Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimizing bioplastics translation

Abstract

Plastics are integral to the modern economy. They are lightweight, strong, flexible and are used in all sorts of products in almost every industry. However, their widespread usage and poor degradability/disposability have also made them a threat to the ecosystem and human society. A promising solution is to use bioplastics, which are derived from renewable carbon sources and/or are degradable at their end-of-life stage. However, bioplastics currently account for only a small fraction of the total global market share of plastics (about 1%). Among the major barriers to their industrial translation are a lengthy and expensive testing and certification process, greenwashing and public misconceptions. In this Review, we address these obstacles and propose an accessible pre-screening framework for testing a large number of bioplastic products before they undergo standardized testing. We further describe the challenges associated with the life cycles of bioplastics and discuss how to address them, with reference to a case study from South Korea.

Key points

  • The widespread usage of bioplastics faces multifaceted challenges at manufacturing, consumption and end-of-life stages.

  • These obstacles mainly concern certification and labelling, greenwashing and public misconceptions.

  • The certification and labelling of bioplastics is a long, laborious and expensive process inaccessible for large sample sizes.

  • More accessible and robust screening tools are recommended prior to certification, and misleading terminologies, facts and labels need to be clarified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioplastics degradability and the environment.
Fig. 2: Accessible tools for bioplastic research and screening.

Similar content being viewed by others

References

  1. Acuña-Pizano, H., González-Trevizo, M. E., Luna-León, A., Martínez-Torres, K. E. & Fernández-Melchor, F. Plastic composites as sustainable building materials: a thermal and mechanical exploration. Constr. Build. Mater. 344, 128083 (2022).

    Article  Google Scholar 

  2. Mohanty, A. K., Vivekanandhan, S., Pin, J.-M. & Misra, M. Composites from renewable and sustainable resources: challenges and innovations. Science 362, 536–542 (2018).

    Article  Google Scholar 

  3. Lange, J. & Wyser, Y. Recent innovations in barrier technologies for plastic packaging: a review. Packag. Technol. Sci. 16, 149–158 (2003).

    Article  Google Scholar 

  4. Throwaway living: disposable items cut down household chores. Life 39, 43–44 (1955).

  5. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  6. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020). This report compares different plastic-management strategies and predicts huge quantities of plastic accumulation in the environment even in the best-case scenario.

    Article  Google Scholar 

  7. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  Google Scholar 

  8. Sarkar, B. et al. Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environ. Res. 207, 112179 (2022).

    Article  Google Scholar 

  9. Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article  Google Scholar 

  10. Yuan, X., Bank, M. S., Sonne, C. & Ok, Y. S. Dual closed-loop chemical recycling support sustainable mitigation of plastic pollution. Matter 4, 1095–1097 (2021).

    Article  Google Scholar 

  11. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Article  Google Scholar 

  12. Spierling, S. et al. Bio-based plastics — a review of environmental, social and economic impact assessments. J. Clean. Prod. 185, 476–491 (2018).

    Article  Google Scholar 

  13. The future of plastic. Nat. Commun. 9, 2157 (2018). This editorial comments on the neeed for biodegradable polymers to replace existing plastics in order to alleviate plastic’s environmental impact.

  14. Springle, N., Li, B., Soma, T. & Shulman, T. The complex role of single-use compostable bioplastic food packaging and foodservice ware in a circular economy: findings from a social innovation lab. Sustain. Prod. Consum. 33, 664–673 (2022).

    Article  Google Scholar 

  15. Zhang, L., Li, D., Cao, C. & Huang, S. The influence of greenwashing perception on green purchasing intentions: the mediating role of green word-of-mouth and moderating role of green concern. J. Clean. Prod. 187, 740–750 (2018).

    Article  Google Scholar 

  16. Ghosh, K. & Jones, B. H. Roadmap to biodegradable plastics — current state and research needs. ACS Sustain. Chem. Eng. 9, 6170–6187 (2021).

    Article  Google Scholar 

  17. Kim, H. et al. Toward sustaining bioplastics: add a pinch of seasoning. ACS Sustain. Chem. Eng. 11, 1846–1856 (2023).

    Article  Google Scholar 

  18. Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T. & Chen, E. Y.-X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 7, 83–103 (2022).

    Article  Google Scholar 

  19. Blesin, J.-M., Jaspersen, M. & Möhring, W. Boosting plastics’ image? Communicative challenges of innovative bioplastics. e-plastory J. Plast. Hist. 3, 2 (2017).

    Google Scholar 

  20. Wang, G., Huang, D., Ji, J., Völker, C. & Wurm, F. R. Seawater‐degradable polymers — fighting the marine plastic pollution. Adv. Sci. 8, 2001121 (2021).

    Article  Google Scholar 

  21. Erdal, N. B. & Hakkarainen, M. Degradation of cellulose derivatives in laboratory, man-made, and natural environments. Biomacromolecules 23, 2713–2729 (2022). This article reports that the degradation rate of cellulose under non-accelerated conditions (such as in an aquatic environment) is much slower than in compost conditions.

    Article  Google Scholar 

  22. Bhagwat, G. et al. Benchmarking bioplastics: a natural step towards a sustainable future. J. Polym. Environ. 28, 3055–3075 (2020).

    Article  Google Scholar 

  23. Haider, T. P., Völker, C., Kramm, J., Landfester, K. & Wurm, F. R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Edn Engl. 58, 50–62 (2019).

    Article  Google Scholar 

  24. Arpia, A. A., Chen, W.-H., Ubando, A. T., Naqvi, S. R. & Culaba, A. B. Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: a state-of-the-art review. J. Hazard. Mater. 418, 126381 (2021).

    Article  Google Scholar 

  25. Chinaglia, S., Tosin, M. & Degli-Innocenti, F. Biodegradation rate of biodegradable plastics at molecular level. Polym. Degrad. Stab. 147, 237–244 (2018).

    Article  Google Scholar 

  26. Kijchavengkul, T. & Auras, R. Compostability of polymers. Polym. Int. 57, 793–804 (2008).

    Article  Google Scholar 

  27. Kunioka, M., Ninomiya, F. & Funabashi, M. Biodegradation of poly(butylene succinate) powder in a controlled compost at 58 °C evaluated by naturally-occurring carbon-14 amounts in evolved CO2 based on the ISO 14855-2 method. Int. J. Mol. Sci. 10, 4267–4283 (2009).

    Article  Google Scholar 

  28. Ruggero, F., Gori, R. & Lubello, C. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review. Waste Manag. Res. 37, 959–975 (2019).

    Article  Google Scholar 

  29. Kawashima, N., Yagi, T. & Kojima, K. Pilot-scale composting test of polylactic acid for social implementation. Sustainability 13, 1654 (2021).

    Article  Google Scholar 

  30. Massardier-Nageotte, V., Pestre, C., Cruard-Pradet, T. & Bayard, R. Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym. Degrad. Stab. 91, 620–627 (2006).

    Article  Google Scholar 

  31. Gan, Z., Kuwabara, K., Abe, H., Iwata, T. & Doi, Y. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films. Polym. Degrad. Stab. 87, 191–199 (2005).

    Article  Google Scholar 

  32. Yadav, N. & Hakkarainen, M. Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere 265, 128731 (2021).

    Article  Google Scholar 

  33. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  Google Scholar 

  34. Bingeman, C. W., Varner, J. E. & Martin, W. P. The effect of the addition of organic materials on the decomposition of an organic soil. Soil. Sci. Soc. Am. J. 17, 34–38 (1953).

    Article  Google Scholar 

  35. Bellia, G., Tosin, M. & Degli-Innocenti, F. The test method of composting in vermiculite is unaffected by the priming effect. Polym. Degrad. Stab. 69, 113–120 (2000).

    Article  Google Scholar 

  36. Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).

    Article  Google Scholar 

  37. van den Broek, L. & van der Veer, M. G. How much bio is in there? Bioplastics Mag. 10, 18–20 (2015).

    Google Scholar 

  38. Godwin, H. Half-life of radiocarbon. Nature 195, 984–984 (1962).

    Article  Google Scholar 

  39. Hajdas, I. et al. Radiocarbon dating. Nat. Rev. Methods Prim. 1, 62 (2021).

    Article  Google Scholar 

  40. Norton, G. A. & Devlin, S. L. Determining the modern carbon content of biobased products using radiocarbon analysis. Bioresour. Technol. 97, 2084–2090 (2006).

    Article  Google Scholar 

  41. Ghiat, I., Mahmood, F., Govindan, R. & Al-Ansari, T. CO2 utilisation in agricultural greenhouses: a novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food Nexus. Energy Convers. Manag. 228, 113668 (2021).

    Article  Google Scholar 

  42. Graven, H. D. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Natl Acad. Sci. USA 112, 9542–9545 (2015).

    Article  Google Scholar 

  43. Quarta, G., Calcagnile, L., Giffoni, M., Braione, E. & D’Elia, M. Determination of the biobased content in plastics by radiocarbon. Radiocarbon 55, 1834–1844 (2013).

    Article  Google Scholar 

  44. Lin, Z., Cheng, S., Sun, Y., Li, H. & Jin, B. Realizing BOD detection of real wastewater by considering the bioelectrochemical degradability of organic pollutants in a bioelectrochemical system. Chem. Eng. J. 444, 136520 (2022).

    Article  Google Scholar 

  45. Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).

    Article  Google Scholar 

  46. Ju, S. et al. Biodegradable chito-beads replacing non-biodegradable microplastics for cosmetics. Green. Chem. 23, 6953–6965 (2021). This article reports portable biochemical-oxygen-demand experiments as a simple biodegradation measurement that quantifies the oxygen consumption required for microbial aerobic digestion of plastics, as an alternative to standardized biodegradation measurements such as ISO 14855.

    Article  Google Scholar 

  47. Wang, Z., Xin, X., Shi, X. & Zhang, Y. A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Sci. Total. Environ. 726, 138564 (2020).

    Article  Google Scholar 

  48. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article  Google Scholar 

  49. Park, S. Y. & Kim, C. G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222, 527–533 (2019).

    Article  Google Scholar 

  50. Gao, R., Liu, R. & Sun, C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 431, 128617 (2022).

    Article  Google Scholar 

  51. Delacuvellerie, A. et al. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater. 419, 126526 (2021).

    Article  Google Scholar 

  52. Shin, G. et al. A micro-spray-based high-throughput screening system for bioplastic-degrading microorganisms. Green. Chem. 23, 5429–5436 (2021). This article reports a simple and efficient method for screening bioplastic-degrading microorganisms based on a microspray system that separates various bioplastic-degrading bacteria from the activated sludge.

    Article  Google Scholar 

  53. Erlandsson, B., Karlsson, S. & Albertsson, A.-C. The mode of action of corn starch and a pro-oxidant system in LDPE: influence of thermo-oxidation and UV-irradiation on the molecular weight changes. Polym. Degrad. Stab. 55, 237–245 (1997).

    Article  Google Scholar 

  54. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    Article  Google Scholar 

  55. O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).

    Article  Google Scholar 

  56. Hayes, J. M. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev. Mineral. Geochem. 43, 225–277 (2001).

    Article  Google Scholar 

  57. Li, Z.-H. et al. Quantitative determination of biomass-derived renewable carbon in fuels from coprocessing of bio-oils in refinery using a stable carbon isotopic approach. ACS Sustain. Chem. Eng. 8, 17565–17572 (2020).

    Article  Google Scholar 

  58. Widory, D. Combustibles, fuels and their combustion products: a view through carbon isotopes. Combust. Theory Model. 10, 831–841 (2006).

    Article  Google Scholar 

  59. Berto, D. et al. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere 176, 47–56 (2017).

    Article  Google Scholar 

  60. Suzuki, Y., Akamatsu, F., Nakashita, R. & Korenaga, T. A novel method to discriminate between plant- and petroleum-derived plastics by stable carbon isotope analysis. Chem. Lett. 39, 998–999 (2010).

    Article  Google Scholar 

  61. Rogers, K. M. et al. Authenticating bioplastics using carbon and hydrogen stable isotopes — an alternative analytical approach. Rapid Commun. Mass. Spectrom. 35, e9051 (2021).

    Article  Google Scholar 

  62. Park, S.-A. et al. Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green. Chem. 21, 5212–5221 (2019).

    Article  Google Scholar 

  63. Park, S.-A. et al. Study on the synthetic characteristics of biomass-derived isosorbide-based poly(arylene ether ketone)s for sustainable super engineering plastic. Molecules 24, 2492 (2019).

    Article  Google Scholar 

  64. Soccio, M. et al. PBS-based green copolymer as an efficient compatibilizer in thermoplastic inedible wheat flour/poly(butylene succinate) blends. Biomacromolecules 21, 3254–3269 (2020).

    Article  Google Scholar 

  65. Horvat, D., Wydra, S. & Lerch, C. M. Modelling and simulating the dynamics of the european demand for bio-based plastics. Int. J. Simul. Model. 17, 419–430 (2018).

    Article  Google Scholar 

  66. Chen, G.-Q. & Jiang, X.-R. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr. Opin. Biotechnol. 53, 20–25 (2018).

    Article  Google Scholar 

  67. Li, D., Lv, L., Chen, J.-C. & Chen, G.-Q. Controlling microbial PHB synthesis via CRISPRi. Appl. Microbiol. Biotechnol. 101, 5861–5867 (2017).

    Article  Google Scholar 

  68. Sabirova, J. S. et al. Mutation in a “tesB-like” hydroxyacyl-coenzyme a-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J. Bacteriol. 188, 8452–8459 (2006).

    Article  Google Scholar 

  69. Koller, M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23, 362 (2018).

    Article  Google Scholar 

  70. Xu, J. & Guo, B.-H. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 5, 1149–1163 (2010).

    Article  Google Scholar 

  71. Lin, H., Bennett, G. N. & San, K.-Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol. Bioeng. 90, 775–779 (2005).

    Article  Google Scholar 

  72. Schut, J. H. Pioneering sustainability. Plast. Eng. 72, 6–13 (2016).

    Article  Google Scholar 

  73. Kumar, M. et al. Microplastics as pollutants in agricultural soils. Environ. Pollut. 265, 114980 (2020).

    Article  Google Scholar 

  74. Moshood, T. et al. Expanding policy for biodegradable plastic products and market dynamics of bio-based plastics: challenges and opportunities. Sustainability 13, 6170 (2021).

    Article  Google Scholar 

  75. Bank, M. S. et al. Global plastic pollution observation system to aid policy. Environ. Sci. Technol. 55, 7770–7775 (2021).

    Article  Google Scholar 

  76. Simon, N. et al. A binding global agreement to address the life cycle of plastics. Science 373, 43–47 (2021).

    Article  Google Scholar 

  77. Jiang, X. et al. Random and multiblock PBS copolyesters based on a rigid diol derived from naturally occurring camphor: influence of chemical microstructure on thermal and mechanical properties. ACS Sustain. Chem. Eng. 8, 3626–3636 (2020).

    Article  Google Scholar 

  78. Huang, M. et al. Double crystalline multiblock copolymers with controlling microstructure for high shape memory fixity and recovery. ACS Appl. Mater. Interf. 9, 30046–30055 (2017).

    Article  Google Scholar 

  79. Anderson, K., Schreck, K. & Hillmyer, M. Toughening polylactide. Polym. Rev. 48, 85–108 (2008).

    Article  Google Scholar 

  80. Chou, P. M., Mariatti, M., Zulkifli, A. & Todo, M. Changes in the crystallinity and mechanical properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blend with annealing process. Polym. Bull. 67, 815–830 (2011).

    Article  Google Scholar 

  81. Koh, J. J., Zhang, X. & He, C. Fully biodegradable poly(lactic acid)/starch blends: a review of toughening strategies. Int. J. Biol. Macromol. 109, 99–113 (2018).

    Article  Google Scholar 

  82. Sharma, V., Sehgal, R. & Gupta, R. Polyhydroxyalkanoate (PHA): properties and modifications. Polymer 212, 123161 (2021).

    Article  Google Scholar 

  83. Zolali, A. M. & Favis, B. D. Toughening of cocontinuous polylactide/polyethylene blends via an interfacially percolated intermediate phase. Macromolecules 51, 3572–3581 (2018).

    Article  Google Scholar 

  84. Rodriguez-Gonzalez, F. J., Ramsay, B. A. & Favis, B. D. High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44, 1517–1526 (2003).

    Article  Google Scholar 

  85. Qi, Y. et al. Macro- and micro-plastics in soil–plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total. Environ. 645, 1048–1056 (2018).

    Article  Google Scholar 

  86. Wei, X.-F., Nilsson, F., Yin, H. & Hedenqvist, M. S. Microplastics originating from polymer blends: an emerging threat? Environ. Sci. Technol. 55, 4190–4193 (2021).

    Article  Google Scholar 

  87. Degli-Innocenti, F. et al. Analysis of the microplastic emission potential of a starch-based biodegradable plastic material. Polym. Degrad. Stab. 199, 109937 (2022).

    Article  Google Scholar 

  88. Gunaalan, K., Fabbri, E. & Capolupo, M. The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res. 184, 116170 (2020).

    Article  Google Scholar 

  89. Zimmermann, L., Dombrowski, A., Völker, C. & Wagner, M. Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environ. Int. 145, 106066 (2020).

    Article  Google Scholar 

  90. Contat-Rodrigo, L. Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polym. Degrad. Stab. 98, 2117–2124 (2013).

    Article  Google Scholar 

  91. Roy, P. K., Hakkarainen, M., Varma, I. K. & Albertsson, A.-C. Degradable polyethylene: fantasy or reality. Environ. Sci. Technol. 45, 4217–4227 (2011).

    Article  Google Scholar 

  92. Schiavo, S., Oliviero, M., Chiavarini, S. & Manzo, S. Adverse effects of oxo-degradable plastic leachates in freshwater environment. Environ. Sci. Pollut. Res. 27, 8586–8595 (2020).

    Article  Google Scholar 

  93. Fitzgerald, N. Chemistry challenges to enable a sustainable bioeconomy. Nat. Rev. Chem. 1, 0080 (2017).

    Article  Google Scholar 

  94. Kim, H. et al. Biodegradable nanocomposite of poly(ester-co-carbonate) and cellulose nanocrystals for tough tear-resistant disposable bags. Green. Chem. 23, 2293–2299 (2021).

    Article  Google Scholar 

  95. Thanh, T. V. et al. Sustainable poly(butylene adipate-co-furanoate) ccomposites with sulfated chitin nanowhiskers: synergy leading to superior robustness and improved biodegradation. ACS Sustain. Chem. Eng. 10, 8411–8422 (2022).

    Article  Google Scholar 

  96. Kim, H. et al. Highly reinforced poly(butylene succinate) nanocomposites prepared from chitosan nanowhiskers by in-situ polymerization. Int. J. Biol. Macromol. 173, 128–135 (2021). This study reports the preparation of reinforced aliphatic polyester composites with nanochitin via in situ polycondensation, a technology transferred to SK Chemicals in South Korea.

    Article  Google Scholar 

  97. Shin, G. et al. Biosynthesis of polyhydroxybutyrate with cellulose nanocrystals using cupriavidus necator. Polymers 13, 2604 (2021).

    Article  Google Scholar 

  98. Herrmann, C., Rhein, S. & Sträter, K. F. Consumers’ sustainability-related perception of and willingness-to-pay for food packaging alternatives. Resour. Conserv. Recycl. 181, 106219 (2022).

    Article  Google Scholar 

  99. Brockhaus, S., Petersen, M. & Kersten, W. A crossroads for bioplastics: exploring product developers’ challenges to move beyond petroleum-based plastics. J. Clean. Prod. 127, 54–95 (2016).

    Article  Google Scholar 

  100. Dilkes-Hoffman, L., Ashworth, P., Laycock, B., Pratt, S. & Lant, P. Public attitudes towards bioplastics — knowledge, perception and end-of-life management. Resour. Conserv. Recycl. 151, 104479 (2019).

    Article  Google Scholar 

  101. Shahrasbi, S. Consumers, plastic, and what it means to be “biodegradable”. Georget. Environ. Law Rev. 31, 581–603 (2019).

    Google Scholar 

  102. Lynch, D. H. J., Klaasen, P. & Broerse, J. E. W. Unraveling Dutch citizens’ perceptions on the bio-based economy: the case of bioplastics, bio-jetfuels and small-scale bio-refineries. Ind. Crop. Prod. 106, 130–137 (2017).

    Article  Google Scholar 

  103. Koutsimanis, G., Getter, K., Behe, B., Harte, J. & Almenar, E. Influences of packaging attributes on consumer purchase decisions for fresh produce. Appetite 59, 270–280 (2012).

    Article  Google Scholar 

  104. Steenis, N. D., van Herpen, E., van der Lans, I. A., Ligthart, T. N. & van Trijp, H. C. M. Consumer response to packaging design: the role of packaging materials and graphics in sustainability perceptions and product evaluations. J. Clean. Prod. 162, 286–298 (2017).

    Article  Google Scholar 

  105. Koenig-Lewis, N., Palmer, A., Dermody, J. & Urbye, A. Consumers’ evaluations of ecological packaging — rational and emotional approaches. J. Environ. Psychol. 37, 94–105 (2014).

    Article  Google Scholar 

  106. Herbes, C., Beuthner, C. & Ramme, I. Consumer attitudes towards biobased packaging — a cross-cultural comparative study. J. Clean. Prod. 194, 203–218 (2018).

    Article  Google Scholar 

  107. Scherer, C., Emberger-Klein, A. & Menrad, K. Consumer preferences for outdoor sporting equipment made of bio-based plastics: results of a choice-based-conjoint experiment in Germany. J. Clean. Prod. 203, 1085–1094 (2018).

    Article  Google Scholar 

  108. Bagheri, A. R., Laforsch, C., Greiner, A. & Agarwal, S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob. Chall. 1, 1700048 (2017).

    Article  Google Scholar 

  109. Boesen, S., Bey, N. & Niero, M. Environmental sustainability of liquid food packaging: is there a gap between Danish consumers’ perception and learnings from life cycle assessment? J. Clean. Prod. 210, 1193–1206 (2019).

    Article  Google Scholar 

  110. Nazareth, M., Marques, M. R. C., Leite, M. C. A. & Castro, Í. B. Commercial plastics claiming biodegradable status: is this also accurate for marine environments? J. Hazard. Mater. 366, 714–722 (2019).

    Article  Google Scholar 

  111. Horne, R. E. Limits to labels: the role of eco-labels in the assessment of product sustainability and routes to sustainable consumption. Int. J. Consum. Stud. 33, 175–182 (2009).

    Article  Google Scholar 

  112. Carus, M. & Dammer, L. Food or non-food: which agricultural feedstocks are best for industrial uses? Ind. Biotechnol. 9, 171–176 (2013).

    Article  Google Scholar 

  113. Geueke, B., Groh, K. & Muncke, J. Food packaging in the circular economy: overview of chemical safety aspects for commonly used materials. J. Clean. Prod. 193, 491–505 (2018).

    Article  Google Scholar 

  114. Zhu, J. & Wang, C. Biodegradable plastics: green hope or greenwashing? Mar. Pollut. Bull. 161, 111774 (2020).

    Article  Google Scholar 

  115. Taufik, D., Reinders, M. J., Molenveld, K. & Onwezen, M. C. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci. Total. Environ. 705, 135820 (2020).

    Article  Google Scholar 

  116. Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article  Google Scholar 

  117. Napper, I. E. & Thompson, R. C. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 53, 4775–4783 (2019).

    Article  Google Scholar 

  118. Wang, C. et al. Biodegradable microplastics (BMPs): a new cause for concern? Environ. Sci. Pollut. Res. 28, 66511–66518 (2021).

    Article  Google Scholar 

  119. Smith, J. L. & Collins, H. P. Management of organisms and their processes in soils. In Soil Microbiology, Ecology and Biochemistry 3rd edn (ed. Paul, A.) 471–502 (Elsevier, 2007).

  120. Song, J. H., Murphy, R. J., Narayan, R. & Davies, G. B. Biodegradable and compostable alternatives to conventional plastics. Phil. Trans. R. Soc. Lond. B 364, 2127–2139 (2009).

    Article  Google Scholar 

  121. Schirmeister, C. G. & Mülhaupt, R. Closing the carbon loop in the circular plastics economy. Macromol. Rapid Commun. 43, 2200247 (2022).

    Article  Google Scholar 

  122. Vu, D. H., Åkesson, D., Taherzadeh, M. J. & Ferreira, J. A. Recycling strategies for polyhydroxyalkanoate-based waste materials: an overview. Bioresour. Technol. 298, 122393 (2020).

    Article  Google Scholar 

  123. Gundupalli, S. P., Hait, S. & Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 60, 56–74 (2017).

    Article  Google Scholar 

  124. Valenza, A. & La Mantia, F. P. Recycling of polymer waste. Part II — stress degraded polypropylene. Polym. Degrad. Stab. 20, 63–73 (1988).

    Article  Google Scholar 

  125. Lamberti, F. M., Román-Ramírez, L. A. & Wood, J. Recycling of bioplastics: routes and benefits. J. Polym. Environ. 28, 2551–2571 (2020).

    Article  Google Scholar 

  126. Piemonte, V. & Gironi, F. Kinetics of hydrolytic degradation of PLA. J. Polym. Environ. 21, 313–318 (2013).

    Article  Google Scholar 

  127. Alberti, C. & Enthaler, S. Depolymerization of end‐of‐life poly(lactide) to lactide via zinc‐catalysis. ChemistrySelect 5, 14759–14763 (2020).

    Article  Google Scholar 

  128. Hees, T., Zhong, F., Stürzel, M. & Mülhaupt, R. Tailoring hydrocarbon polymers and all-hydrocarbon composites for circular economy. Macromol. Rapid Commun. 40, 1800608 (2019).

    Article  Google Scholar 

  129. Lee, A. & Liew, M. S. Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods. J. Mater. Cycles Waste Manag. 23, 32–43 (2021).

    Article  Google Scholar 

  130. Ong, S. Y., Zainab-L, I., Pyary, S. & Sudesh, K. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl. Microbiol. Biotechnol. 102, 2117–2127 (2018).

    Article  Google Scholar 

  131. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article  Google Scholar 

  132. Weinberger, S. et al. Enzymatic degradation of poly(ethylene 2,5-furanoate) powders and amorphous films. Catalysts 7, 318 (2017).

    Article  Google Scholar 

  133. Pellis, A. et al. Enzymatic hydrolysis of poly(ethylene furanoate). J. Biotechnol. 235, 47–53 (2016).

    Article  Google Scholar 

  134. Mohee, R., Unmar, G. D., Mudhoo, A. & Khadoo, P. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manag. 28, 1624–1629 (2008).

    Article  Google Scholar 

  135. Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, https://doi.org/10.1002/2016GL071930 (2016).

  136. Stagner, J. Methane generation from anaerobic digestion of biodegradable plastics — a review. Int. J. Environ. Stud. 73, 462–468 (2016).

    Article  Google Scholar 

  137. Themelis, N. J. & Ulloa, P. A. Methane generation in landfills. Renew. Energy 32, 1243–1257 (2007).

    Article  Google Scholar 

  138. Jang, M. et al. Analysis of volatile organic compounds produced during incineration of non-degradable and biodegradable plastics. Chemosphere 303, 134946 (2022).

    Article  Google Scholar 

  139. Zhao, X., Cornish, K. & Vodovotz, Y. Narrowing the gap for bioplastic use in food packaging: an update. Environ. Sci. Technol. 54, 4712–4732 (2020).

    Article  Google Scholar 

  140. Lim, X. Microplastics are everywhere — but are they harmful? Nature 593, 22–25 (2021).

    Article  Google Scholar 

  141. Emadian, S. M., Onay, T. T. & Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 59, 526–536 (2017).

    Article  Google Scholar 

  142. Green, D. S., Colgan, T. J., Thompson, R. C. & Carolan, J. C. Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environ. Pollut. 246, 423–434 (2017).

    Article  Google Scholar 

  143. Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  Google Scholar 

  144. Groot, W. J. & Borén, T. Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int. J. Life Cycle Assess. 15, 970–984 (2010).

    Article  Google Scholar 

  145. Shen, L., Worrell, E. & Patel, M. K. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuels Bioprod. Bioref. 6, 625–639 (2012).

    Article  Google Scholar 

  146. Walker, S. & Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: a review. J. Clean. Prod. 261, 121158 (2020).

    Article  Google Scholar 

  147. Yates, M. R. & Barlow, C. Y. Life cycle assessments of biodegradable, commercial biopolymers — a critical review. Resour. Conserv. Recycl. 78, 54–66 (2013).

    Article  Google Scholar 

  148. Lee, S., Hao, L. T., Park, J., Oh, D. X. & Hwang, D. S. Nanochitin and nanochitosan: chitin nanostructure engineering with multiscale properties for biomedical and environmental applications. Adv. Mater. 35, e202203325 (2022). 2203325.

    Google Scholar 

  149. Tardy, B. L. et al. Deconstruction and reassembly of renewable polymers and biocolloids into next generation structured materials. Chem. Rev. 121, 14088–14188 (2021).

    Article  Google Scholar 

  150. Kim, T. et al. Trans crystallization behavior and strong reinforcement effect of cellulose nanocrystals on reinforced poly(butylene succinate) nanocomposites. RSC Adv. 8, 15389–15398 (2018).

    Article  Google Scholar 

  151. Hwang, S. Y. et al. Biodegradable composite material with improved mechanical properties using aqueous dispersion of natural polymer nanofibers and method for preparing same. Google patent WO2021006480A1 https://patents.google.com/patent/WO2021006480A1/en (2020).

Download references

Acknowledgements

This work was supported by the Technology Development Program (grants 20008447 and 20008628) funded by the Ministry of Trade, Industry and Energy (MOTIE, Republic of Korea) and the Korea Research Institute of Chemical Technology (KRICT) core project (KS2342-10). H.J. and D.X.O. acknowledge support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (grants 2020R1C1C1003665, 2022R1C1C1003468 and 2022M3H4A1A03076577). J.P. acknowledges support from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (grant 2015M3D3A1A01064926).

Author information

Authors and Affiliations

Authors

Contributions

J.M.K., L.T.H., S.J., D.K.H., H.J., J.P. and S.Y.H. have contributed in researching data for the article. J.M.K., L.T.H., S.J., D.K.H., D.S.H., Y.S.O., H.J., J.P. and D.X.O. have contributed substantially to the discussion of the content. J.M.K., L.T.H., S.J., H.J.K., J.P., D.X.O. and S.Y.H. have contributed to the writing of the article. J.M.K., L.T.H., S.J., D.K.H., D.S.H., Y.S.O., H.J.K., H.J. and D.X.O. have contributed to the review and editing of the manuscript before submission.

Corresponding authors

Correspondence to Hyeonyeol Jeon, Jeyoung Park, Dongyeop X. Oh or Jun Mo Koo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Steffen Hansen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

1.1–12.2 Mt of conventional non-degradable plastics: https://www.kosmopedia.org/wp-content/uploads/2020/09/MSFD-Measures-to-Combat-Marine-Litter.pdf

Additional test for earthworm cytotoxicity: https://bioplastics.org.au/resources/faq/#toggle-id-9

Advanced thermolysis techniques: https://www.mckinsey.com/industries/chemicals/our-insights/no-time-to-waste-what-plastics-recycling-could-offer

Aquatic toxicity test: https://esd.ifu.ethz.ch/research/research-projects/research-and-theses/oxo-degradable-plastics.html

Australasian Bioplastics Association: https://bioplastics.org.au/certification/home-compostable-verification-programme/

Bioplastic labels often confuse consumers: https://www.oneplanetnetwork.org/knowledge-centre/resources/can-i-recycle-global-mapping-and-assessment-standards-labels-and-claims

Bioplastic production: https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf

Bioplastics are generally more expensive than commodity plastics: https://doi.org/10.18174/408350

Bioplastics: https://docs.european-bioplastics.org/publications/fs/EuBP_FS_What_are_bioplastics.pdf

CALIB Radiocarbon Calibration: http://calib.org/

China, for example, aims to largely ban non-eco-friendly plastics by 2025: http://english.www.gov.cn/statecouncil/ministries/202001/19/content_WS5e243ea1c6d0db64b784ccd1.html

Different pass/fail criteria: http://www.jbpaweb.net/assets/documents/g-1_202105.pdf

DIN CERTCO Environmental Certification: https://www.dincertco.de/din-certco/en/main-navigation/products-and-services/certification-of-products/environmental-field/overview-environmental-field/

Eco-labelling: https://www.univerlag.uni-goettingen.de/handle/3/isbn-978-3-86395-142-9

Encourages littering behaviour: https://www.packagingnews.co.uk/news/environment/biodegradable-compostable/study-eco-littering-blight-uk-due-confusion-07-11-2019

Energy consumption in home composting: https://www.foodunfolded.com/article/6-things-to-know-about-compostable-plastic

European Bioplastics: https://www.european-bioplastics.org/bioplastics/standards/labels/

Global market share of plastics: https://renewable-carbon.eu/publications/product/bio-based-building-blocks-and-polymers-global-capacities-production-and-trends-2020-2025-short-version/

Greenwashing: https://www.theguardian.com/sustainable-business/2016/aug/20/greenwashing-environmentalism-lies-companies

Home composting temperature: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics

Japan Bioplastics Association (JBPA): http://www.jbpaweb.net/english/e-gp/

Labelled incorrectly: https://docs.european-bioplastics.org/2016/pr/%20EUBP_PR_Greenwashing_Misuse_of_EN13432_20151013.pdf

Land use for bioplastics: https://docs.european-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf

Most bioplastics in the market are made from genetically modified organisms (GMO)-free feedstock: https://www.european-bioplastics.org/faq-items/are-gmo-crops-used-for-bioplastics/

Open-Bio: https://www.biobasedeconomy.eu/projects/open-bio/

Plastic production: https://media.wwf.no/assets/attachments/Plastics-the-cost-to-society-the-environment-and-the-economy-WWF-report.pdf

Price gap: https://www.idtechex.com/en/research-report/bioplastics-2023-2033-technology-market-players-and-forecasts/880

Reimbursement collection: https://www.oecd-ilibrary.org/environment/policy-approaches-to-incentivise-sustainable-plastic-design_233ac351-en

Reject compostable packaging if it is heavily contaminated: https://www.epa.gov/system/files/documents/2021-08/emerging-issues-in-food-waste-management-plastic-contamination.pdf

Restrict the use of oxo-plastics: http://www.europarc.org/wp-content/uploads/2018/01/Eu-plastics-strategy-brochure.pdf

Seedling logo: https://docs.european-bioplastics.org/publications/Seedling_Certification_Scheme_2023.pdf

Select the appropriate bioplastic certification scheme: https://biomassmurder.org/docs/2013-12-09-gov-nl-minez-rvo-how-to-select-a-biomass-certification-scheme-english.pdf

Sorting technologies: https://zerowasteeurope.eu/wp-content/uploads/2019/11/zero_waste_europe_IEEP_EEB_report_epr_and_plastics.pdf

Sustainability: https://digitallibrary.un.org/record/139811?ln=en

TÜV, Austria: https://www.tuv-at.be/green-marks/

United Nations (UN) Sustainable Development Goals: https://sdgs.un.org/goals

United States Department of Agriculture (USDA) BioPreferred Program: https://www.biopreferred.gov/BioPreferred/

Validity of the certification and label: https://doi.org/10.26356/biodegradabilityplastics

Vienna Pee Dee Belemnite: https://www.iaea.org/publications/5471/reference-and-intercomparison-materials-for-stable-isotopes-of-light-elements

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L.T., Ju, S., Hwang, D.K. et al. Optimizing bioplastics translation. Nat Rev Bioeng 2, 289–304 (2024). https://doi.org/10.1038/s44222-023-00142-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00142-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene