Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biology-driven material design for ischaemic stroke repair

Abstract

Ischaemic stroke remains a leading cause of disability, with current clinical treatment options mainly focusing on mitigating immediate damage. The limited self-renewing capacity of the brain hinders tissue regeneration and prevents full recovery for many patients. However, the injury environment also creates an opportunity for biomaterials to promote inherently reparative phenomena, such as angiogenesis, axonal sprouting and synaptogenesis, and ultimately achieve functional recovery. In this Review, we summarize the dynamic temporal stages of repair following ischaemic stroke that facilitate neural plasticity and outline key physiological phenomena that participate to functional recovery. We then discuss the design of biomaterials, such as injectable hydrogels and granular materials, that can engage and modulate these pro-repair mechanisms in the brain. Such biomaterials can also be engineered to deliver therapeutics, such as proteins, peptides and extracellular vesicles, and provide electrical stimulation. Finally, we outline key challenges that remain to be addressed to translate the preclinical success of biomaterial-based treatment strategies to the clinic.

Key points

  • Ischaemic stroke occurs if a blood vessel in the brain is obstructed, preventing blood flow to the brain, which creates a localized area of tissue necrosis known as the infarct.

  • Stroke is a leading cause of long-term disability, affecting more than half of survivors who are 65 years and older.

  • To improve repair after ischaemic stroke and promote functional improvement, therapies must alter endogenous inhibitory structures while promoting endogenous remodelling phenomena in and surrounding the infarct tissue.

  • The subacute time window (~3 months post incidence in humans) provides a period of high endogenous neural plasticity, offering an opportunity for therapeutic interventions.

  • Biomaterial therapies can rehabilitate the infarct environment towards reparative phenomena by delivering therapeutic molecules and by acting as mechanotransducive cues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal healing of ischaemic stroke and preclinical stroke models.
Fig. 2: Subacute phase of ischaemic stroke.
Fig. 3: Biomaterials for ischaemic stroke repair.
Fig. 4: New directions for biomaterial-based ischaemic stroke treatments.

Similar content being viewed by others

References

  1. Tsao, C. W. et al. Heart disease and stroke statistics — 2022 update: a report from the American Heart Association. Circulation 145, E153–E639 (2022).

    Article  Google Scholar 

  2. Powers, W. J. Acute ischemic stroke. N. Engl. J. Med. 383, 252–260 (2020).

    Article  Google Scholar 

  3. Thiebaut, A. M. et al. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol. 17, 1121–1132 (2018).

    Article  Google Scholar 

  4. Duncan, P. W. et al. Comprehensive stroke care and outcomes: time for a paradigm shift. Stroke 52, 385–393 (2021).

    Article  Google Scholar 

  5. Bharadwaj, V. N., Nguyen, D. T., Kodibagkar, V. D. & Stabenfeldt, S. E. Nanoparticle‐based therapeutics for brain injury. Adv. Healthc. Mater. 7, 1700668 (2018).

    Article  Google Scholar 

  6. Agrawal, M. et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release 260, 61–77 (2017).

    Article  Google Scholar 

  7. Westphal, M. et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 5, 79–88 (2003).

    Article  Google Scholar 

  8. Ma, R. et al. Animal models of cerebral ischemia: a review. Biomed. Pharmacother. 131, 110686 (2020).

    Article  Google Scholar 

  9. Bernhardt, J. et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabil. Neural Repair 31, 793–799 (2017).

    Article  Google Scholar 

  10. Cirillo, C. et al. Post-stroke remodeling processes in animal models and humans. J. Cereb. Blood Flow Metab. 40, 3–22 (2020).

    Article  Google Scholar 

  11. Fluri, F., Schuhmann, M. K. & Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther. 9, 3445–3454 (2015).

    Google Scholar 

  12. Li, Y. & Zhang, J. Animal models of stroke. Animal Model. Exp. Med. 4, 204–219 (2021).

    Article  Google Scholar 

  13. Lin, X. et al. Nonhuman primate models of ischemic stroke and neurological evaluation after stroke. J. Neurosci. Methods 376, 109611 (2022).

    Article  Google Scholar 

  14. Krueger, M., Mages, B., Hobusch, C. & Michalski, D. Endothelial edema precedes blood-brain barrier breakdown in early time points after experimental focal cerebral ischemia. Acta Neuropathol. Commun. 7, 17 (2019).

    Article  Google Scholar 

  15. Gu, Y. et al. Cerebral edema after ischemic stroke: pathophysiology and underlying mechanisms. Front. Neurosci. 16, 988283 (2022).

    Article  Google Scholar 

  16. Chen, R.-L., Balami, J. S., Esiri, M. M., Chen, L.-K. & Buchan, A. M. Ischemic stroke in the elderly: an overview of evidence. Nat. Rev. Neurol. 6, 256–265 (2010).

    Article  Google Scholar 

  17. Nian, K., Harding, I. C., Herman, I. M. & Ebong, E. E. Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction. Front. Physiol. 11, 605398 (2020).

    Article  Google Scholar 

  18. Spitzer, D. et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood–brain barrier in acute ischemic stroke. Acta Neuropathol. 144, 305–337 (2022).

    Article  Google Scholar 

  19. Tuo, Q. Z., Zhang, S. T. & Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 42, 259–305 (2022).

    Article  Google Scholar 

  20. Datta, A. et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl. Stroke Res. 11, 1185–1202 (2020).

    Article  Google Scholar 

  21. Han, D., Liu, H. & Gao, Y. The role of peripheral monocytes and macrophages in ischemic stroke. Neurol. Sci. 41, 3589–3607 (2020).

    Article  Google Scholar 

  22. Hernandez, V. G. et al. Translatome analysis reveals microglia and astrocytes to be distinct regulators of inflammation in the hyperacute and acute phases after stroke. Glia 71, 1960–1984 (2023).

    Article  Google Scholar 

  23. Candelario-Jalil, E., Dijkhuizen, R. M. & Magnus, T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53, 1473–1486 (2022).

    Article  Google Scholar 

  24. Cotrina, M. L., Lou, N., Tome-Garcia, J., Goldman, J. & Nedergaard, M. Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience 343, 483–494 (2017).

    Article  Google Scholar 

  25. Peng, L. et al. Microglia autophagy in ischemic stroke: a double-edged sword. Front. Immunol. 13, 1013311 (2022).

    Article  Google Scholar 

  26. Jayaraj, R. L., Azimullah, S., Beiram, R., Jalal, F. Y. & Rosenberg, G. A. Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation 16, 142 (2019).

    Article  Google Scholar 

  27. Benakis, C. et al. T cells modulate the microglial response to brain ischemia. eLife 11, e82031 (2022).

    Article  Google Scholar 

  28. Gleichman, A. J. & Carmichael, S. T. Astrocytic therapies for neuronal repair in stroke. Neurosci. Lett. 565, 47–52 (2014).

    Article  Google Scholar 

  29. Fernández‐Klett, F. & Priller, J. The fibrotic scar in neurological disorders. Brain Pathol. 24, 404–413 (2014).

    Article  Google Scholar 

  30. Shibahara, T. et al. Pericyte-mediated tissue repair through PDGFRβ promotes peri-infarct astrogliosis, oligodendrogenesis, and functional recovery after acute ischemic stroke. eNeuro 7, ENEURO.0474-19.2020 (2020).

    Article  Google Scholar 

  31. Ohab, J. J. & Carmichael, S. T. Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist 14, 369–380 (2008).

    Article  Google Scholar 

  32. Brown, C. E., Aminoltejari, K., Erb, H., Winship, I. R. & Murphy, T. H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci. 29, 1719–1734 (2009).

    Article  Google Scholar 

  33. Caracciolo, L. et al. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat. Commun. 9, 2250 (2018).

    Article  Google Scholar 

  34. Joy, M. T. & Carmichael, S. T. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat. Rev. Neurosci. 22, 38–53 (2020).

    Article  Google Scholar 

  35. Yang, Y. & Torbey, M. T. Angiogenesis and blood-brain barrier permeability in vascular remodeling after stroke. Curr. Neuropharmacol. 18, 1250–1265 (2020).

    Article  Google Scholar 

  36. Strbian, D. et al. The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153, 175–181 (2008).

    Article  Google Scholar 

  37. Takeuchi, N. & Izumi, S.-I. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res. Treat. 2013, 128641 (2013).

    Google Scholar 

  38. Dromerick, A. W. et al. Critical Period after Stroke Study (CPASS): a phase II clinical trial testing an optimal time for motor recovery after stroke in humans. Proc. Natl Acad. Sci. USA 118, e2026676118 (2021).

    Article  Google Scholar 

  39. Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B. & Al Mahmud, A. Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: systematic review. JMIR Rehabil. Assist. Technol. 6, e12010 (2019).

    Article  Google Scholar 

  40. Patel, R. A. G. & McMullen, P. W. Neuroprotection in the treatment of acute ischemic stroke. Prog. Cardiovasc. Dis. 59, 542–548 (2017).

    Article  Google Scholar 

  41. Labat-gest, V. & Tomasi, S. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J. Vis. Exp. 76, 50370 (2013).

    Google Scholar 

  42. Nakamura, K. & Shichita, T. Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. J. Biochem. 165, 459–464 (2019).

    Article  Google Scholar 

  43. Ma, Y., Liu, Y., Zhang, Z. & Yang, G.-Y. Significance of complement system in ischemic stroke: a comprehensive review. Aging Dis. 10, 429 (2019).

    Article  Google Scholar 

  44. Clarke, A. R., Christophe, B. R., Khahera, A., Sim, J. L. & Connolly, E. S. Jr Therapeutic modulation of the complement cascade in stroke. Front. Immunol. 10, 1723 (2019).

    Article  Google Scholar 

  45. Dong, R., Huang, R., Wang, J., Liu, H. & Xu, Z. Effects of microglial activation and polarization on brain injury after stroke. Front. Neurol. 12, 620948 (2021).

    Article  Google Scholar 

  46. Qin, C. et al. Dual functions of microglia in ischemic stroke. Neurosci. Bull. 35, 921–933 (2019).

    Article  Google Scholar 

  47. Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).

    Article  Google Scholar 

  48. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021).

    Article  Google Scholar 

  49. Dickens, A. M. et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci. Signal. 10, eaai7696 (2017).

    Article  Google Scholar 

  50. Jickling, G. C. et al. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J. Cereb. Blood Flow Metab. 35, 888–901 (2015).

    Article  Google Scholar 

  51. Mechtouff, L. et al. Matrix metalloproteinase-9 relationship with infarct growth and hemorrhagic transformation in the era of thrombectomy. Front. Neurol. 11, 473 (2020).

    Article  Google Scholar 

  52. Yilmaz, G., Arumugam, T. V., Stokes, K. Y. & Granger, D. N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 113, 2105–2112 (2006).

    Article  Google Scholar 

  53. Zhang, D. et al. T cell response in ischemic stroke: from mechanisms to translational insights. Front. Immunol. 12, 707972 (2021).

    Article  Google Scholar 

  54. Heindl, S. et al. Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. J. Exp. Med. 218, e20202411 (2021).

    Article  Google Scholar 

  55. Faura, J., Bustamante, A., Miró-Mur, F. & Montaner, J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J. Neuroinflammation 18, 127 (2021).

    Article  Google Scholar 

  56. Dirnagl, U. et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke 38, 770–773 (2007).

    Article  Google Scholar 

  57. Ju, R., Wen, Y., Gou, R., Wang, Y. & Xu, Q. The experimental therapy on brain ischemia by improvement of local angiogenesis with tissue engineering in the mouse. Cell Transplant. 23, 83–95 (2014).

    Article  Google Scholar 

  58. Fumagalli, S., Perego, C., Pischiutta, F., Zanier, E. R. & De Simoni, M. G. The ischemic environment drives microglia and macrophage function. Front. Neurol. 6, 81 (2015).

    Article  Google Scholar 

  59. Lubart, A. et al. Single cortical microinfarcts lead to widespread microglia/macrophage migration along the white matter. Cereb. Cortex 31, 248–266 (2021).

    Article  Google Scholar 

  60. Guo, S., Wang, H. & Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci. 14, 815347 (2022).

    Article  Google Scholar 

  61. Witherel, C. E. et al. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 269, 120667 (2021).

    Article  Google Scholar 

  62. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Article  Google Scholar 

  63. Williamson, M. R., Fuertes, C. J. A., Dunn, A. K., Drew, M. R. & Jones, T. A. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep. 35, 109048 (2021).

    Article  Google Scholar 

  64. Stokowska, A. et al. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain 140, 353–369 (2017).

    Article  Google Scholar 

  65. Stokowska, A. et al. Complement C3a treatment accelerates recovery after stroke via modulation of astrocyte reactivity and cortical connectivity. J. Clin. Invest. 133, e162253 (2023).

    Article  Google Scholar 

  66. Sideris, E. et al. Particle hydrogels decrease cerebral atrophy and attenuate astrocyte and microglia/macrophage reactivity after stroke. Adv. Ther. 5, 2200048 (2022).

    Article  Google Scholar 

  67. Hinman, J. D. The back and forth of axonal injury and repair after stroke. Curr. Opin. Neurol. 27, 615–623 (2014).

    Article  Google Scholar 

  68. Laredo, C. et al. Prognostic significance of infarct size and location: the case of insular stroke. Sci. Rep. 8, 9498 (2018).

    Article  Google Scholar 

  69. Muñoz-Castañeda, R. et al. Cellular anatomy of the mouse primary motor cortex. Nature 598, 159–166 (2021).

    Article  Google Scholar 

  70. Jeong, M. et al. Comparative three-dimensional connectome map of motor cortical projections in the mouse brain. Sci. Rep. 6, 20072 (2016).

    Article  Google Scholar 

  71. Joy, M. T. et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176, 1143–1157.e13 (2019).

    Article  Google Scholar 

  72. Clarkson, A. N., Parker, K., Nilsson, M., Walker, F. R. & Gowing, E. K. Combined ampakine and BDNF treatments enhance poststroke functional recovery in aged mice via AKT-CREB signaling. J. Cereb. Blood Flow Metab. 35, 1272–1279 (2015).

    Article  Google Scholar 

  73. Bechay, K. R. et al. PDE2A inhibition enhances axonal sprouting, functional connectivity, and recovery after stroke. J. Neurosci. 42, 8225–8236 (2022).

    Article  Google Scholar 

  74. Latifi, S. et al. Neuronal network topology indicates distinct recovery processes after stroke. Cereb. Cortex 30, 6363–6375 (2020).

    Article  Google Scholar 

  75. Liu, D. et al. Biodegradable spheres protect traumatically injured spinal cord by alleviating the glutamate-induced excitotoxicity. Adv. Mater. 30, e1706032 (2018).

    Article  Google Scholar 

  76. Zhao, X. et al. Conotoxin loaded dextran microgel particles alleviate effects of spinal cord injury by inhibiting neuronal excitotoxicity. Appl. Mater. Today 23, 101064 (2021).

    Article  Google Scholar 

  77. Neher, J. J. et al. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl Acad. Sci. USA 110, E4098–E4107 (2013).

    Article  Google Scholar 

  78. Fricker, M. et al. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J. Neurosci. 32, 2657–2666 (2012).

    Article  Google Scholar 

  79. Sarkar, B. et al. In vivo neuroprotective effect of a self-assembled peptide hydrogel. Chem. Eng. J. 408, 127295–127295 (2021).

    Article  Google Scholar 

  80. Huang, X. et al. Reactive oxygen species scavenging functional hydrogel delivers procyanidins for the treatment of traumatic brain injury in mice. ACS Appl. Mater. Interfaces 14, 33756–33767 (2022).

    Article  Google Scholar 

  81. Lee, J. et al. Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials 120, 94–102 (2017).

    Article  Google Scholar 

  82. Shen, H. et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 280, 121279–121279 (2022).

    Article  Google Scholar 

  83. Rademakers, T., Horvath, J. M., van Blitterswijk, C. A. & LaPointe, V. L. Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J. Tissue Eng. Regen. Med. 13, 1815–1829 (2019).

    Article  Google Scholar 

  84. Otsuka, S. et al. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats. Behav. Brain Res. 303, 9–18 (2016).

    Article  Google Scholar 

  85. Ruan, L., Wang, B., ZhuGe, Q. & Jin, K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 1623, 166–173 (2015).

    Article  Google Scholar 

  86. Krupinski, J., Kaluza, J., Kumar, P., Kumar, S. & Wang, J. M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25, 1794–1798 (1994).

    Article  Google Scholar 

  87. Nih, L. R., Gojgini, S., Carmichael, S. T. & Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat. Mater. 17, 642–651 (2018).

    Article  Google Scholar 

  88. Fayad, P. Improved prospects for thrombectomy in large ischemic stroke. N. Engl. J. Med. 388, 1326–1328 (2023).

    Article  Google Scholar 

  89. Kloner, R. A., King, K. S. & Harrington, M. G. No-reflow phenomenon in the heart and brain. Am. J. Physiol. Heart Circ. Physiol. 315, H550–H562 (2018).

    Article  Google Scholar 

  90. El Amki, M. et al. Neutrophils obstructing brain capillaries are a major cause of no-reflow in ischemic stroke. Cell Rep. 33, 108260 (2020).

    Article  Google Scholar 

  91. Durán-Laforet, V. et al. Delayed effects of acute reperfusion on vascular remodeling and late-phase functional recovery after stroke. Front. Neurosci. 13, 767 (2019).

    Article  Google Scholar 

  92. Shuaib, A., Butcher, K., Mohammad, A. A., Saqqur, M. & Liebeskind, D. S. Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol. 10, 909–921 (2011).

    Article  Google Scholar 

  93. Hayashi, T., Noshita, N., Sugawara, T. & Chan, P. H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 23, 166–180 (2003).

    Article  Google Scholar 

  94. Krupinski, J. et al. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia. Neuroreport 14, 1171–1176 (2003).

    Article  Google Scholar 

  95. Puebla, M., Tapia, P. J. & Espinoza, H. Key role of astrocytes in postnatal brain and retinal angiogenesis. Int. J. Mol. Sci. 23, 2646 (2022).

    Article  Google Scholar 

  96. Kojima, T. et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28, 545–554 (2010).

    Article  Google Scholar 

  97. Benowitz, L. I. & Carmichael, S. T. Promoting axonal rewiring to improve outcome after stroke. Neurobiol. Dis. 37, 259–266 (2010).

    Article  Google Scholar 

  98. Carmichael, S. T., Kathirvelu, B., Schweppe, C. A. & Nie, E. H. Molecular, cellular and functional events in axonal sprouting after stroke. Exp. Neurol. 287, 384–394 (2017).

    Article  Google Scholar 

  99. Overman, J. J. et al. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc. Natl Acad. Sci. USA 109, E2230–E2239 (2012).

    Article  Google Scholar 

  100. Li, S. et al. GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat. Neurosci. 18, 1737–1745 (2015).

    Article  Google Scholar 

  101. Li, S. et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat. Neurosci. 13, 1496–1504 (2010).

    Article  Google Scholar 

  102. Li, S. & Carmichael, S. T. Growth-associated gene and protein expression in the region of axonal sprouting in the aged brain after stroke. Neurobiol. Dis. 23, 362–373 (2006).

    Article  Google Scholar 

  103. Carmichael, S. T. et al. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp. Neurol. 193, 291–311 (2005).

    Article  Google Scholar 

  104. Carmichael, S. T. & Chesselet, M.-F. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J. Neurosci. 22, 6062–6070 (2002).

    Article  Google Scholar 

  105. Buetefisch, C. M. et al. Stroke lesion volume and injury to motor cortex output determines extent of contralesional motor cortex reorganization. Neurorehabil. Neural Repair 37, 119–130 (2023).

    Article  Google Scholar 

  106. McKeon, R. J., Jurynec, M. J. & Buck, C. R. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19, 10778–10788 (1999).

    Article  Google Scholar 

  107. Gottipati, M. K., Zuidema, J. M. & Gilbert, R. J. Biomaterial strategies for creating in vitro astrocyte cultures resembling in vivo astrocyte morphologies and phenotypes. Curr. Opin. Biomed. Eng. 14, 67–74 (2020).

    Article  Google Scholar 

  108. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  Google Scholar 

  109. Cook, D. J. et al. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J. Cereb. Blood Flow Metab. 37, 1030–1045 (2017).

    Article  Google Scholar 

  110. Faiz, M. et al. Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell 17, 624–634 (2015).

    Article  Google Scholar 

  111. Peng, H. et al. Stromal cell‐derived factor 1‐mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J. Neurosci. Res. 76, 35–50 (2004).

    Article  Google Scholar 

  112. Barkho, B. Z. & Zhao, X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr. Stem Cell Res. Ther. 6, 327–338 (2011).

    Article  Google Scholar 

  113. Widera, D. et al. MCP-1 induces migration of adult neural stem cells. Eur. J. Cell Biol. 83, 381–387 (2004).

    Article  Google Scholar 

  114. Ohab, J. J., Fleming, S., Blesch, A. & Carmichael, S. T. A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016 (2006).

    Article  Google Scholar 

  115. Liang, H. et al. Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke. Proc. Natl Acad. Sci. USA 116, 13621–13630 (2019).

    Article  Google Scholar 

  116. Nih, L. R., Sideris, E., Carmichael, S. T. & Segura, T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. 29, 1606471 (2017).

    Article  Google Scholar 

  117. Wang, Y., Cooke, M. J., Sachewsky, N., Morshead, C. M. & Shoichet, M. S. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke. J. Control. Release 172, 1–11 (2013).

    Article  Google Scholar 

  118. Wilson, K. L., Pérez, S. C. L., Naffaa, M. M., Kelly, S. H. & Segura, T. Stoichiometric post-modification of hydrogel microparticles dictates neural stem cell fate in microporous annealed particle scaffolds. Adv. Mater. 34, e2201921 (2022).

    Article  Google Scholar 

  119. Kumar, A., Pareek, V., Faiq, M. A., Ghosh, S. K. & Kumari, C. Adult neurogenesis in humans: a review of basic concepts, history, current research, and clinical implications. Innov. Clin. Neurosci. 16, 30–37 (2019).

    Google Scholar 

  120. Lam, J., Carmichael, S. T., Lowry, W. E. & Segura, T. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture. Adv. Healthc. Mater. 4, 534–539 (2015).

    Article  Google Scholar 

  121. Carmichael, S. T. Brain excitability in stroke: the yin and yang of stroke progression. Arch. Neurol. 69, 161–167 (2012).

    Article  Google Scholar 

  122. Qin, L. et al. An increase of excitatory-to-inhibitory synaptic balance in the contralateral cortico-striatal pathway underlies improved stroke recovery in BDNF Val66Met SNP mice. Neurorehabil. Neural Repair 33, 989–1002 (2019).

    Article  Google Scholar 

  123. Brown, C. E., Wong, C. & Murphy, T. H. Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke. Stroke 39, 1286–1291 (2008).

    Article  Google Scholar 

  124. Brown, C. E. & Murphy, T. H. Livin’on the edge: imaging dendritic spine turnover in the peri-infarct zone during ischemic stroke and recovery. Neuroscientist 14, 139–146 (2008).

    Article  Google Scholar 

  125. Mandat, T. S., Hurwitz, T. & Honey, C. R. Hypomania as an adverse effect of subthalamic nucleus stimulation: report of two cases. Acta Neurochir. 148, 895–898 (2006).

    Article  Google Scholar 

  126. Broguiere, N. et al. Macroporous hydrogels derived from aqueous dynamic phase separation. Biomaterials 200, 56–65 (2019).

    Article  Google Scholar 

  127. Baldwin, K. T. & Eroglu, C. Molecular mechanisms of astrocyte-induced synaptogenesis. Curr. Opin. Neurobiol. 45, 113–120 (2017).

    Article  Google Scholar 

  128. Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551, 192–197 (2017).

    Article  Google Scholar 

  129. Mazur, A. et al. Astrocyte-derived thrombospondin induces cortical synaptogenesis in a sex-specific manner. eNeuro 8, ENEURO.0014-21.2021 (2021).

    Article  Google Scholar 

  130. Kucukdereli, H. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins hevin and SPARC. Proc. Natl Acad. Sci. USA 108, E440–E449 (2011).

    Article  Google Scholar 

  131. Von Bartheld, C. S., Bahney, J. & Herculano‐Houzel, S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

    Article  Google Scholar 

  132. Xu, S., Lu, J., Shao, A., Zhang, J. H. & Zhang, J. Glial cells: role of the immune response in ischemic stroke. Front. Immunol. 11, 294 (2020).

    Article  Google Scholar 

  133. Chung, W. S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370 (2015).

    Article  Google Scholar 

  134. Han, R. T., Kim, R. D., Molofsky, A. V. & Liddelow, S. A. Astrocyte-immune cell interactions in physiology and pathology. Immunity 54, 211–224 (2021).

    Article  Google Scholar 

  135. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  Google Scholar 

  136. Eroglu, Ç. et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009).

    Article  Google Scholar 

  137. Xin, S., Phan, N. V., Zhang, L., Carmichael, S. T. & Segura, T. Reactive astrocyte derived extracellular vesicles promote functional repair post stroke. Preprint at bioRxiv https://doi.org/10.1101/2022.09.06.506818 (2022).

  138. Sideris, E. et al. Particle hydrogels decrease cerebral atrophy and attenuate astrocyte and microglia/macrophage reactivity after stroke. Adv. Ther. 5, 2200048 (2022).

  139. Khaing, Z. Z. et al. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J. Neural Eng. 8, 046033 (2011).

    Article  Google Scholar 

  140. Galarza, S., Crosby, A. J., Pak, C. H. & Peyton, S. R. Control of astrocyte quiescence and activation in a synthetic brain hydrogel. Adv. Healthc. Mater. 9, e1901419 (2020).

    Article  Google Scholar 

  141. Moshayedi, P. et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014).

    Article  Google Scholar 

  142. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  Google Scholar 

  143. Yang, Y. et al. Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice. J. Neuroinflammation 8, 108 (2011).

    Article  Google Scholar 

  144. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    Article  Google Scholar 

  145. Bain, J. M., Moore, L., Ren, Z., Simonishvili, S. & Levison, S. W. Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia–ischemia and exert different effects on neonatal glial progenitors. Transl. Stroke Res. 4, 158–170 (2013).

    Article  Google Scholar 

  146. Sato, K. Effects of microglia on neurogenesis. Glia 63, 1394–1405 (2015).

    Article  Google Scholar 

  147. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  Google Scholar 

  148. Augusto-Oliveira, M. et al. What do microglia really do in healthy adult brain? Cells 8, 1293 (2019).

    Article  Google Scholar 

  149. Tsui, C., Koss, K., Churchward, M. A. & Todd, K. G. Biomaterials and glia: progress on designs to modulate neuroinflammation. Acta Biomater. 83, 13–28 (2019).

    Article  Google Scholar 

  150. Leung, B. K., Biran, R., Underwood, C. J. & Tresco, P. A. Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials 29, 3289–3297 (2008).

    Article  Google Scholar 

  151. Bollmann, L. et al. Microglia mechanics: immune activation alters traction forces and durotaxis. Front. Cell. Neurosci. 9, 363 (2015).

    Article  Google Scholar 

  152. Bechler, M. E., Swire, M. & Ffrench-Constant, C. Intrinsic and adaptive myelination — A sequential mechanism for smart wiring in the brain. Dev. Neurobiol. 78, 68–79 (2018).

    Article  Google Scholar 

  153. Wang, F. et al. Enhancing oligodendrocyte myelination rescues synaptic loss and improves functional recovery after chronic hypoxia. Neuron 99, 689–701.e5 (2018).

    Article  Google Scholar 

  154. Bergles, D. E., Jabs, R. & Steinhäuser, C. Neuron-glia synapses in the brain. Brain Res. Rev. 63, 130–137 (2009).

    Article  Google Scholar 

  155. Kishida, N. et al. Role of perivascular oligodendrocyte precursor cells in angiogenesis after brain ischemia. J. Am. Heart Assoc. 8, e011824 (2019).

    Article  Google Scholar 

  156. Shi, L. et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 54, 1527–1542.e8 (2021).

    Article  Google Scholar 

  157. Korrell, K. V. et al. Differential effect on myelination through abolition of activity‐dependent synaptic vesicle release or reduction of overall electrical activity of selected cortical projections in the mouse. J. Anat. 235, 452–467 (2019).

    Article  Google Scholar 

  158. Unal, D. B., Caliari, S. R. & Lampe, K. J. 3D hyaluronic acid hydrogels for modeling oligodendrocyte progenitor cell behavior as a function of matrix stiffness. Biomacromolecules 21, 4962–4971 (2020).

    Article  Google Scholar 

  159. Meco, E., Zheng, W. S., Sharma, A. H. & Lampe, K. J. Guiding oligodendrocyte precursor cell maturation with Urokinase plasminogen activator-degradable elastin-like protein hydrogels. Biomacromolecules 21, 4724–4736 (2020).

    Article  Google Scholar 

  160. Park, H., Otte, A. & Park, K. Evolution of drug delivery systems: from 1950 to 2020 and beyond. J. Control. Release 342, 53–65 (2022).

    Article  Google Scholar 

  161. Mitchell, P. et al. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the stentrode with thought-controlled digital switch (SWITCH) study. JAMA Neurol. 90, 270–278 (2023).

    Article  Google Scholar 

  162. Pakulska, M. M., Ballios, B. G. & Shoichet, M. S. Injectable hydrogels for central nervous system therapy. Biomed. Mater. 7, 024101 (2012).

    Article  Google Scholar 

  163. Axpe, E., Orive, G., Franze, K. & Appel, E. A. Towards brain-tissue-like biomaterials. Nat. Commun. 11, 3423 (2020).

    Article  Google Scholar 

  164. Boni, R., Ali, A., Shavandi, A. & Clarkson, A. N. Current and novel polymeric biomaterials for neural tissue engineering. J. Biomed. Sci. 25, 90 (2018).

    Article  Google Scholar 

  165. Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

    Article  Google Scholar 

  166. Passaniti, A. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528 (1992).

    Google Scholar 

  167. Albini, A. et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239–3245 (1987).

    Google Scholar 

  168. Fridman, R. et al. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA 87, 6698–6702 (1990).

    Article  Google Scholar 

  169. Kibbey, M. C., Grant, D. S. & Kleinman, H. K. Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J. Natl Cancer Inst. 84, 1633–1638 (1992).

    Article  Google Scholar 

  170. Addington, C. et al. Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels. Biomaterials 72, 11–19 (2015).

    Article  Google Scholar 

  171. Oshikawa, M., Okada, K., Kaneko, N., Sawamoto, K. & Ajioka, I. Affinity-immobilization of VEGF on laminin porous sponge enhances angiogenesis in the ischemic brain. Adv. Healthc. Mater. 6, 1700183 (2017).

    Article  Google Scholar 

  172. Ghuman, H. et al. ECM hydrogel improves the delivery of PEG microsphere-encapsulated neural stem cells and endothelial cells into tissue cavities caused by stroke. Brain Res. Bull. 168, 120–137 (2021).

    Article  Google Scholar 

  173. Clark, A. R., Carter, A. B., Hager, L. E. & Price, E. M. In vivo neural tissue engineering: cylindrical biocompatible hydrogels that create new neural tracts in the adult mammalian brain. Stem Cell Dev. 25, 1109–1118 (2016).

    Article  Google Scholar 

  174. Elkhoury, K. et al. Soft‐nanoparticle functionalization of natural hydrogels for tissue engineering applications. Adv. Healthc. Mater. 8, 1900506 (2019).

    Article  Google Scholar 

  175. Liu, L., Liu, Y., Li, J., Du, G. & Chen, J. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb. Cell Fact. 10, 99 (2011).

    Article  Google Scholar 

  176. Sze, J. H., Brownlie, J. C. & Love, C. A. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 6, 67 (2016).

    Article  Google Scholar 

  177. Jensen, G., Holloway, J. L. & Stabenfeldt, S. E. Hyaluronic acid biomaterials for central nervous system regenerative medicine. Cells 9, 2113 (2020).

    Article  Google Scholar 

  178. Khunmanee, S., Jeong, Y. & Park, H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 8, 2041731417726464 (2017).

    Article  Google Scholar 

  179. Gupta, D., Tator, C. H. & Shoichet, M. S. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27, 2370–2379 (2006).

    Article  Google Scholar 

  180. Kapoor, S. & Kundu, S. C. Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater. 31, 17–32 (2016).

    Article  Google Scholar 

  181. Liu, Y. et al. Highly flexible and resilient elastin hybrid cryogels with shape memory, injectability, conductivity, and magnetic responsive properties. Adv. Mater. 28, 7758–7767 (2016).

    Article  Google Scholar 

  182. Foster, A. A. et al. Protein-engineered hydrogels enhance the survival of induced pluripotent stem cell-derived endothelial cells for treatment of peripheral arterial disease. Biomater. Sci. 6, 614–622 (2018).

    Article  Google Scholar 

  183. Muraoka, T. & Ajioka, I. Self-assembling molecular medicine for the subacute phase of ischemic stroke. Neurochem. Res. 47, 2488–2498 (2022).

    Article  Google Scholar 

  184. Tang, J. D. & Lampe, K. J. From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomed. Mater. 13, 034103 (2018).

    Article  Google Scholar 

  185. Luo, T., Tan, B., Zhu, L., Wang, Y. & Liao, J. A review on the design of hydrogels with different stiffness and their effects on tissue repair. Front. Bioeng. Biotechnol. 10, 817391 (2022).

    Article  Google Scholar 

  186. Rizzo, F. & Kehr, N. S. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv. Healthc. Mater. 10, 2001341 (2021).

    Article  Google Scholar 

  187. Jo, Y. S., Gantz, J., Hubbell, J. A. & Lutolf, M. P. Tailoring hydrogel degradation and drug release via neighboring amino acid controlled ester hydrolysis. Soft Matter 5, 440–446 (2009).

    Article  Google Scholar 

  188. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  Google Scholar 

  189. Rizwan, M., Baker, A. E. G. & Shoichet, M. S. Designing hydrogels for 3D cell culture using dynamic covalent crosslinking. Adv. Healthc. Mater. 10, 2100234 (2021).

    Article  Google Scholar 

  190. Murphy, W. L., Dennis, R. G., Kileny, J. L. & Mooney, D. J. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 8, 43–52 (2002).

    Article  Google Scholar 

  191. Hernandez, J. L. & Woodrow, K. A. Medical applications of porous biomaterials: features of porosity and tissue‐specific implications for biocompatibility. Adv. Healthc. Mater. 11, 2102087 (2022).

    Article  Google Scholar 

  192. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    Article  Google Scholar 

  193. Chiu, Y.-C. et al. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32, 6045–6051 (2011).

    Article  Google Scholar 

  194. Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

    Article  Google Scholar 

  195. Karageorgiou, V. & Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005).

    Article  Google Scholar 

  196. Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).

    Article  Google Scholar 

  197. Riley, L., Schirmer, L. & Segura, T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr. Opin. Biotechnol. 60, 1–8 (2019).

    Article  Google Scholar 

  198. Rommel, D. et al. Functionalized microgel rods interlinked into soft macroporous structures for 3D cell culture. Adv. Sci. 9, e2103554 (2022).

    Article  Google Scholar 

  199. Kurt, E. & Segura, T. Nucleic acid delivery from granular hydrogels. Adv. Healthc. Mater. 11, 2101867 (2022).

    Article  Google Scholar 

  200. Anderson, A. R., Nicklow, E. & Segura, T. Particle fraction is a bioactive cue in granular scaffolds. Acta Biomater. 150, 111–127 (2022).

    Article  Google Scholar 

  201. Sideris, E. et al. Particle hydrogels based on hyaluronic acid building blocks. ACS Biomater. Sci. Eng. 2, 2034–2041 (2016).

    Article  Google Scholar 

  202. Nih, L. R., Sideris, E., Carmichael, S. T. & Segura, T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. 29, 1606471 (2017).

    Article  Google Scholar 

  203. Somaa, F. A. et al. Peptide-based scaffolds support human cortical progenitor graft integration to reduce atrophy and promote functional repair in a model of stroke. Cell Rep. 20, 1964–1977 (2017).

    Article  Google Scholar 

  204. Zhong, J. et al. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil. Neural Repair 24, 636–644 (2010).

    Article  Google Scholar 

  205. Pruett, L. J., Jenkins, C., Singh, N., Catallo, K. & Griffin, D. Heparin microislands in microporous annealed particle scaffolds for accelerated diabetic wound healing. Adv. Funct. Mater. 31, 2104337 (2021).

    Article  Google Scholar 

  206. Lohmann, N. et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl Med. 9, eaai9044 (2017).

    Article  Google Scholar 

  207. Falleroni, F. et al. Mechanotransduction in hippocampal neurons operates under localized low picoNewton forces. iScience 25, 103807 (2022).

    Article  Google Scholar 

  208. Turovsky, E. A. et al. Mechanosensory signaling in astrocytes. J. Neurosci. 40, 9364–9371 (2020).

    Article  Google Scholar 

  209. Chi, S. et al. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron 110, 2984–2999.e8 (2022).

    Article  Google Scholar 

  210. Ho, E. et al. Tunable surface charge enables the electrostatic adsorption-controlled release of neuroprotective peptides from a hydrogel–nanoparticle drug delivery system. ACS Appl. Mater. Interfaces 11, 91–105 (2022).

    Google Scholar 

  211. Liu, Y. et al. Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke. J. Control. Release 338, 610–622 (2021).

    Article  Google Scholar 

  212. Tuladhar, A. et al. Injectable hydrogel enables local and sustained co-delivery to the brain: two clinically approved biomolecules, cyclosporine and erythropoietin, accelerate functional recovery in rat model of stroke. Biomaterials 235, 119794 (2020).

    Article  Google Scholar 

  213. Cheng, T. Y., Chen, M. H., Chang, W. H., Huang, M. Y. & Wang, T. W. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34, 2005–2016 (2013).

    Article  Google Scholar 

  214. Yaguchi, A. et al. Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration. Nat. Commun. 12, 6623 (2021).

    Article  Google Scholar 

  215. Li, S. et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 16, 953–961 (2017).

    Article  Google Scholar 

  216. Takeshima, Y. et al. Neuroprotection with intraventricular brain-derived neurotrophic factor in rat venous occlusion model. Neurosurgery 68, 1334–1341 (2011).

    Article  Google Scholar 

  217. Schäbitz, W.-R. D. et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 38, 2165–2172 (2007).

    Article  Google Scholar 

  218. Liu, Y. et al. Dual-function hydrogels with sequential release of GSK3β inhibitor and VEGF inhibit inflammation and promote angiogenesis after stroke. Chem. Eng. J. 433, 133671 (2022).

    Article  Google Scholar 

  219. Jian, W.-H. et al. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials 174, 17–30 (2018).

    Article  Google Scholar 

  220. Pakulska, M. M., Vulic, K. & Shoichet, M. S. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J. Control. Release 171, 11–16 (2013).

    Article  Google Scholar 

  221. Hettiaratchi, M. H. et al. Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J. Control. Release 297, 14–25 (2019).

    Article  Google Scholar 

  222. Tewari, B. P. et al. Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat. Commun. 9, 4724 (2018).

    Article  Google Scholar 

  223. Beurdeley, M. et al. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J. Neurosci. 32, 9429–9437 (2012).

    Article  Google Scholar 

  224. Arai, K., Jin, G., Navaratna, D. & Lo, E. H. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 276, 4644–4652 (2009).

    Article  Google Scholar 

  225. Croll, S. D. et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp. Neurol. 187, 388–402 (2004).

    Article  Google Scholar 

  226. Chen, T. T. et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595–609 (2010).

    Article  Google Scholar 

  227. Anderson, S. M. et al. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF. Integr. Biol. 3, 887–896 (2011).

    Article  Google Scholar 

  228. Anderson, S. M., Siegman, S. N. & Segura, T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials 32, 7432–7443 (2011).

    Article  Google Scholar 

  229. Elias, G. J. B., Namasivayam, A. A. & Lozano, A. M. Deep brain stimulation for stroke: current uses and future directions. Brain Stimul. 11, 3–28 (2018).

    Article  Google Scholar 

  230. Wathen, C. A., Frizon, L. A., Maiti, T. K., Baker, K. B. & Machado, A. G. Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. Neurosurg. Focus 45, E13 (2018).

    Article  Google Scholar 

  231. Machado, A. G. et al. Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery 73, 344–353 (2013).

    Article  Google Scholar 

  232. George, P. M. et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials 142, 31–40 (2017).

    Article  Google Scholar 

  233. Feig, V. R. Conducting polymer-based granular hydrogels for injectable 3D cell scaffolds. Adv. Mater. Technol. 6, 2100162 (2021).

    Article  Google Scholar 

  234. Shin, M., Song, K. H., Burrell, J. C., Cullen, D. K. & Burdick, J. A. Injectable and conductive granular hydrogels for 3D printing and electroactive tissue support. Adv. Sci. 6, 1901229 (2019).

    Article  Google Scholar 

  235. Tay, A., Sohrabi, A., Poole, K., Seidlits, S. & Di Carlo, D. A 3D magnetic hyaluronic acid hydrogel for magnetomechanical neuromodulation of primary dorsal root ganglion neurons. Adv. Mater. 30, e1800927 (2018).

    Article  Google Scholar 

  236. Zhang, Y. Conductive GelMA/PEDOT: PSS hybrid hydrogel as a neural stem cell niche for treating cerebral ischemia-reperfusion injury. Front. Mater. 9, 914994 (2022).

    Article  Google Scholar 

  237. Takahashi, Y. et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J. Biotechnol. 165, 77–84 (2013).

    Article  Google Scholar 

  238. Jiang, Y. et al. Brain microenvironment responsive and pro‐angiogenic extracellular vesicle‐hydrogel for promoting neurobehavioral recovery in type 2 diabetic mice after stroke. Adv. Healthc. Mater. 11, 2201150 (2022).

    Article  Google Scholar 

  239. Pariset, E., Agache, V. & Millet, A. Extracellular vesicles: isolation methods. Adv. Biosyst. 1, e1700040 (2017).

    Article  Google Scholar 

  240. Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017).

    Article  Google Scholar 

  241. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    Article  Google Scholar 

  242. Zhang, Z. et al. Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav. Brain Res. 356, 322–331 (2019).

    Article  Google Scholar 

  243. Westensee, I. N. et al. Mitochondria encapsulation in hydrogel‐based artificial cells as ATP producing subunits. Small 17, e2007959 (2021).

    Article  Google Scholar 

  244. Patel, S. P. et al. Erodible thermogelling hydrogels for localized mitochondrial transplantation to the spinal cord. Mitochondrion 64, 145–155 (2022).

    Article  Google Scholar 

  245. Peruzzotti-Jametti, L. et al. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol. 19, e3001166 (2021).

    Article  Google Scholar 

  246. Roitbak, T., Li, L. & Cunningham, L. A. Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1α-regulated VEGF signaling. J. Cereb. Blood Flow Metab. 28, 1530–1542 (2008).

    Article  Google Scholar 

  247. Béduer, A. et al. A compressible scaffold for minimally invasive delivery of large intact neuronal networks. Adv. Healthc. Mater. 4, 301–312 (2015).

    Article  Google Scholar 

  248. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18, 806–815 (2012).

    Article  Google Scholar 

  249. Moshayedi, P. et al. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials 105, 145–155 (2016).

    Article  Google Scholar 

  250. Lam, J., Lowry, W. E., Carmichael, S. T. & Segura, T. Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Adv. Funct. Mater. 24, 7053–7062 (2014).

    Article  Google Scholar 

  251. McCrary, M. R. et al. Cortical transplantation of brain-mimetic glycosaminoglycan scaffolds and neural progenitor cells promotes vascular regeneration and functional recovery after ischemic stroke in mice. Adv. Healthc. Mater. 9, 1900285 (2020).

    Article  Google Scholar 

  252. de Celis-Ruiz, E. et al. Final results of allogeneic adipose tissue–derived mesenchymal stem cells in acute ischemic stroke (AMASCIS): a phase II, randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. Cell Transplant. 31, 9636897221083863 (2022).

    Google Scholar 

  253. Osama, I. et al. In vitro studies on space-conforming self-assembling silk hydrogels as a mesenchymal stem cell-support matrix suitable for minimally invasive brain application. Sci. Rep. 8, 13655 (2018).

    Article  Google Scholar 

  254. Yan, F. et al. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke. Neural Regen. Res. 10, 1421–1426 (2015).

    Article  Google Scholar 

  255. Wang, C. et al. BDNF-overexpressing MSCs delivered by hydrogel in acute ischemic stroke treatment. Ann. Transl. Med. 10, 1393 (2022).

    Article  Google Scholar 

  256. Alvarado-Velez, M. et al. Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain. Biomaterials 266, 120419 (2021).

    Article  Google Scholar 

  257. Klarić, T. S. & Lauc, G. The dynamic brain N-glycome. Glycoconj. J. 39, 443–471 (2022).

    Article  Google Scholar 

  258. Liu, D. et al. Ischemic stroke is associated with the pro-inflammatory potential of N-glycosylated immunoglobulin G. J. Neuroinflammation 15, 123 (2018).

    Article  Google Scholar 

  259. Tan, D. et al. A class of anti-inflammatory lipids decrease with aging in the central nervous system. Nat. Chem. Biol. 19, 187–197 (2023).

    Article  Google Scholar 

  260. Victor, M. B. et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 29, 1197–1212.e8 (2022).

    Article  Google Scholar 

  261. Soars, S. M. et al. Synthesis, selective decoration and photocrosslinking of self‐immolative poly (thioester)‐PEG hydrogels. Polym. Int. 71, 906–911 (2022).

    Article  Google Scholar 

  262. Bretherton, R. C. et al. User‐controlled 4D biomaterial degradation with substrate‐selective sortase transpeptidases for single‐cell biology. Adv. Mater. 35, e2209904 (2023).

    Article  Google Scholar 

  263. Dhand, A. P. et al. Simultaneous one‐pot interpenetrating network formation to expand 3d processing capabilities. Adv. Mater. 34, e2202261 (2022).

    Article  Google Scholar 

  264. Dunn, T. W. et al. Geometric deep learning enables 3D kinematic profiling across species and environments. Nat. Methods 18, 564–573 (2021).

    Article  Google Scholar 

  265. Park, Y. G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73–83 (2019).

    Article  Google Scholar 

  266. Madl, C. M., Katz, L. M. & Heilshorn, S. C. Tuning bulk hydrogel degradation by simultaneous control of proteolytic cleavage kinetics and hydrogel network architecture. ACS Macro Lett. 7, 1302–1307 (2018).

    Article  Google Scholar 

  267. Chrisnandy, A., Blondel, D., Rezakhani, S., Broguiere, N. & Lutolf, M. P. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. Nat. Mater. 21, 479–487 (2022).

    Article  Google Scholar 

  268. Liu, X., Inda, M. E., Lai, Y., Lu, T. K. & Zhao, X. Engineered living hydrogels. Adv. Mater. 34, e2201326 (2022).

    Article  Google Scholar 

  269. Ji, D. et al. Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 13, 3019 (2022).

    Article  Google Scholar 

  270. Rajput, M., Mondal, P., Yadav, P. & Chatterjee, K. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int. J. Biol. Macromol. 202, 644–656 (2022).

    Article  Google Scholar 

  271. Lee, S., de Rutte, J., Dimatteo, R., Koo, D. & Di Carlo, D. Scalable fabrication and use of 3D structured microparticles spatially functionalized with biomolecules. ACS Nano 16, 38–49 (2021).

    Article  Google Scholar 

  272. Darling, N. J. et al. Injectable and spatially patterned microporous annealed particle (MAP) hydrogels for tissue repair applications. Adv. Sci. 5, 1801046 (2018).

    Article  Google Scholar 

  273. Darling, N. J. et al. Click by click microporous annealed particle (MAP) scaffolds. Adv. Healthc. Mater. 9, 1901391 (2020).

    Article  Google Scholar 

  274. Zhang, M. et al. Injectable supramolecular hybrid hydrogel delivers il-1β-stimulated exosomes to target neuroinflammation. ACS Appl. Mater. Interfaces 15, 6486–6498 (2023).

    Article  Google Scholar 

  275. Wang, Y., Cooke, M. J., Morshead, C. M. & Shoichet, M. S. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials 33, 2681–2692 (2012).

    Article  Google Scholar 

  276. Oh, B. et al. Electrical modulation of transplanted stem cells improves functional recovery in a rodent model of stroke. Nat. Commun. 13, 1366 (2022).

    Article  Google Scholar 

  277. Hsu, R.-S. et al. Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat. Commun. 13, 5172 (2022).

    Article  Google Scholar 

  278. Damian, C. et al. Post-stroke timing of ECM hydrogel implantation affects biodegradation and tissue restoration. Int. J. Mol. Sci. 22, 11372 (2021).

    Article  Google Scholar 

  279. Lim, D. H., LeDue, J. M., Mohajerani, M. H. & Murphy, T. H. Optogenetic mapping after stroke reveals network-wide scaling of functional connections and heterogeneous recovery of the peri-infarct. J. Neurosci. 34, 16455–16466 (2014).

    Article  Google Scholar 

  280. Veldema, J., Nowak, D. A. & Gharabaghi, A. Resting motor threshold in the course of hand motor recovery after stroke: a systematic review. J. Neuroeng. Rehabil. 18, 158 (2021).

    Article  Google Scholar 

  281. Ghuman, H. et al. Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta Biomater. 80, 66–84 (2018).

    Article  Google Scholar 

  282. Saver, J. L. Time is brain — quantified. Stroke 37, 263–266 (2006).

    Article  Google Scholar 

  283. Risitano, A. & Toni, D. Time is brain: timing of revascularization of brain arteries in stroke. Eur. Heart J. Suppl. 22, L155–L159 (2020).

    Article  Google Scholar 

  284. Clarkson, A. N., Huang, B. S., MacIsaac, S. E., Mody, I. & Carmichael, S. T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468, 305–309 (2010).

    Article  Google Scholar 

  285. Mu, J. et al. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J. Cereb. Blood Flow Metab. 43, 1456–1474 (2023).

    Article  Google Scholar 

  286. Kozai, T. D. Y. et al. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 37, 25–39 (2015).

    Article  Google Scholar 

  287. Kinaci, A., Bergmann, W., Bleys, R. L., van der Zwan, A. & van Doormaal, T. P. Histologic comparison of the dura mater among species. Comp. Med. 70, 170–175 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Erning and K. Wilson for helpful discussions during the preparation of this article. This work was funded in part by the National Institutes of Health (RO1NS079691-08 & R01 NS112940-03). E.M.R. acknowledges funding from the University of California, Los Angeles Council Diversity Fellowship and Brain Research Institute Neuroscience Scholarships as well as the Achievement Rewards for College Scientists Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

N.V.P. and E.M.R. contributed equally. N.V.P., E.M.R., Y.O., T.S. and S.T.C. wrote, edited and reviewed the article prior to submission. All authors contributed to the discussion.

Corresponding authors

Correspondence to S. Thomas Carmichael or Tatiana Segura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Itsuki Ajioka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, N.V., Rathbun, E.M., Ouyang, Y. et al. Biology-driven material design for ischaemic stroke repair. Nat Rev Bioeng 2, 44–63 (2024). https://doi.org/10.1038/s44222-023-00117-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00117-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing