T. & Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J. Polym. Sci. A 31, 1441–1447 (1993).

    Article  Google Scholar 

  101. Lienkamp, K., Kumar, K.-N., Som, A., Nüsslein, K. & Tew, G. N. “Doubly selective” antimicrobial polymers: how do they differentiate between bacteria? Chem. Eur. J. 15, 11710–11714 (2009).

    Article  Google Scholar 

  102. Jiang, Y., Zheng, W., Kuang, L., Ma, H. & Liang, H. Hydrophilic phage-mimicking membrane active antimicrobials reveal nanostructure-dependent activity and selectivity. ACS Infect. Dis. 3, 676–687 (2017).

    Article  Google Scholar 

  103. Yin, L. et al. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials 34, 2340–2349 (2013).

    Article  Google Scholar 

  104. Namivandi-Zangeneh, R. et al. The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers. Polym. Chem. 9, 1735–1744 (2018).

    Article  Google Scholar 

  105. Priftis, D. et al. Self-assembly of α-helical polypeptides driven by complex coacervation. Angew. Chem. Int. Edn Engl. 54, 11128–11132 (2015).

    Article  Google Scholar 

  106. Xiong, M. et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl Acad. Sci. USA 112, 13155–13160 (2015).

    Article  Google Scholar 

  107. Lee, M. W. et al. Interactions between membranes and “metaphilic” polypeptide architectures with diverse side-chain populations. ACS Nano 11, 2858–2871 (2017).

    Article  Google Scholar 

  108. Melo, M. N., Ferre, R. & Castanho, M. A. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 7, 245–250 (2009).

    Article  Google Scholar 

  109. Lesiuk, M., Paduszyńska, M. & Greber, K. E. Synthetic antimicrobial immunomodulatory peptides: ongoing studies and clinical trials. Antibiotics 11, 1062 (2022).

    Article  Google Scholar 

  110. Silva, T. & Gomes, M. S. Immuno-stimulatory peptides as a potential adjunct therapy against intra-macrophagic pathogens. Molecules 22, 1297 (2017).

    Article  Google Scholar 

  111. Konai, M. M., Bhattacharjee, B., Ghosh, S. & Haldar, J. Recent progress in polymer research to tackle infections and antimicrobial resistance. Biomacromolecules 19, 1888–1917 (2018).

    Article  Google Scholar 

  112. Mohamed, Y. F., Abou-Shleib, H. M., Khalil, A. M., El-Guink, N. M. & El-Nakeeb, M. A. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates. Braz. J. Microbiol. 47, 381–388 (2016).

    Article  Google Scholar 

  113. Hasan, J., Crawford, R. J. & Ivanova, E. P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31, 295–304 (2013).

    Article  Google Scholar 

  114. Sharma, S., Sahoo, N. & Bhunia, A. Antimicrobial peptides and their pore/ion channel properties in neutralization of pathogenic microbes. Curr. Top. Med. Chem. 16, 46–53 (2016).

    Article  Google Scholar 

  115. Roy, S. et al. Antimicrobial mechanisms of biomaterials: from macro to nano. Biomater. Sci. 10, 4392–4423 (2022).

    Article  Google Scholar 

  116. Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435 (2010).

    Article  Google Scholar 

  117. Lam, S. J. et al. Bionano interaction study on antimicrobial star-shaped peptide polymer nanoparticles. ACS Appl. Mater. Interf. 8, 33446–33456 (2016).

    Article  Google Scholar 

  118. Zhang, Y. et al. Theoretical insights into the interactions between star-shaped antimicrobial polypeptides and bacterial membranes. Langmuir 34, 13438–13448 (2018).

    Article  Google Scholar 

  119. Chen, Y.-F. et al. Star-shaped polypeptides exhibit potent antibacterial activities. Nanoscale 11, 11696–11708 (2019).

    Article  Google Scholar 

  120. Wong, E. H. H. et al. Modulating antimicrobial activity and mammalian cell biocompatibility with glucosamine-functionalized star polymers. Biomacromolecules 17, 1170–1178 (2016).

    Article  Google Scholar 

  121. Liu, H. et al. Efficient synthesis and excellent antimicrobial activity of star-shaped cationic polypeptides with improved biocompatibility. Biomater. Sci. 9, 2721–2731 (2021).

    Article  Google Scholar 

  122. Zhou, C. et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-amino acid-N-carboxyanhydrides. Biomacromolecules 11, 60–67 (2010).

    Article  Google Scholar 

  123. Ding, X. et al. A macromolecule reversing antibiotic resistance phenotype and repurposing drugs as potent antibiotics. Adv. Sci. 7, 2001374 (2020).

    Article  Google Scholar 

  124. Bai, S. et al. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Adv. Healthc. Mater. 7, eabc9917 (2021).

    Google Scholar 

  125. Tan, J., Zhao, Y., Hedrick, J. L. & Yang, Y. Y. Effects of hydrophobicity on antimicrobial activity, selectivity, and functional mechanism of guanidinium-functionalized polymers. Sci. Adv. 7, 2100482 (2021).

    Google Scholar 

  126. Shirbin, S. J. et al. Architectural effects of star‐shaped “structurally nanoengineered antimicrobial peptide polymers” (SNAPPs) on their biological activity. Adv. Healthc. Mater. 7, 1800627 (2018).

    Article  Google Scholar 

  127. Li, W. et al. Star-peptide polymers are multi-drug-resistant Gram-positive bacteria killers. ACS Appl. Mater. Interf. 14, 25025–25041 (2022).

    Article  Google Scholar 

  128. Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018).

    Article  Google Scholar 

  129. Wyrsta, M. D., Cogen, A. L. & Deming, T. J. A parallel synthetic approach for the analysis of membrane interactive copolypeptides. J. Am. Chem. Soc. 123, 12919–12920 (2001).

    Article  Google Scholar 

  130. Kuroki, A., Tay, J., Lee, G. H. & Yang, Y. Y. Broad-spectrum antiviral peptides and polymers. Adv. Healthc. Mater. 10, e2101113 (2021).

    Article  Google Scholar 

  131. Ito, M. et al. Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antivir. Res. 7, 361–367 (1987).

    Article  Google Scholar 

  132. Huskens, D., Vermeire, K., Profy, A. T. & Schols, D. The candidate sulfonated microbicide, PRO 2000, has potential multiple mechanisms of action against HIV-1. Antivir. Res. 84, 38–47 (2009).

    Article  Google Scholar 

  133. Kim, H.-O. et al. Reactive oxygen species-regulating polymersome as an antiviral agent against influenza virus. Small 13, 1700818 (2017).

    Article  Google Scholar 

  134. Roemer, T. & Krysan, D. J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 4, a019703 (2014).

    Article  Google Scholar 

  135. Campoy, S. & Adrio, J. L. Antifungals. Biochem. Pharmacol. 133, 86–96 (2017).

    Article  Google Scholar 

  136. Fernández de Ullivarri, M., Arbulu, S., Garcia-Gutierrez, E. & Cotter, P. D. Antifungal peptides as therapeutic agents. Front. Cell. Infect. Microbiol. 10, 105 (2020).

    Article  Google Scholar 

  137. Ramamourthy, G., Park, J., Seo, C., Vogel, H. J. & Park, Y. Antifungal and antibiofilm activities and the mechanism of action of repeating lysine–tryptophan peptides against Candida albicans. Microorganisms 8, 758 (2020).

    Article  Google Scholar 

  138. Yang, H., Zhao, J., Yan, M., Pispas, S. & Zhang, G. Nylon 3 synthesized by ring opening polymerization with a metal-free catalyst. Polym. Chem. 2, 2888–2892, (2011).

    Article  Google Scholar 

  139. Liu, R. et al. Nylon-3 polymers with selective antifungal activity. J. Am. Chem. Soc. 135, 5270–5273 (2013).

    Article  Google Scholar 

  140. Liu, R. et al. Nylon-3 polymers active against drug-resistant Candida albicans biofilms. J. Am. Chem. Soc. 137, 2183–2186 (2015).

    Article  Google Scholar 

  141. Ejim, L. et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011).

    Article  Google Scholar 

  142. Si, Z. et al. A glycosylated cationic block poly(β-peptide) reverses intrinsic antibiotic resistance in all ESKAPE Gram-negative bacteria. Angew. Chem. Int. Edn Engl. 59, 6819–6826 (2020).

    Article  Google Scholar 

  143. Thappeta, K. R. V., Vikhe, Y. S., Yong, A. M. H., Chan-Park, M. B. & Kline, K. A. Combined efficacy of an antimicrobial cationic peptide polymer with conventional antibiotics to combat multidrug-resistant pathogens. ACS Infect. Dis. 6, 1228–1237 (2020).

    Article  Google Scholar 

  144. Zhen, J.-B., Kang, P.-W., Zhao, M.-H. & Yang, K.-W. Silver nanoparticle conjugated star PCL-b-AMPs copolymer as nanocomposite exhibits efficient antibacterial properties. Bioconjug. Chem. 31, 51–63 (2019).

    Article  Google Scholar 

  145. Ekladious, I., Colson, Y. L. & Grinstaff, M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18, 273–294 (2019).

    Article  Google Scholar 

  146. Gao, J., Wang, M., Wang, F. & Du, J. Synthesis and mechanism insight of a peptide-grafted hyperbranched polymer nanosheet with weak positive charges but excellent intrinsically antibacterial efficacy. Biomacromolecules 17, 2080–2086 (2016).

    Article  Google Scholar 

  147. Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).

    Article  Google Scholar 

  148. Eom, K. H. et al. Synthetic polypeptides with cationic arginine moieties showing high antimicrobial activity in similar mineral environments to blood plasma. Polymers 14, 1868 (2022).

    Article  Google Scholar 

  149. Galanakou, C., Dhumal, D. & Peng, L. Amphiphilic dendrimers against antibiotic resistance: light at the end of the tunnel? Biomater. Sci. 11, https://doi.org/10.1039/d2bm01878k (2023).

  150. Si, Z., Pethe, K. & Chan-Park, M. B. Chemical basis of combination therapy to combat antibiotic resistance. JACS Au. 3, 276–292 (2023).

    Article  Google Scholar 

  151. Assoni, L. et al. Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. Front. Microbiol. 11, 593215 (2020).

    Article  Google Scholar 

  152. Yu, G., Baeder, D. Y., Regoes, R. R. & Rolff, J. Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother. 60, 1717–1724 (2016).

    Article  Google Scholar 

  153. Yu, G., Baeder, D. Y., Regoes, R. R. & Rolff, J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc. Biol. Sci. 285, 20172687 (2018).

    Google Scholar 

  154. Liu, Y. & Yin, L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv. Drug Deliv. Rev. 171, 139–163 (2021).

    Article  Google Scholar 

  155. Zhu, R. et al. Spherical α-helical polypeptide-mediated E2F1 silencing against myocardial ischemia-reperfusion injury (MIRI). Biomater. Sci. 10, 6258–6266 (2022).

    Article  Google Scholar 

  156. Bauer, T. A. et al. Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(II) complexes. J. Mater. Chem. B 9, 8211–8223 (2021).

    Article  Google Scholar 

  157. Hasannia, M. et al. Synthesis of doxorubicin-loaded peptosomes hybridized with gold nanorod for targeted drug delivery and CT imaging of metastatic breast cancer. J. Nanobiotechnol. 20, 391 (2022).

    Article  Google Scholar 

  158. Zhang, Q. et al. Phenylboronic acid-functionalized copolypeptides: facile synthesis and responsive dual anticancer drug release. Biomacromolecules 23, 2989–2998 (2022).

    Article  MathSciNet  Google Scholar 

  159. Mokrus, M. & Menzel, H. Thermoresponsive glycopolypeptide containing block copolymers, particle formation, and lectin interaction. Macromol. Biosci. 22, e2100518 (2022).

    Article  Google Scholar 

  160. Dong, L. et al. Poly(l-cysteine) peptide amphiphile derivatives containing disulfide bonds: synthesis, self-assembly-induced β-sheet nanostructures, pH/reduction dual response, and drug release. Biomacromolecules 22, 5374–5381 (2021).

    Article  Google Scholar 

  161. Pottanam Chali, S., Hüwel, S., Rentmeister, A. & Ravoo, B. J. Self-assembled cationic polypeptide supramolecular nanogels for intracellular DNA delivery. Chemistry 27, 12198–12206 (2021).

    Article  Google Scholar 

  162. Kimmins, S. D. et al. Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels. J. Mater. Chem. B 9, 5456–5464 (2021).

    Article  Google Scholar 

  163. Augustine, R. et al. Multi-stimuli-responsive nanomicelles fabricated using synthetic polymer polylysine conjugates for tumor microenvironment dependent drug delivery. J. Mater. Chem. B 8, 5745–5755 (2020).

    Article  Google Scholar 

  164. Zhou, J., Li, L., Wang, W., Zhao, Y. & Feng, S. pH-responsive polymeric vesicles from branched copolymers. RSC Adv. 9, 41031–41037 (2019).

    Article  Google Scholar 

  165. Sang, X., Yang, Q., Wen, Q., Zhang, L. & Ni, C. Preparation and controlled drug release ability of the poly[N-isopropylacryamide-co-allyl poly(ethylene glycol)]-b-poly(γ-benzyl-l-glutamate) polymeric micelles. Mater. Sci. Eng. C 98, 910–917 (2019).

    Article  Google Scholar 

  166. Ahmed, M. Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers. Biomater. Sci. 5, 2188–2211 (2017).

    Article  Google Scholar 

  167. Byrne, M. et al. Molecular weight and architectural dependence of well-defined star-shaped poly (lysine) as a gene delivery vector. Biomater. Sci. 1, 1223–1234 (2013).

    Article  Google Scholar 

  168. Lam, S. J. et al. Peptide-based star polymers as potential siRNA carriers. Aust. J. Chem. 67, 592–597 (2013).

    Article  Google Scholar 

  169. Walsh, D. P. et al. Bioinspired star-shaped poly(l-lysine) polypeptides: efficient polymeric nanocarriers for the delivery of DNA to mesenchymal stem cells. Mol. Pharmaceutics 15, 1878–1891 (2018).

    Article  Google Scholar 

  170. Skoulas, D. et al. Amphiphilic star polypept(o)ides as nanomeric vectors in mucosal drug delivery. Biomacromolecules 21, 2455–2462 (2020).

    Article  Google Scholar 

  171. Yu, Z. et al. Guanidine-rich helical polypeptides bearing hydrophobic amino acid pendants for efficient gene delivery. Biomater. Sci. 9, 2670–2678 (2021).

    Article  Google Scholar 

  172. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  Google Scholar 

  173. Terzopoulou, Z. et al. Biocompatible synthetic polymers for tissue engineering purposes. Biomacromolecules 23, 1841–1863 (2022).

    Article  Google Scholar 

  174. Zhou, X. & Li, Z. Advances and biomedical applications of polypeptide hydrogels derived from α-amino acid N-carboxyanhydride (NCA) polymerizations. Adv. Healthc. Mater. 7, 1800020 (2018).

    Article  Google Scholar 

  175. Zhou, J. et al. A Simple and versatile synthetic strategy to functional polypeptides via vinyl sulfone-substituted l-cysteine N-carboxyanhydride. Macromolecules 46, 6723–6730 (2013).

    Article  Google Scholar 

  176. Gao, Q. et al. Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings. Polym. Chem. 8, 6386–6397 (2017).

    Article  Google Scholar 

  177. Kricheldorf, H. R. & Tönnes, K.-U. Copolymerization of sarcosine-NCA and l-leucine-NCA or l-phenylalanine-NCA. Makromol. Symp. 42-43, 313–328 (1991).

    Article  Google Scholar 

  178. Birke, A., Ling, J. & Barz, M. Polysarcosine-containing copolymers: synthesis, characterization, self-assembly, and applications. Prog. Polym. Sci. 81, 163–208 (2018).

    Article  Google Scholar 

  179. Gao, Q. et al. Fabrication of mixed-charge polypeptide coating for enhanced hemocompatibility and anti-infective effect. ACS Appl. Mater. Interf. 12, 2999–3010 (2020).

    Article  Google Scholar 

  180. Gao, Q. et al. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater. Sci. 8, 278–289 (2020).

    Article  Google Scholar 

  181. Farrenkopf, P. M. The cost of ignoring vaccines. Yale J. Biol. Med. 95, 265–269 (2022).

    Google Scholar 

  182. Teijaro, J. R. & Farber, D. L. COVID-19 vaccines: modes of immune activation and future challenges. Nat. Rev. Immunol. 21, 195–197 (2021).

    Article  Google Scholar 

  183. O’Brien-Simpson, N. M., Ede, N. J., Brown, L. E., Swan, J. & Jackson, D. C. Polymerisation of unprotected synthetic peptides: a view toward synthetic peptide vaccines. J. Am. Chem. Soc. 119, 1183–1188 (1997).

    Article  Google Scholar 

  184. Liarou, E. et al. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications. Prog. Polym. Sci. 83, 28–78 (2018).

    Article  Google Scholar 

  185. Geeraedts, F. et al. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling. PLoS Pathog. 4, e1000138 (2008).

    Article  Google Scholar 

  186. Di Pasquale, A., Preiss, S., Tavares Da Silva, F. & Garçon, N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines 3, 320–343 (2015).

    Article  Google Scholar 

  187. Nash, A. A., Dalziel, R. G. & Fitzgerald, J. R. In Mims’ Pathogenesis of Infectious Disease 6th edn (eds Nash, A. A., Dalziel, R. G. & Fitzgerald, J. R.), 291–303 (Academic Press, 2015).

  188. Khong, H. & Overwijk, W. W. Adjuvants for peptide-based cancer vaccines. J. Immunother. Cancer 4, 56 (2016).

    Article  Google Scholar 

  189. Nevagi, R. J., Toth, I. & Skwarczynski, M. In Peptide Applications in Biomedicine, Biotechnology and Bioengineering (ed. Koutsopoulos, S.) 327–358 (Woodhead Publishing, 2018).

  190. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  Google Scholar 

  191. Kanneganti, T. D., Lamkanfi, M. & Núñez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    Article  Google Scholar 

  192. Geijtenbeek, T. B. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009).

    Article  Google Scholar 

  193. Loo, Y. M. & Gale, M. Jr. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).

    Article  Google Scholar 

  194. Lim, J.-W. et al. Cationic poly(amino acid) vaccine adjuvant for promoting both cell-mediated and humoral immunity against influenza virus. Adv. Healthc. Mater. 8, 1800953 (2019).

    Article  Google Scholar 

  195. He, Y. et al. Synthetic charge-invertible polymer for rapid and complete implantation of layer-by-layer microneedle drug films for enhanced transdermal vaccination. ACS Nano 12, 10272–10280 (2018).

    Article  Google Scholar 

  196. Zhang, X. et al. Poly(l-lysine) nanostructured particles for gene delivery and hormone stimulation. Biomaterials 31, 1699–1706 (2010).

    Article  Google Scholar 

  197. Beg, S. et al. Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discov. Today 26, 1891–1903 (2021).

    Article  Google Scholar 

  198. Lee, H., Jeong, J. H. & Park, T. G. PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. J. Controlled Rel. 79, 283–291 (2002).

    Article  Google Scholar 

  199. Mandal, H. et al. ε-Poly-l-lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int. J. Pharmaceutics 542, 142–152 (2018).

    Article  Google Scholar 

  200. Sun, V. Z. et al. Transfection of mammalian cells using block copolypeptide vesicles. Macromol. Biosci. 13, 539–550 (2013).

    Article  Google Scholar 

  201. Rodriguez, A. R., Choe, U.-J., Kamei, D. T. & Deming, T. J. Fine tuning of vesicle assembly and properties using dual hydrophilic triblock copolypeptides. Macromol. Biosci. 12, 805–811 (2012).

    Article  Google Scholar 

  202. Chremos, A. & Douglas, J. F. Communication: when does a branched polymer become a particle? J. Chem. Phys. 143, 111104 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

G.G.Q. and N.M.O’B.-S. acknowledge funding support from The National Health and Medical Research Council (NHMRC) of Australia (APP1142472, APP1158841 and APP1185426) and the Australian Research Council (ARC) (DP210102781 and DP160101312).

Author information

Authors and Affiliations

Authors

Contributions

S.S., S.H., W.L., Z.S. and D.P. researched data for the article, made a substantial contribution to discussion of content and wrote the article. M.B.C.-P., G.G.Q. and N.M.O’B.-S. made a substantial contribution to discussion of content, wrote and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Mary B. Chan-Park, Neil M. O’Brien-Simpson or Greg G. Qiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Aaron Lau, who co-reviewed with Ruchika Goyal; Annelise Barron, who co-reviewed with Josefine Eilsø Nielsen; and the other, anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, S., Hadjigol, S., Li, W. et al. Synthetic peptide branched polymers for antibacterial and biomedical applications. Nat Rev Bioeng 2, 343–361 (2024). https://doi.org/10.1038/s44222-023-00143-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00143-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing