Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microneedle biomedical devices

Abstract

Microneedle (MN) technologies have gained interest for biomedical applications, ranging from drug delivery to sensing and tissue sampling in skin and internal organs. The microscale feature of MN systems allows the accommodation of therapeutics from small drugs to macromolecule biologics and even living cells. Additionally, it permits body fluid extraction when inserted into tissues. The integration of MNs with other technologies, such as stimuli-responsive materials, smart electronics and wearables, facilitates precision drug delivery, dynamic monitoring and closed-loop theranostic functions. In this Review, we discuss MN materials, structures and engineering approaches, focusing on the integration of MNs with biomedical devices. Finally, we provide a survey on clinical applications of MNs and discuss opportunities and challenges for the translation and commercialization of MNs as biomedical devices.

Key points

  • Microneedles allow on-demand and intelligent control of drug delivery and biofluid extraction by integrating innovative biotechnologies, rational material engineering and structural designs.

  • Microneedles can be delivered to specific targets and overcome barriers of diverse tissues beyond the skin, augmenting the therapeutic efficacy of treatments.

  • Extraction, detection and real-time measurement of biomarkers by microneedle-based biosensors can provide personalized and precise health-care monitoring as an integral part of a closed-loop theranostics system.

  • Scale-up, cost-effective and sterilized fabrication, consistent performance, and regulatory guidance should be considered before the translation of microneedle-based technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of MN-based technologies at different scales.
Fig. 2: MN devices in the integration of wearables.
Fig. 3: Different strategies to develop MNs for closed-loop theranostics.
Fig. 4: Clinical translation of MNs.

Similar content being viewed by others

References

  1. Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Adv. Mater. 26, 1261–1268 (2008).

    Google Scholar 

  2. Wang, Z. et al. Silk microneedle patch capable of on-demand multidrug delivery to the brain for glioblastoma treatment. Adv. Mater. 34, 2106606 (2022).

    Article  Google Scholar 

  3. Jang, M. et al. High-dose steroid dissolving microneedle for relieving atopic dermatitis. Adv. Funct. Mater. 10, 2001691 (2021).

    Google Scholar 

  4. Zhang, Y. Q. et al. ROS-responsive microneedle patch for acne vulgaris treatment. Adv. Ther. 1, 1800035 (2018).

    Article  Google Scholar 

  5. Yang, G. et al. A Therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 13, 4354–4360 (2019).

    Article  Google Scholar 

  6. Zhang, W. T. et al. Adoptive Treg therapy with metabolic intervention ameliorated psoriasis syndrome by perforated microneedles. Sci. Adv. 9, eadg6007 (2023).

    Article  Google Scholar 

  7. He, G. et al. Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nat. Commun. 13, 6238 (2022).

    Article  Google Scholar 

  8. Zhang, Y. et al. Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano 11, 9223–9230 (2017).

    Article  Google Scholar 

  9. Than, A. et al. Transdermal delivery of anti-obesity compounds to subcutaneous adipose tissue with polymeric microneedle patches. Small Methods 1, 1700269 (2017).

    Article  Google Scholar 

  10. Wang, C. et al. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16, 2334–2340 (2016).

    Article  Google Scholar 

  11. Xia, D. et al. An ultra-low-cost electroporator with microneedle electrodes (ePatch) for SARS-CoV-2 vaccination. Proc. Natl Acad. Sci. USA 118, e2110817118 (2021).

    Article  Google Scholar 

  12. Chang, H. et al. Co-delivery of dendritic cell vaccine and anti-PD-1 antibody with cryomicroneedles for combinational immunotherapy. Bioeng. Transl. Med. 8, e10457 (2022).

    Article  Google Scholar 

  13. Leroux-Roels, I. et al. Seasonal influenza vaccine delivered by intradermal microinjection: a randomised controlled safety and immunogenicity trial in adults. Vaccine 26, 6614–6619 (2008).

    Article  Google Scholar 

  14. Rouphael, N. G. et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 390, 649–658 (2017).

    Article  Google Scholar 

  15. Fernando, G. J. P. et al. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine 36, 3779–3788 (2018).

    Article  Google Scholar 

  16. Troy, S. B. et al. Comparison of the immunogenicity of various booster doses of inactivated polio vaccine delivered intradermally versus intramuscularly to HIV-infected adults. J. Infect. Dis. 211, 1969–1976 (2015).

    Article  Google Scholar 

  17. Niedzwiecki, M. M. et al. Human suction blister fluid composition determined using high-resolution metabolomics. Anal. Chem. 90, 3786–3792 (2018).

    Article  Google Scholar 

  18. Tran, B. Q. et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J. Proteome Res. 17, 479–485 (2018).

    Article  Google Scholar 

  19. Lin, S. et al. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8, eabq4539 (2022).

    Article  Google Scholar 

  20. Sharma, S. et al. A pilot study in humans of microneedle sensor arrays for continuous glucose monitoring. Anal. Methods. 10, 2088–2095 (2018).

    Article  Google Scholar 

  21. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  Google Scholar 

  22. Wu, Y. et al. Microneedle aptamer-based sensors for continuous, real-time therapeutic drug monitoring. Anal. Chem. 94, 8335–8345 (2022).

    Article  Google Scholar 

  23. Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).

    Article  Google Scholar 

  24. Panda, A., Matadh, V. A., Suresh, S., Shivakumar, H. N. & Murthy, S. N. Non-dermal applications of microneedle drug delivery systems. Drug Deliv. Transl. Res. 12, 67–78 (2022).

    Article  Google Scholar 

  25. Tucak, A. et al. Microneedles: characteristics, materials, production methods and commercial development. Micromachines 11, 961 (2020).

    Article  Google Scholar 

  26. Henry, S., McAllister, D. V., Allen, M. G. & Prausnitz, M. R. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87, 922–925 (1998).

    Article  Google Scholar 

  27. Smart, W. H. & Subramanian, K. The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol. Ther. 2, 549–559 (2000).

    Article  Google Scholar 

  28. Chang, H., Zheng, M., Chew, S. W. T. & Xu, C. Advances in the formulations of microneedles for manifold biomedical applications. Adv. Mater. Technol. 5, 1900552 (2020).

    Article  Google Scholar 

  29. Bhatnagar, S., Gadeela, P. R., Thathireddy, P. & Venuganti, V. V. K. Microneedle-based drug delivery: materials of construction. J. Chem. Sci. 131, 90 (2019).

    Article  Google Scholar 

  30. Zhang, X. P. et al. An update on biomaterials as microneedle matrixes for biomedical applications. J. Mater. Chem. B 10, 6059–6077 (2022).

    Article  Google Scholar 

  31. Pradeep Narayanan, S. & Raghavan, S. Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility. Int. J. Adv. Manuf. Technol. 104, 3327–3333 (2019).

    Article  Google Scholar 

  32. Gao, B., Guo, M., Lyu, K., Chu, T. & He, B. Intelligent silk fibroin based microneedle dressing (i-SMD). Adv. Funct. Mater. 31, 2006839 (2021).

    Article  Google Scholar 

  33. Bediz, B. et al. Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm. Res. 31, 117–135 (2014).

    Article  Google Scholar 

  34. Li, W. et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220–229 (2019).

    Article  Google Scholar 

  35. Liu, P. et al. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. J. Mater. Chem. B 8, 2032–2039 (2020).

    Article  Google Scholar 

  36. Kim, J. D., Kim, M., Yang, H., Lee, K. & Jung, H. Droplet-born air blowing: novel dissolving microneedle fabrication. J. Control. Release 170, 430–436 (2013).

    Article  Google Scholar 

  37. Li, R. et al. 3D-printed microneedle arrays for drug delivery. J. Control. Release 350, 933–948 (2022).

    Article  Google Scholar 

  38. Huang, D. et al. Recent advances on fabrication of microneedles on the flexible substrate. J. Micromech. Microeng. 31, 073001 (2021).

    Article  Google Scholar 

  39. Detamornrat, U., McAlister, E., Hutton, A. R. J., Larrañeta, E. & Donnelly, R. F. The role of 3D printing technology in microengineering of microneedles. Small 18, 2106392 (2022).

    Article  Google Scholar 

  40. Larrañeta, E., Lutton, R. E. M., Woolfson, A. D. & Donnelly, R. F. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 104, 1–32 (2016).

    Article  Google Scholar 

  41. Cui, M., Wiraja, C., Chew, S. W. T. & Xu, C. Nanodelivery systems for topical management of skin disorders. Mol. Pharm. 18, 491–505 (2021).

    Article  Google Scholar 

  42. Yang, J. et al. Recent progress in microneedles-mediated diagnosis, therapy, and theranostic systems. Adv. Healthc. Mater. 11, 2102547 (2022).

    Article  Google Scholar 

  43. van Kuilenburg, J., Masen, M. A. & van der Heide, E. Contact modelling of human skin: what value to use for the modulus of elasticity? Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227, 349–361 (2013).

    Article  Google Scholar 

  44. Lu, F. et al. Review of stratum corneum impedance measurement in non-invasive penetration application. Biosensors 8, 31 (2018).

    Article  Google Scholar 

  45. Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G. & Prausnitz, M. R. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 37, 1155–1163 (2004).

    Article  Google Scholar 

  46. Olatunji, O., Das, D. B., Garland, M. J., Belaid, L. & Donnelly, R. F. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J. Pharm. Sci. 102, 1209–1221 (2013).

    Article  Google Scholar 

  47. Makvandi, P. et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano Micro Lett. 13, 93 (2021).

    Article  Google Scholar 

  48. Ebrahiminejad, V., Prewett, P. D., Davies, G. J. & Faraji Rad, Z. Microneedle arrays for drug delivery and diagnostics: toward an optimized design, reliable insertion, and penetration. Adv. Mater. Interfaces 9, 2101856 (2022).

    Article  Google Scholar 

  49. Lee, K. et al. A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv. Funct. Mater. 30, 2000086 (2020).

    Article  Google Scholar 

  50. Kim, Y. et al. Film-trigger applicator (FTA) for improved skin penetration of microneedle using punching force of carboxymethyl cellulose film acting as a microneedle applicator. Biomater. Res. 26, 53 (2022).

    Article  Google Scholar 

  51. Kang, G. et al. Latch applicator for efficient delivery of dissolving microneedles based on rapid release of elastic strain energy by thumb force.Adv. Funct. Mater. 33, 2210805 (2023).

    Article  Google Scholar 

  52. Donnelly, R. F. et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J. Control. Release 147, 333–341 (2010).

    Article  Google Scholar 

  53. Ameri, M. et al. Human growth hormone delivery with a microneedle transdermal system: preclinical formulation, stability, delivery and PK of therapeutically relevant doses. Pharmaceutics 6, 220–234 (2014).

    Article  Google Scholar 

  54. Jeon, E. Y. et al. Bio-inspired swellable hydrogel-forming double-layered adhesive microneedle protein patch for regenerative internal/external surgical closure. Biomaterials 222, 119439 (2019).

    Article  Google Scholar 

  55. Lim, S., Park, T. Y., Jeon, E. Y., Joo, K. I. & Cha, H. J. Double-layered adhesive microneedle bandage based on biofunctionalized mussel protein for cardiac tissue regeneration. Biomaterials 278, 121171 (2021).

    Article  Google Scholar 

  56. Zhang, X., Chen, G., Yu, Y., Sun, L. & Zhao, Y. Bioinspired adhesive and antibacterial microneedles for versatile transdermal drug delivery. Research 2020, 3672120 (2020).

    Article  Google Scholar 

  57. Gan, J., Zhang, X., Ma, W., Zhao, Y. & Sun, L. Antibacterial, adhesive, and MSC exosomes encapsulated microneedles with spatio-temporal variation functions for diabetic wound healing. Nano Today 47, 101630 (2022).

    Article  Google Scholar 

  58. Haghniaz, R. et al. Tissue adhesive hemostatic microneedle arrays for rapid hemorrhage treatment. Bioact. Mater. 23, 314–327 (2023).

    Google Scholar 

  59. Han, D. et al. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 30, 1909197 (2020).

    Article  Google Scholar 

  60. Chen, Z. et al. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10, 29338–29346 (2018).

    Article  Google Scholar 

  61. Chen, W. et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci. Adv. 8, eabk1792 (2022).

    Article  Google Scholar 

  62. Zhang, X. et al. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem. Eng. J. 406, 126741 (2021).

    Article  Google Scholar 

  63. Guo, M., Wang, Y., Gao, B. & He, B. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano 15, 15316–15327 (2021).

    Article  Google Scholar 

  64. Fakhraei Lahiji, S. et al. Tissue interlocking dissolving microneedles for accurate and efficient transdermal delivery of biomolecules. Sci. Rep. 9, 7886 (2019).

    Article  Google Scholar 

  65. Fu, X. et al. Bioinspired adhesive microneedle patch with gemcitabine encapsulation for pancreatic cancer treatment. Chem. Eng. J. 431, 133362 (2022).

    Article  Google Scholar 

  66. Yang, C. et al. Glucose-responsive microneedle patch for closed-loop dual-hormone delivery in mice and pigs. Sci. Adv. 8, eadd3197 (2022).

    Article  Google Scholar 

  67. Li, W., Li, S., Fan, X. & Prausnitz, M. R. Microneedle patch designs to increase dose administered to human subjects. J. Control. Release 339, 350–360 (2021).

    Article  Google Scholar 

  68. McCrudden, M. T. C. et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J. Control. Release 180, 71–80 (2014).

    Article  Google Scholar 

  69. Ye, Y., Yu, J., Wen, D., Kahkoska, A. R. & Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev. 127, 106–118 (2018).

    Article  Google Scholar 

  70. Zhou, X. et al. Biodegradable β-cyclodextrin conjugated gelatin methacryloyl microneedle for delivery of water-insoluble drug. Adv. Healthc. Mater. 9, e2000527 (2020).

    Article  Google Scholar 

  71. Tran, K. T. M. et al. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat. Biomed. Eng. 5, 998–1007 (2021).

    Article  Google Scholar 

  72. Wang, M., Hu, L. & Xu, C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 17, 1373–1387 (2017).

    Article  Google Scholar 

  73. Braverman, I. M. The cutaneous microcirculation. J. Investig. Dermatol. Symp. Proc. 5, 3–9 (2000).

    Article  Google Scholar 

  74. Blicharz, T. M. et al. Microneedle-based device for the one-step painless collection of capillary blood samples. Nat. Biomed. Eng. 2, 151–157 (2018).

    Article  Google Scholar 

  75. Li, C. G., Lee, C. Y., Lee, K. & Jung, H. An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdevices 15, 17–25 (2013).

    Article  Google Scholar 

  76. Li, C. G. et al. One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15, 3286–3292 (2015).

    Article  Google Scholar 

  77. Li, C. G., Dangol, M., Lee, C. Y., Jang, M. & Jung, H. A self-powered one-touch blood extraction system: a novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator. Lab Chip 15, 382–390 (2015).

    Article  Google Scholar 

  78. Li, C. G., Lee, K., Lee, C. Y., Dangol, M. & Jung, H. A minimally invasive blood-extraction system: elastic self-recovery actuator integrated with an ultrahigh- aspect-ratio microneedle. Adv. Mater. 24, 4583–4586 (2012).

    Article  Google Scholar 

  79. Müller, A. C. et al. A comparative proteomic study of human skin suction blister fluid from healthy individuals using immunodepletion and iTRAQ labeling. J. Proteome Res. 11, 3715–3727 (2012).

    Article  Google Scholar 

  80. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Adv. Mater. 37, 407–419 (2019).

    Google Scholar 

  81. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl Med. 12, eaaw0285 (2020).

    Article  Google Scholar 

  82. Kim, S., Lee, M. S., Yang, H. S. & Jung, J. H. Enhanced extraction of skin interstitial fluid using a 3D printed device enabling tilted microneedle penetration. Sci. Rep. 11, 14018 (2021).

    Article  Google Scholar 

  83. Miller, P. R. et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 1, 173 (2018).

    Article  Google Scholar 

  84. Cahill, E. M. et al. Metallic microneedles with interconnected porosity: a scalable platform for biosensing and drug delivery. Acta Biomater. 80, 401–411 (2018).

    Article  Google Scholar 

  85. Takeuchi, K. et al. Microfluidic chip connected to porous microneedle array for continuous ISF sampling. Drug Deliv. Transl. Res. 12, 435–443 (2022).

    Article  Google Scholar 

  86. Chen, J. et al. Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis. Biomed. Microdevices 21, 63 (2019).

    Article  Google Scholar 

  87. Berry, C. A., Smith, Z. R., Collins, S. D. & Smith, R. L. in 2020 IEEE 33rd Int. Conf. Micro Electro Mech. Syst. 365–368 (2020).

  88. Taylor, R. M., Maharjan, D., Moreu, F. & Baca, J. T. Parametric study of 3D printed microneedle (MN) holders for interstitial fluid (ISF) extraction. Microsyst. Technol. 26, 2067–2073 (2020).

    Article  Google Scholar 

  89. Kusama, S. et al. Transdermal electroosmotic flow generated by a porous microneedle array patch. ACS Nano 12, 658 (2021).

    Google Scholar 

  90. Chang, H. et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv. Mater. 29, 1702243 (2017).

    Article  Google Scholar 

  91. Zheng, M. et al. Osmosis-powered hydrogel microneedles for microliters of skin interstitial fluid extraction within minutes. Adv. Healthc. Mater. 9, 1901683 (2020).

    Article  Google Scholar 

  92. He, R. et al. A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv. Healthc. Mater. 9, 1901201 (2020).

    Article  Google Scholar 

  93. Park, W. et al. Hydrogel microneedles extracting exosomes for early detection of colorectal cancer. Biomacromolecules 24, 1445–1452 (2023).

    Article  Google Scholar 

  94. Wang, Y. et al. Plasmonic microneedle arrays for rapid extraction, SERS detection, and inactivation of bacteria. Chem. Eng. J. 442, 136140 (2022).

    Article  Google Scholar 

  95. Yi, K. et al. Aptamer-decorated porous microneedles arrays for extraction and detection of skin interstitial fluid biomarkers. Biosens. Bioelectron. 190, 113404 (2021).

    Article  Google Scholar 

  96. Mandal, A. et al. Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Sci. Transl Med. 10, eaar2227 (2018).

    Article  MathSciNet  Google Scholar 

  97. Chen, Z. et al. Bioorthogonal catalytic patch. Nat. Nanotechnol. 16, 933–941 (2021).

    Article  Google Scholar 

  98. Moussi, K. et al. A microneedles balloon catheter for endovascular drug delivery. Adv. Mater. Technol. 6, 2100037 (2021).

    Article  Google Scholar 

  99. Gasper, W. J. et al. Adventitial nab-rapamycin injection reduces porcine femoral artery luminal stenosis induced by balloon angioplasty via inhibition of medial proliferation and adventitial inflammation. Circ. Cardiovasc. Interv. 6, 701–709 (2013).

    Article  Google Scholar 

  100. Lee, K. et al. Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. J. Control. Release 321, 174–183 (2020).

    Article  Google Scholar 

  101. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  Google Scholar 

  102. Abramson, A. et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat. Med. 25, 1512–1518 (2019).

    Article  Google Scholar 

  103. Caffarel-Salvador, E. et al. A microneedle platform for buccal macromolecule delivery. Sci. Adv. 7, eabe2620 (2021).

    Article  Google Scholar 

  104. Abramson, A. et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5, 975–987 (2022).

    Article  Google Scholar 

  105. Zhang, X., Chen, G., Fu, X., Wang, Y. & Zhao, Y. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv. Mater. 33, e2104932 (2021).

    Article  Google Scholar 

  106. Sheng, T. et al. Unmanned aerial vehicle mediated drug delivery for first aid. Adv. Mater. 35, e2208648 (2022).

    Article  Google Scholar 

  107. Di, J. et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 9, 9407–9415 (2015).

    Article  Google Scholar 

  108. Yang, J. et al. Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsyst. Nanoeng. 6, 112 (2020).

    Article  Google Scholar 

  109. Huang, Y. et al. Implantable electronic medicine enabled by bioresorbable microneedles for wireless electrotherapy and drug delivery. Nano Lett. 22, 5944–5953 (2022).

    Article  Google Scholar 

  110. Li, Y. et al. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomater. 121, 349–358 (2021).

    Article  Google Scholar 

  111. Miar, S., Ong, J. L., Bizios, R. & Guda, T. Electrically stimulated tunable drug delivery from polypyrrole-coated polyvinylidene fluoride. Front. Chem. 9, 599631 (2021).

    Article  Google Scholar 

  112. Kaur, G., Adhikari, R., Cass, P., Bown, M. & Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015).

    Article  Google Scholar 

  113. Puiggali-Jou, A., Del Valle, L. J. & Aleman, C. Drug delivery systems based on intrinsically conducting polymers. J. Control. Release 309, 244–264 (2019).

    Article  Google Scholar 

  114. Yang, Y. et al. Self-powered controllable transdermal drug delivery system. Adv. Funct. Mater. 31, 2104092 (2021).

    Article  Google Scholar 

  115. Chen, M. C. et al. Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromolecules 16, 1598–1607 (2015).

    Article  Google Scholar 

  116. Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017).

    Article  Google Scholar 

  117. Karumuri, S. R. et al. Design, simulation and analysis of micro electro-mechanical system microneedle for micropump in drug delivery systems. IET Nanobiotechnol. 15, 484–491 (2021).

    Article  Google Scholar 

  118. Lee, Y. et al. Localized delivery of theranostic nanoparticles and high-energy photons using microneedles-on-bioelectronics. Adv. Mater. 33, 2100425 (2021).

    Article  Google Scholar 

  119. Maisels, M. J. & McDonagh, A. F. Phototherapy for neonatal jaundice. N. Engl. J. Med. 358, 920–928 (2008).

    Article  Google Scholar 

  120. Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  Google Scholar 

  121. Kim, M. et al. Optical lens-microneedle array for percutaneous light delivery. Biomed. Opt. Express 7, 4220–4227 (2016).

    Article  Google Scholar 

  122. Zhang, H. et al. Biocompatible light guide-assisted wearable devices for enhanced UV light delivery in deep skin. Adv. Funct. Mater. 31, 2100576 (2021).

    Article  Google Scholar 

  123. Wu, X. et al. Localised light delivery on melanoma cells using optical microneedles. Biomed. Opt. Express 13, 1045–1060 (2022).

    Article  Google Scholar 

  124. Chen, M. C., Lin, Z. W. & Ling, M. H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 10, 93–101 (2016).

    Article  Google Scholar 

  125. Ye, Y. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2, eaan5692 (2017).

    Article  Google Scholar 

  126. Conta, G., Libanori, A., Tat, T., Chen, G. & Chen, J. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 33, 2007502 (2021).

    Article  Google Scholar 

  127. Yang, Y. et al. Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation. ACS Nano 13, 6908 (2022).

    Google Scholar 

  128. Wei, Z. W. et al. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery. Lab Chip 14, 4093–4102 (2014).

    Article  Google Scholar 

  129. Yang, T. et al. Rolling microneedle electrode array (RoMEA) empowered nucleic acid delivery and cancer immunotherapy. Nano Today 36, 101017 (2021).

    Article  Google Scholar 

  130. Li, H. et al. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 6, 2181–2190 (2021).

    Article  Google Scholar 

  131. Zheng, M., Zhang, Y., Hu, T. & Xu, C. A skin patch integrating swellable microneedles and electrochemical test strips for glucose and alcohol measurement in skin interstitial fluid. Bioeng. Transl. Med. 8, e10413 (2022).

    Article  Google Scholar 

  132. Bollella, P., Sharma, S., Cass, A. E. G. & Antiochia, R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019).

    Article  Google Scholar 

  133. Gao, J., Huang, W., Chen, Z., Yi, C. & Jiang, L. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 287, 102–110 (2019).

    Article  Google Scholar 

  134. Ranamukhaarachchi, S. A. et al. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci. Rep. 6, 29075 (2016).

    Article  Google Scholar 

  135. Mishra, R. K. et al. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J. Am. Chem. Soc. 142, 5991–5995 (2020).

    Article  Google Scholar 

  136. Yang, B., Kong, J. & Fang, X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. ACS Nano 13, 3999 (2022).

    Google Scholar 

  137. Yang, B., Fang, X. & Kong, J. Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Adv. Funct. Mater. 30, 2000591 (2020).

    Article  Google Scholar 

  138. Yang, Q. et al. Microneedle array encapsulated with programmed DNA hydrogels for rapidly sampling and sensitively sensing of specific microRNA in dermal interstitial fluid. ACS Nano 16, 18366–18375 (2022).

    Article  Google Scholar 

  139. Ciui, B. et al. Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv. Healthc. Mater. 7, e1701264 (2018).

    Article  Google Scholar 

  140. Wang, Z. et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 64–76 (2021).

    Article  Google Scholar 

  141. Song, S. et al. A CMOS VEGF Sensor for cancer diagnosis using a peptide aptamer-based functionalized microneedle. IEEE Trans. Biomed. Circuits Syst. 13, 1288–1299 (2019).

    Article  Google Scholar 

  142. Yang, H. et al. A swellable bilateral microneedle patch with core-shell structure for rapid lactate analysis and early melanoma diagnosis. Chem. Eng. J. 455, 140730 (2023).

    Article  Google Scholar 

  143. Wang, Z. et al. Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials 237, 119782 (2020).

    Article  Google Scholar 

  144. Zeng, Y. et al. Colloidal crystal microneedle patch for glucose monitoring. Nano Today 35, 100984 (2020).

    Article  Google Scholar 

  145. Zhu, D. D. et al. Colorimetric microneedle patches for multiplexed transdermal detection of metabolites. Biosens. Bioelectron. 212, 114412 (2022).

    Article  Google Scholar 

  146. You, X. Q. et al. Multi-groove microneedles based wearable colorimetric sensor for simple and facile glucose detection. Microchem. J. 190, 108570 (2023).

    Article  Google Scholar 

  147. Leng, F., Zheng, M. & Xu, C. 3D‐printed microneedles with open groove channels for liquid extraction. Exploration 1, 20210109 (2021).

    Article  Google Scholar 

  148. Jiang, X. & Lillehoj, P. B. Microneedle-based skin patch for blood-free rapid diagnostic testing. Microsyst. Nanoeng. 6, 96 (2020).

    Article  Google Scholar 

  149. Bao, L., Park, J., Qin, B. & Kim, B. Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay. Sci. Rep. 12, 10693 (2022).

    Article  Google Scholar 

  150. He, R. Y. et al. A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv. Sci. 8, 2103030 (2021).

    Article  Google Scholar 

  151. Choi, Y., Hwang, J. H. & Lee, S. Y. Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses. Small Methods 2, 1700351 (2018).

    Article  Google Scholar 

  152. Chen, Y. J. et al. Microneedle patches integrated with lateral flow cassettes for blood-free chronic kidney disease point-of-care testing during a pandemic. Biosens. Bioelectron. 208, 114234 (2022).

    Article  Google Scholar 

  153. Al Sulaiman, D. et al. Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano 13, 9620–9628 (2019).

    Article  Google Scholar 

  154. Zhang, X., Chen, G., Bian, F., Cai, L. & Zhao, Y. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv. Mater. 31, e1902825 (2019).

    Article  Google Scholar 

  155. Zheng, H. et al. Hydrogel microneedle-assisted assay integrating aptamer probes and fluorescence detection for reagentless biomarker quantification. ACS Sens. 7, 2387–2399 (2022).

    Article  Google Scholar 

  156. Keyvani, F. et al. A hydrogel microneedle assay combined with nucleic acid probes for on-site detection of small molecules and proteins. Angew. Chem. Int. Ed. 62, e202301624 (2023).

    Article  Google Scholar 

  157. Tasca, F., Tortolini, C., Bollella, P. & Antiochia, R. Microneedle-based electrochemical devices for transdermal biosensing: a review. Curr. Opin. Electrochem. 16, 42–49 (2019).

    Article  Google Scholar 

  158. Liu, Y., Yu, Q., Luo, X., Yang, L. & Cui, Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 7, 75 (2021).

    Article  Google Scholar 

  159. Bollella, P., Sharma, S., Cass, A. E. G. & Antiochia, R. Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid. Electroanalysis 31, 374–382 (2019).

    Article  Google Scholar 

  160. Lee, S. J. et al. A patch type non-enzymatic biosensor based on 3D SUS micro-needle electrode array for minimally invasive continuous glucose monitoring. Sens. Actuators B Chem. 222, 1144–1151 (2016).

    Article  Google Scholar 

  161. Keum, D. H. et al. Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Adv. Healthc. Mater. 4, 1153–1158 (2015).

    Article  Google Scholar 

  162. Chinnadayyala, S. R., Park, J., Satti, A. T., Kim, D. & Cho, S. Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles. Electrochim. Acta 369, 137691 (2021).

    Article  Google Scholar 

  163. Dervisevic, M., Alba, M., Adams, T. E., Prieto-Simon, B. & Voelcker, N. H. Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosens. Bioelectron. 192, 113496 (2021).

    Article  Google Scholar 

  164. Park, Y. G., Lee, S. & Park, J. U. Recent progress in wireless sensors for wearable electronics. Sensors 19, 4353 (2019).

    Article  Google Scholar 

  165. Yu, J. C. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    Article  Google Scholar 

  166. Wang, Z., Wang, J., Kahkoska, A. R., Buse, J. B. & Gu, Z. Developing insulin delivery devices with glucose responsiveness. Trends Pharmacol. Sci. 42, 31–44 (2021).

    Article  Google Scholar 

  167. Matsumoto, A., Yoshida, R. & Kataoka, K. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5, 1038–1045 (2004).

    Article  Google Scholar 

  168. Wang, Z. J. et al. Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proc. Natl Acad. Sci. USA 117, 29512–29517 (2020).

    Article  Google Scholar 

  169. Yu, J. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020).

    Article  Google Scholar 

  170. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017).

    Article  Google Scholar 

  171. Gowda, B. H. J. et al. Stimuli-responsive microneedles as a transdermal drug delivery system: a demand-supply strategy. Biomacromolecules 23, 1519–1544 (2022).

    Article  Google Scholar 

  172. Makvandi, P. et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 47, 206–222 (2021).

    Article  Google Scholar 

  173. Li, X. F., Xu, Q., Zhang, P., Zhao, X. & Wang, Y. X. Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J. Control. Release 314, 72–80 (2019).

    Article  Google Scholar 

  174. Zhang, Y. et al. Thrombin-responsive transcutaneous patch for auto-anticoagulant regulation. Adv. Mater. 29, 1604043 (2017).

    Article  Google Scholar 

  175. Grossi, G., Dalgaard Ebbesen Jepsen, M., Kjems, J. & Andersen, E. S. Control of enzyme reactions by a reconfigurable DNA nanovault. ACS Nano 8, 992 (2017).

    Google Scholar 

  176. Torelli, E. et al. A DNA origami nanorobot controlled by nucleic acid hybridization. Small 10, 2918–2926 (2014).

    Article  Google Scholar 

  177. Yu, J. et al. Insulin-responsive glucagon delivery for prevention of hypoglycemia. Small 13, 1603028 (2017).

    Article  Google Scholar 

  178. Slomovic, S. & Collins, J. J. DNA sense-and-respond protein modules for mammalian cells. Nat. Methods 12, 1085–1090 (2015).

    Article  Google Scholar 

  179. Hirosawa, M. et al. Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch. Nucleic Acids Res. 45, e118 (2017).

    Article  Google Scholar 

  180. Leisner, M., Bleris, L., Lohmueller, J., Xie, Z. & Benenson, Y. Rationally designed logic integration of regulatory signals in mammalian cells. Nat. Nanotechnol. 5, 666–670 (2010).

    Article  Google Scholar 

  181. Mo, F. et al. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev. 168, 79–98 (2021).

    Article  Google Scholar 

  182. Zhang, Y. et al. Stimulus-responsive and dual-target DNA nanodrugs for rheumatoid arthritis treatment. Int. J. Pharm. 632, 122543 (2023).

    Article  Google Scholar 

  183. Ye, Y. et al. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv. Mater. 28, 3115–3121 (2016).

    Article  Google Scholar 

  184. Tang, J. et al. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci. Adv. 4, eaat9365 (2018).

    Article  Google Scholar 

  185. Sun, L. Y. et al. Induced cardiomyocytes-integrated conductive microneedle patch for treating myocardial infarction. Chem. Eng. J. 414, 128723 (2021).

    Article  Google Scholar 

  186. Gualeni, B. et al. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices. Br. J. Dermatol. 178, 731–739 (2018).

    Article  Google Scholar 

  187. Xu, Y. et al. Living microneedle patch with adipose-derived stem cells embedding for diabetic ulcer healing. Adv. Funct. Mater. 33, 2209986 (2023).

    Article  Google Scholar 

  188. Chen, H. J. et al. Transdermal delivery of living and biofunctional probiotics through dissolvable microneedle patches. ACS Appl. Bio Mater. 1, 374–381 (2018).

    Article  Google Scholar 

  189. Cui, M. et al. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv. Sci. 8, 2102327 (2021).

    Article  Google Scholar 

  190. Wang, F., Zhang, X., Chen, G. & Zhao, Y. Living bacterial microneedles for fungal infection treatment. Research 2020, 2760594 (2020).

    Article  Google Scholar 

  191. Li, H. J. et al. Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. Natl Sci. Rev. 9, nwab172 (2022).

    Article  Google Scholar 

  192. Chang, H. et al. Cryomicroneedles for transdermal cell delivery. Nat. Biomed. Eng. 5, 1008–1018 (2021).

    Article  Google Scholar 

  193. Manikkath, J. & Subramony, J. A. Toward closed-loop drug delivery: integrating wearable technologies with transdermal drug delivery systems. Adv. Drug Deliv. Rev. 179, 113997 (2021).

    Article  Google Scholar 

  194. Li, X. L. et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv. Sci. 8, 2100827 (2021).

    Article  Google Scholar 

  195. Creelman, B., Frivold, C., Jessup, S., Saxon, G. & Jarrahian, C. Manufacturing readiness assessment for evaluation of the microneedle array patch industry: an exploration of barriers to full-scale manufacturing. Drug Deliv. Transl. Res. 12, 368–375 (2022).

    Article  Google Scholar 

  196. Kim, J. & Jeong, D. Dissolvable microneedles: applications and opportunities. ONdrugDelivery Magazine 84, 24–29 (2018).

    Google Scholar 

  197. Li, J. et al. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS ONE 12, e0172043 (2017).

    Article  Google Scholar 

  198. Koutsonanos, D. G. et al. Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS ONE 4, e4773 (2009).

    Article  Google Scholar 

  199. Badran, M. M., Kuntsche, J. & Fahr, A. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 36, 511–523 (2009).

    Article  Google Scholar 

  200. Davis, S. P., Martanto, W., Allen, M. G. & Prausnitz, M. R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 52, 909–915 (2005).

    Article  Google Scholar 

  201. Gardeniers, H. J. G. E. et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J. Microelectromech. Syst. 12, 855–862 (2003).

    Article  Google Scholar 

  202. Martanto, W. et al. Microinfusion using hollow microneedles. Pharm. Res. 23, 104–113 (2006).

    Article  Google Scholar 

  203. Wang, P. M., Cornwell, M. & Prausnitz, M. R. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 7, 131–141 (2005).

    Article  Google Scholar 

  204. Verhoeven, M. et al. Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model. Microelectron. Eng. 98, 659–662 (2012).

    Article  Google Scholar 

  205. Gholami, S. et al. Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. Int. J. Pharm. 558, 299–310 (2019).

    Article  Google Scholar 

  206. Cai, B., Xia, W., Bredenberg, S. & Engqvist, H. Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B 2, 5992–5998 (2014).

    Article  Google Scholar 

  207. Yu, W. et al. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater. Sci. Eng. C 73, 425–428 (2017).

    Article  Google Scholar 

  208. Vallhov, H., Xia, W., Engqvist, H. & Scheynius, A. Bioceramic microneedle arrays are able to deliver OVA to dendritic cells in human skin. J. Mater. Chem. B 6, 6808–6816 (2018).

    Article  Google Scholar 

  209. Donnelly, R. F. et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm. 35, 1242–1254 (2009).

    Article  Google Scholar 

  210. Martin, C. J., Allender, C. J., Brain, K. R., Morrissey, A. & Birchall, J. C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 158, 93–101 (2012).

    Article  Google Scholar 

  211. Lee, J. W., Han, M. R. & Park, J. H. Polymer microneedles for transdermal drug delivery. J. Drug Target. 21, 211–223 (2013).

    Article  Google Scholar 

  212. Lee, J. W., Park, J. H. & Prausnitz, M. R. Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2113–2124 (2008).

    Article  Google Scholar 

  213. Ita, K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed. Pharmacother. 93, 1116–1127 (2017).

    Article  Google Scholar 

  214. US Food and Drug Administration. Regulatory considerations for microneedling products: guidance for industry and Food and Drug Administration staff (FDA, 2020).

Download references

Acknowledgements

C.X. acknowledges support by Strategic Interdisciplinary Research Grant (7020029) from City University of Hong Kong, General Research Fund (CityU11200820, CityU11202222, CityU11100323) and Collaborative Research Fund (C5044-21G) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region China, and the Mainland/Hong Kong Joint Research Scheme sponsored by the RGC Hong Kong and the National Natural Science Foundation of China (N_CityU118/20). Z.G. acknowledges support by Zhejiang Province “Kunpeng Action” Plan, National Natural Science Foundation of China (52233013) and National Key R&D Program of China (2021YFA0909900).

Author information

Authors and Affiliations

Authors

Contributions

All authors analysed the data, created figures and contributed to drafting, revising and reviewing the manuscript.

Corresponding authors

Correspondence to Jicheng Yu, Zhen Gu or Chenjie Xu.

Ethics declarations

Competing interests

Z.G. is co-founder of Zenomics, ZCapsule and μZen Pharma. C.X. is co-founder of Greater Bay Biotechnology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Ciro Chiappini and the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Institute of Health ClinicalTrials.org: https://clinicaltrials.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Sheng, T., Yu, J. et al. Microneedle biomedical devices. Nat Rev Bioeng 2, 324–342 (2024). https://doi.org/10.1038/s44222-023-00141-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00141-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research