Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome-edited foods

Abstract

Genome editing can transform agriculture and shape the future of food by improving crop yields and animal productivity, which in turn can help to achieve food security for the growing world population. CRISPR–Cas-based technologies are powerful gene editing tools that are applied to various food products. In this Review, we discuss the applications of CRISPR–Cas aimed at increasing the nutritional value of crops through macronutrient engineering and biofortification or the reduction of the amount of antinutrients. We examine the role of CRISPR–Cas in improving the flavour of crops and reducing post-harvest losses to increase consumer acceptance and decrease food waste. We also highlight the gene editing of animal food products and probiotics. We summarize the regulations for approval of gene-edited foods worldwide and the progressively evolving public view. Finally, we explore the strategies that can help to enhance the efficiency of genome editing techniques and the acceptance of genome-edited foods in the global market, and extend the technology to low-resource settings.

Key points

  • CRISPR–Cas-mediated genome editing technologies enable the manipulation of the genome, epigenome and transcriptome.

  • The macronutrient content of edible plant organs can be altered to create nutritionally healthier crops suitable for specific dietary needs.

  • Crops can be engineered to biofortify vitamins, minerals and/or phytonutrients and reduce antinutrient content.

  • Organoleptic food characteristics, such as colour, taste, flavour and texture, can be improved to optimize consumption and decrease post-harvest losses.

  • Genome editing can be deployed in livestock, fish and bacteria to improve productivity.

  • Contextual regulatory support and public acceptance are critical to enable the industrial deployment and commercialization of genome-edited foods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods of targeted gene editing by CRISPR–Cas.
Fig. 2: Transformation approaches of genome editing reagents into plant cells.
Fig. 3: Engineering the nutritional value of crops by genome editing.
Fig. 4: Current regulations of genome-edited crops around the world.

Similar content being viewed by others

References

  1. United Nations Department of Economic and Social Affairs, Population Division. World population prospects 2022: summary of results (UN DESA, 2022).

  2. van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).

    Article  Google Scholar 

  3. Searchinger, T., Waite, R., Hanson, C. & Ranganathan, J. Creating a sustainable food future: a menu of solutions to feed nearly 10 billion people by 2050 (World Resources Institute, 2019).

  4. Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children’s Fund, World Food Programme & World Health Organization. The state of food security and nutrition in the world 2022: repurposing food and agricultural policies to make healthy diets more affordable (FAO, 2022).

  5. United Nations Children’s Fund, World Health Organization & World Bank. Levels and trends in child malnutrition: UNICEF/WHO/The World Bank Group joint child malnutrition estimates: key findings of the 2021 edition (UNICEF, 2021).

  6. Ritchie, H. & Roser, M. Obesity. Our World in Data https://ourworldindata.org/obesity (2017).

  7. Fischetti, M. One-world menu. Sci. Am. 315, 76 (2016).

    Article  Google Scholar 

  8. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    Article  Google Scholar 

  9. Puchta, H., Dujon, B. & Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21, 5034–5040 (1993).

    Article  Google Scholar 

  10. Lloyd, A., Plaisier, C. L., Carroll, D. & Drews, G. N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 2232–2237 (2005).

    Article  Google Scholar 

  11. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    Article  Google Scholar 

  12. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  Google Scholar 

  13. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  Google Scholar 

  14. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  Google Scholar 

  15. Malzahn, A., Lowder, L. & Qi, Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 7, 21 (2017).

    Article  Google Scholar 

  16. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  Google Scholar 

  17. Li, J. F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

    Article  Google Scholar 

  18. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  Google Scholar 

  19. Pan, C., Sretenovic, S. & Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr. Opin. Plant Biol. 60, 101980 (2021).

    Article  Google Scholar 

  20. Molla, K. A., Sretenovic, S., Bansal, K. C. & Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 7, 1166–1187 (2021).

    Article  Google Scholar 

  21. Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

    Article  Google Scholar 

  22. Pan, C. et al. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants. Nat. Plants 7, 942–953 (2021).

    Article  Google Scholar 

  23. Pan, C. et al. Boosting plant genome editing with a versatile CRISPR-Combo system. Nat. Plants 8, 513–525 (2022).

    Article  Google Scholar 

  24. Ghogare, R., Ludwig, Y., Bueno, G. M., Slamet-Loedin, I. H. & Dhingra, A. Genome editing reagent delivery in plants. Transgenic Res. 30, 321–335 (2021).

    Article  Google Scholar 

  25. Altpeter, F. et al. Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520 (2016).

    Google Scholar 

  26. Chen, Z., Debernardi, J. M., Dubcovsky, J. & Gallavotti, A. Recent advances in crop transformation technologies. Nat. Plants 8, 1343–1351 (2022).

    Article  Google Scholar 

  27. D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earths Future 2, 458–469 (2014).

    Article  Google Scholar 

  28. Smith, M. R. & Myers, S. S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Change 8, 834–839 (2018).

    Article  Google Scholar 

  29. U.S. department of agriculture and U.S. department of health and human services Dietary Guidelines for Americans, 2020–2025 9th edn (2020).

  30. Zeeman, S. C., Kossmann, J. & Smith, A. M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 61, 209–234 (2010).

    Article  Google Scholar 

  31. Slattery, C. J., Kavakli, I. H. & Okita, T. W. Engineering starch for increased quantity and quality. Trends Plant Sci. 5, 291–298 (2000).

    Article  Google Scholar 

  32. Shure, M., Wessler, S. & Fedoroff, N. Molecular identification and isolation of the Waxy locus in maize. Cell 35, 225–233 (1983).

    Article  Google Scholar 

  33. & Ma, X. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284 (2015).

    Article  Google Scholar 

  34. Zhang, S. et al. CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol. J. 19, 1684–1686 (2021).

    Article  Google Scholar 

  35. Gao, H. et al. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat. Biotechnol. 38, 579–581 (2020).

    Article  Google Scholar 

  36. Andersson, M. et al. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 36, 117–128 (2017).

    Article  Google Scholar 

  37. Isshiki, M. et al. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5’ splice site of the first intron. Plant J. 15, 133–138 (1998).

    Article  Google Scholar 

  38. Zeng, D. et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5’UTR-intron editing improves grain quality in rice. Plant Biotechnol. J. 18, 2385–2387 (2020).

    Article  Google Scholar 

  39. Huang, L. et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol. J. 18, 2164–2166 (2020).

    Article  Google Scholar 

  40. Zhou, J. et al. An efficient CRISPR-Cas12a promoter editing system for crop improvement. Nat. Plants 9, 588–604 (2023).

    Article  Google Scholar 

  41. World Obesity Federation. The economic impact of overweight & obesity in 2020 and 2060: 2nd edition with estimates for 161 countries (World Obesity Federation, 2022).

  42. DeMartino, P. & Cockburn, D. W. Resistant starch: impact on the gut microbiome and health. Curr. Opin. Biotechnol. 61, 66–71 (2020).

    Article  Google Scholar 

  43. Li, L., Jiang, H. X., Campbell, M., Blanco, M. & Jane, J. L. Characterization of maize amylose-extender (ae) mutant starches. Part I: relationship between resistant starch contents and molecular structures. Carbohydr. Polym. 74, 396–404 (2008).

    Article  Google Scholar 

  44. Sun, Y. et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 8, 298 (2017).

    Article  Google Scholar 

  45. Li, J. et al. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J. 19, 937–951 (2021).

    Article  Google Scholar 

  46. Zhao, X. et al. Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Sci. Rep. 11, 4311 (2021).

    Article  Google Scholar 

  47. Tuncel, A. et al. Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol. J. 17, 2259–2271 (2019).

    Article  Google Scholar 

  48. Sanchez-Leon, S. et al. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902–910 (2018).

    Article  Google Scholar 

  49. Li, A. et al. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol. 177, 1425–1438 (2018).

    Article  Google Scholar 

  50. Hepsomali, P., Groeger, J. A., Nishihira, J. & Scholey, A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Front. Neurosci. 14, 923 (2020).

    Article  Google Scholar 

  51. Nonaka, S., Arai, C., Takayama, M., Matsukura, C. & Ezura, H. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 7, 7057 (2017).

    Article  Google Scholar 

  52. Waltz, E. GABA-enriched tomato is first CRISPR-edited food to enter market. Nat. Biotechnol. 40, 9–11 (2022).

    Article  Google Scholar 

  53. Liu, H. R. & White, P. J. Oxidative stability of soybean oils with altered fatty-acid compositions. J. Am. Oil Chem. Soc. 69, 528–532 (1992).

    Article  Google Scholar 

  54. Haun, W. et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 12, 934–940 (2014).

    Article  Google Scholar 

  55. Okuzaki, A. et al. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 131, 63–69 (2018).

    Article  Google Scholar 

  56. Do, P. T. et al. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean. BMC Plant Biol. 19, 311 (2019).

    Article  Google Scholar 

  57. Abe, K., Araki, E., Suzuki, Y., Toki, S. & Saika, H. Production of high oleic/low linoleic rice by genome editing. Plant Physiol. Biochem. 131, 58–62 (2018).

    Article  Google Scholar 

  58. Lee, K. R. et al. Increasing monounsaturated fatty acid contents in hexaploid Camelina sativa seed oil by FAD2 gene knockout using CRISPR-Cas9. Front. Plant Sci. 12, 702930 (2021).

    Article  Google Scholar 

  59. Morineau, C. et al. Selective gene dosage by CRISPR-Cas9 genome editing hexaploid Camelina sativa. Plant Biotechnol. J. 15, 729–739 (2017).

    Article  Google Scholar 

  60. Park, M. E., Yun, J. Y. & Kim, H. U. C-to-G base editing enhances oleic acid production by generating novel alleles of FATTY ACID DESATURASE 2 in plants. Front. Plant Sci. 12, 748529 (2021).

    Article  Google Scholar 

  61. Knutsen, H. K. et al. Erucic acid in feed and food. EFSA J. 14, e04593 (2016).

    Google Scholar 

  62. Liu, Y. et al. CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus. Front. Plant Sci. 13, 848723 (2022).

    Article  Google Scholar 

  63. Ozseyhan, M. E., Kang, J., Mu, X. & Lu, C. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol. Biochem. 123, 1–7 (2018).

    Article  Google Scholar 

  64. Han, L., Haslam, R. P., Silvestre, S., Lu, C. & Napier, J. A. Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid in transgenic Camelina through the CRISPR-Cas9 inactivation of the competing FAE1 pathway. Plant Biotechnol. J. 20, 1444–1446 (2022).

    Article  Google Scholar 

  65. Napier, J. A. & Betancor, M. B. Engineering plant-based feedstocks for sustainable aquaculture. Curr. Opin. Plant Biol. 71, 102323 (2023).

    Article  Google Scholar 

  66. Ritchie, H. & Roser, M. Micronutrient deficiency. Our World in Data https://ourworldindata.org/micronutrient-deficiency (2017).

  67. Ahmed, T., Hossain, M. & Sanin, K. I. Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann. Nutr. Metab. 61, 8–17 (2012).

    Article  Google Scholar 

  68. Bailey, R. L., West, K. P. Jr. & Black, R. E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66, 22–33 (2015).

    Article  Google Scholar 

  69. Fairfield, K. M. & Fletcher, R. H. Vitamins for chronic disease prevention in adults: scientific review. J. Am. Med. Assoc. 287, 3116–3126 (2002).

    Article  Google Scholar 

  70. Mishra, S., Stierman, B., Gahche, J. & Potischman, N. Dietary supplement use among adults: United States, 2017–2018. NCHS https://www.cdc.gov/nchs/products/databriefs/db399.htm (2021).

  71. Bailey, R. L., Gahche, J. J., Miller, P. E., Thomas, P. R. & Dwyer, J. T. Why US adults use dietary supplements. J. Am. Med. Assoc. Intern. Med. 173, 355–361 (2013).

    Google Scholar 

  72. Chen, F. et al. Association among dietary supplement use, nutrient intake, and mortality among U.S. adults. Ann. Intern. Med. 170, 604–613 (2019).

    Article  Google Scholar 

  73. Jenkins, D. J. A. et al. Supplemental vitamins and minerals for CVD prevention and treatment. J. Am. Coll. Cardiol. 71, 2570–2584 (2018).

    Article  Google Scholar 

  74. World Health Organization. Vitamin A deficiency. WHO https://www.who.int/data/nutrition/nlis/info/vitamin-a-deficiency (2009).

  75. Paine, J. A. et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 482–487 (2005).

    Article  Google Scholar 

  76. Ye, X. et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305 (2000).

    Article  Google Scholar 

  77. Swamy, B. P. M. et al. Compositional analysis of genetically engineered GR2E “Golden Rice” in comparison to that of conventional rice. J. Agric. Food Chem. 67, 7986–7994 (2019).

    Article  Google Scholar 

  78. International Rice Research Institute. Philippines becomes first country to approve nutrient-enriched “Golden Rice” for planting. IRRI https://www.irri.org/news-and-events/news/philippines-becomes-first-country-approve-nutrient-enriched-golden-rice (2021).

  79. Dong, O. X. et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 11, 1178 (2020).

    Article  Google Scholar 

  80. Kaur, N. et al. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for beta-carotene biosynthesis in banana fruit. Metab. Eng. 59, 76–86 (2020).

    Article  Google Scholar 

  81. Sun, T., Rao, S., Zhou, X. & Li, L. Plant carotenoids: recent advances and future perspectives. Mol. Hortic. 2, 3 (2022).

    Article  Google Scholar 

  82. Ko, M. R. et al. RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice. J. Exp. Bot. 69, 5105–5116 (2018).

    Article  Google Scholar 

  83. Gayen, D., Ali, N., Sarkar, S. N., Datta, S. K. & Datta, K. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage. Planta 242, 353–363 (2015).

    Article  Google Scholar 

  84. Schaub, P. et al. Nonenzymatic beta-carotene degradation in provitamin A-biofortified crop plants. J. Agric. Food Chem. 65, 6588–6598 (2017).

    Article  Google Scholar 

  85. Che, P. et al. Elevated vitamin E content improves all-trans beta-carotene accumulation and stability in biofortified sorghum. Proc. Natl Acad. Sci. USA 113, 11040–11045 (2016).

    Article  Google Scholar 

  86. Watkins, J. L. & Pogson, B. J. Prospects for carotenoid biofortification targeting retention and catabolism. Trends Plant Sci. 25, 501–512 (2020).

    Article  Google Scholar 

  87. Morelli, L. & Rodriguez-Concepcion, M. Open avenues for carotenoid biofortification of plant tissues. Plant Commun. 4, 100466 (2023).

    Article  Google Scholar 

  88. Bulley, S. et al. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol. J. 10, 390–397 (2012).

    Article  Google Scholar 

  89. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    Article  Google Scholar 

  90. Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat. Commun. 12, 1944 (2021).

    Article  Google Scholar 

  91. Xue, C. et al. Tuning plant phenotypes by precise, graded downregulation of gene expression. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01707-w (2023).

  92. van Schoor, N. & Lips, P. in Vitamin D. Volume 2: Health, Disease and Therapeutics (ed. Feldman, D.) 15–40 (Academic, 2018).

  93. Li, J. et al. Biofortified tomatoes provide a new route to vitamin D sufficiency. Nat. Plants 8, 611–616 (2022).

    Article  Google Scholar 

  94. Sonawane, P. D. et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 3, 16205 (2016).

    Article  Google Scholar 

  95. Choe, S. et al. Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J. 21, 431–443 (2000).

    Article  Google Scholar 

  96. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).

    Article  Google Scholar 

  97. World Health Organization. Worldwide prevalence of anaemia 1993–2005 (WHO, 2008).

  98. Van Der Straeten, D. et al. Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat. Commun. 11, 5203 (2020).

    Article  Google Scholar 

  99. Gao, S. et al. Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytol. 224, 202–215 (2019).

    Article  Google Scholar 

  100. Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. & Pfeiffer, W. H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32, S31–S40 (2011).

    Article  Google Scholar 

  101. Li, S. H., He, Y. J., Li, L. Z., Li, D. L. & Chen, H. Y. New insights on the regulation of anthocyanin biosynthesis in purple Solanaceous fruit vegetables. Sci. Hortic. 297, 110917 (2022).

    Article  Google Scholar 

  102. Colanero, S., Perata, P. & Gonzali, S. What’s behind purple tomatoes? Insight into the mechanisms of anthocyanin synthesis in tomato fruits. Plant Physiol. 182, 1841–1853 (2020).

    Article  Google Scholar 

  103. Butelli, E. et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26, 1301–1308 (2008).

    Article  Google Scholar 

  104. Coker, R. APHIS issues first regulatory status review response: Norfolk Plant Sciences’ purple tomato. APHIS https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2022/purple-tomato (2022).

  105. Vu, T. V. et al. Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol. J. 18, 2133–2143 (2020).

    Article  Google Scholar 

  106. Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y. & Voytas, D. F. High-frequency, precise modification of the tomato genome. Genome Biol. 16, 232 (2015).

    Article  Google Scholar 

  107. Sun, C. et al. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol. Plant 13, 42–58 (2020).

    Article  Google Scholar 

  108. Zhu, Y. et al. CRISPR/Cas9-mediated functional recovery of the recessive rc allele to develop red rice. Plant Biotechnol. J. 17, 2096–2105 (2019).

    Article  Google Scholar 

  109. Wang, X. et al. Discovery of a DFR gene that controls anthocyanin accumulation in the spiny Solanum group: roles of a natural promoter variant and alternative splicing. Plant J. 111, 1096–1109 (2022).

    Article  Google Scholar 

  110. Li, X. et al. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 9, 559 (2018).

    Article  Google Scholar 

  111. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  Google Scholar 

  112. Hunziker, J. et al. Multiple gene substitution by Target-AID base-editing technology in tomato. Sci. Rep. 10, 20471 (2020).

    Article  Google Scholar 

  113. Ibrahim, S. et al. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J. Adv. Res. 37, 33–41 (2022).

    Article  Google Scholar 

  114. Sashidhar, N., Harloff, H. J., Potgieter, L. & Jung, C. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol. J. 18, 2241–2250 (2020).

    Article  Google Scholar 

  115. Mottram, D. S., Wedzicha, B. L. & Dodson, A. T. Acrylamide is formed in the Maillard reaction. Nature 419, 448–449 (2002).

    Article  Google Scholar 

  116. European Commission. Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. EUR-Lex https://eur-lex.europa.eu/eli/reg/2017/2158 (2017).

  117. Clasen, B. M. et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 14, 169–176 (2016).

    Article  Google Scholar 

  118. Ly, D. N. P., Iqbal, S., Fosu-Nyarko, J., Milroy, S. & Jones, M. G. K. Multiplex CRISPR-Cas9 gene-editing can deliver potato cultivars with reduced browning and acrylamide. Plants 12, 379 (2023).

    Article  Google Scholar 

  119. Yasmeen, A. et al. CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes. Planta 256, 107 (2022).

    Article  Google Scholar 

  120. Halford, N. G., Raffan, S. & Oddy, J. Progress towards the production of potatoes and cereals with low acrylamide-forming potential. Curr. Opin. Food Sci. 47, 100887 (2022).

    Article  Google Scholar 

  121. Raffan, S. et al. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol. J. 19, 1602–1613 (2021).

    Article  Google Scholar 

  122. Raffan, S. et al. Field assessment of genome-edited, low asparagine wheat: Europe’s first CRISPR wheat field trial. Plant Biotechnol. J. 21, 1097–1099 (2023).

    Article  Google Scholar 

  123. Juma, B. S., Mukami, A., Mweu, C., Ngugi, M. P. & Mbinda, W. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Front. Plant Sci. 13, 1009860 (2022).

    Article  Google Scholar 

  124. Zheng, Z. Z. et al. Editing sterol side chain reductase 2 gene (StSSR2) via CRISPR/Cas9 reduces the total steroidal glycoalkaloids in potato. All Life 14, 401–413 (2021).

    Article  Google Scholar 

  125. Tang, L. et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 7, 14438 (2017).

    Article  Google Scholar 

  126. Nieves-Cordones, M. et al. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. Plant J. 92, 43–56 (2017).

    Article  Google Scholar 

  127. Assou, J. et al. Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. Plant J. 109, 649–663 (2022).

    Article  Google Scholar 

  128. Camerlengo, F. et al. CRISPR-Cas9 multiplex editing of the α-amylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat. Front. Sustain. Food Syst. 4, 104 (2020).

    Article  Google Scholar 

  129. Goff, S. A. & Klee, H. J. Plant volatile compounds: sensory cues for health and nutritional value? Science 311, 815–819 (2006).

    Article  Google Scholar 

  130. Colantonio, V. et al. Metabolomic selection for enhanced fruit flavor. Proc. Natl Acad. Sci. USA 119, e2115865119 (2022).

    Article  Google Scholar 

  131. Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355, 391–394 (2017).

    Article  Google Scholar 

  132. Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051 (2019).

    Article  Google Scholar 

  133. Xing, S. et al. Fine-tuning sugar content in strawberry. Genome Biol. 21, 230 (2020).

    Article  Google Scholar 

  134. Hashemi, F. S. G. et al. Biochemical, genetic and molecular advances of fragrance characteristics in rice. CRC Crit. Rev. Plant Sci. 32, 445–457 (2013).

    Article  Google Scholar 

  135. Shan, Q., Zhang, Y., Chen, K., Zhang, K. & Gao, C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J. 13, 791–800 (2015).

    Article  Google Scholar 

  136. Hui, S. et al. Production of aromatic three-line hybrid rice using novel alleles of BADH2. Plant Biotechnol. J. 20, 59–74 (2022).

    Article  Google Scholar 

  137. Tang, Y. et al. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice. Plant Biotechnol. J. 19, 642–644 (2021).

    Article  Google Scholar 

  138. Ashokkumar, S. et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS ONE 15, e0237018 (2020).

    Article  Google Scholar 

  139. Wang, Y. et al. Creation of aromatic maize by CRISPR/Cas. J. Integr. Plant Biol. 63, 1664–1670 (2021).

    Article  Google Scholar 

  140. Shipman, E. N., Yu, J., Zhou, J., Albornoz, K. & Beckles, D. M. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? Hortic. Res. 8, 1 (2021).

    Article  Google Scholar 

  141. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global food losses and food waste : extent, causes and prevention (FAO, 2011).

  142. Maioli, A. et al. Simultaneous CRISPR/Cas9 editing of three PPO genes reduces fruit flesh browning in Solanum melongena L. Front. Plant Sci. 11, 607161 (2020).

    Article  Google Scholar 

  143. Gonzalez, M. N. et al. Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front. Plant Sci. 10, 1649 (2019).

    Article  Google Scholar 

  144. Waltz, E. Gene-edited CRISPR mushroom escapes US regulation. Nature 532, 293 (2016).

    Article  Google Scholar 

  145. Hu, C. et al. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol. J. 19, 654–656 (2021).

    Article  Google Scholar 

  146. Wang, R., Angenent, G. C., Seymour, G. & de Maagd, R. A. Revisiting the role of master regulators in tomato ripening. Trends Plant Sci. 25, 291–301 (2020).

    Article  Google Scholar 

  147. Ito, Y. et al. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat. Plants 3, 866–874 (2017).

    Article  Google Scholar 

  148. Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M. & Toki, S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 467, 76–82 (2015).

    Article  Google Scholar 

  149. Gao, Y. et al. Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Hortic. Res. 6, 39 (2019).

    Article  Google Scholar 

  150. Yu, Q. H. et al. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci. Rep. 7, 11874 (2017).

    Article  Google Scholar 

  151. Uluisik, S. et al. Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 34, 950–952 (2016).

    Article  Google Scholar 

  152. Wang, D. et al. Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol. 179, 544–557 (2019).

    Google Scholar 

  153. Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  Google Scholar 

  154. Wani, A. K. et al. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in animals. Vet. Res. Commun. 47, 1–16 (2023).

    Article  Google Scholar 

  155. Wang, S. et al. Application of gene editing technology in resistance breeding of livestock. Life 12, 1070 (2022).

    Article  Google Scholar 

  156. Tait-Burkard, C. et al. Livestock 2.0 - genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 19, 204 (2018).

    Article  Google Scholar 

  157. No authors listed. Japan embraces CRISPR-edited fish. Nat. Biotechnol. 40, 10 (2022).

  158. Valdes-Donoso, P., Alvarez, J., Jarvis, L. S., Morrison, R. B. & Perez, A. M. Production losses from an endemic animal disease: porcine reproductive and respiratory syndrome (PRRS) in selected midwest US sow farms. Front. Vet. Sci. 5, 102 (2018).

    Article  Google Scholar 

  159. Whitworth, K. M. et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34, 20–22 (2016).

    Article  Google Scholar 

  160. Zhou, W. et al. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS ONE 12, e0186056 (2017).

    Article  Google Scholar 

  161. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  Google Scholar 

  162. Barrangou, R. et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41, 1383–1391 (2013).

    Article  Google Scholar 

  163. Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  Google Scholar 

  164. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  Google Scholar 

  165. Miyauchi, E., Shimokawa, C., Steimle, A., Desai, M. S. & Ohno, H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat. Rev. Immunol. 23, 9–23 (2023).

    Article  Google Scholar 

  166. Aggarwal, N., Breedon, A. M. E., Davis, C. M., Hwang, I. Y. & Chang, M. W. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr. Opin. Biotechnol. 65, 171–179 (2020).

    Article  Google Scholar 

  167. Goh, Y. J. & Barrangou, R. Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr. Opin. Biotechnol. 56, 163–171 (2019).

    Article  Google Scholar 

  168. Pan, M. et al. Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium. Proc. Natl Acad. Sci. USA 119, e2205068119 (2022).

    Article  Google Scholar 

  169. Sprink, T., Wilhelm, R. & Hartung, F. Genome editing around the globe: an update on policies and perceptions. Plant Physiol. 190, 1579–1587 (2022).

    Article  Google Scholar 

  170. Menz, J., Modrzejewski, D., Hartung, F., Wilhelm, R. & Sprink, T. Genome edited crops touch the market: a view on the global development and regulatory environment. Front. Plant Sci. 11, 586027 (2020).

    Article  Google Scholar 

  171. Strobbe, S., Wesana, J., Van Der Straeten, D. & De Steur, H. Public acceptance and stakeholder views of gene edited foods: a global overview. Trends Biotechnol. 41, 736–740 (2023).

    Article  Google Scholar 

  172. Baum, C. M., Kamrath, C., Bröring, S. & De Steur, H. Show me the benefits! Determinants of behavioral intentions towards CRISPR in the United States. Food Qual. Prefer. 107, 104842 (2023).

    Article  Google Scholar 

  173. Siegrist, M. & Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 1, 343–350 (2020).

    Article  Google Scholar 

  174. Kato-Nitta, N., Inagaki, Y., Maeda, T. & Tachikawa, M. Effects of information on consumer attitudes towards gene-edited foods: a comparison between livestock and vegetables. CABI Agric. Biosci. 2, 14 (2021).

    Article  Google Scholar 

  175. Cummings, C. & Peters, D. Who trusts in gene-edited foods? Analysis of a representative survey study predicting willingness to eat- and purposeful avoidance of gene edited foods in the United States. Front. Food Sci. Technol. 2, 858277 (2022).

    Article  Google Scholar 

  176. Ronspies, M., Dorn, A., Schindele, P. & Puchta, H. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. Nat. Plants 7, 566–573 (2021).

    Article  Google Scholar 

  177. Beying, N., Schmidt, C., Pacher, M., Houben, A. & Puchta, H. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat. Plants 6, 638–645 (2020).

    Article  Google Scholar 

  178. Schwartz, C. et al. CRISPR-Cas9-mediated 75.5-Mb inversion in maize. Nat. Plants 6, 1427–1431 (2020).

    Article  Google Scholar 

  179. Schmidt, C. et al. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat. Commun. 11, 4418 (2020).

    Article  Google Scholar 

  180. Zhang, C., Liu, S., Li, X., Zhang, R. & Li, J. Virus-induced gene editing and its applications in plants. Int. J. Mol. Sci. 23, 10202 (2022).

    Article  Google Scholar 

  181. Yang, L., Machin, F., Wang, S., Saplaoura, E. & Kragler, F. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nat. Biotechnol. 41, 958–967 (2023).

    Article  Google Scholar 

  182. Demirer, G. S. et al. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nat. Nanotechnol. 16, 243–250 (2021).

    Article  Google Scholar 

  183. [No authors listed] CRISPR beef cattle get FDA green light. Nat. Biotechnol. 40, 448 (2022).

  184. Post, M. J. et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1, 403–415 (2020).

    Article  Google Scholar 

  185. Gaskell, G. et al. The 2010 Eurobarometer on the life sciences. Nat. Biotechnol. 29, 113–114 (2011).

    Article  Google Scholar 

  186. Zhang, Y. & Kutateladze, T. G. Diet and the epigenome. Nat. Commun. 9, 3375 (2018).

    Article  Google Scholar 

  187. Guo, T. Y., Luo, F. J. & Lin, Q. L. You are affected by what your parents eat: diet, epigenetics, transgeneration and intergeneration. Trends Food Sci. Technol. 100, 248–261 (2020).

    Article  Google Scholar 

  188. Miska, E. A. & Ferguson-Smith, A. C. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance. Science 354, 59–63 (2016).

    Article  Google Scholar 

  189. Canadian Biotechnology Action Network. GM waxy corn (CBAN, 2021).

  190. US Food and Drug Administration. Biotechnology notification file No. 000164: high oleic acid soybean, FAD2KO (FDA, 2019).

  191. Robin, M. Researchers attempt to turn weed into a crop. The Western Producer https://www.producer.com/news/researchers-attempt-to-turn-weed-into-a-crop (2022).

  192. International Service for the Acquisition of Agri-biotech Applications. Non-browning GreenVenus romaine lettuce advances to commercial trials in the US. ISSA https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=17569 (2019).

  193. Karlson, D. et al. Targeted mutagenesis of the multicopy myrosinase gene family in allotetraploid Brassica juncea reduces pungency in fresh leaves across environments. Plants 11, 2494 (2022).

    Article  Google Scholar 

  194. Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 11, 25 (2020).

    Article  Google Scholar 

  195. Stokstad, E. European Commission proposes loosening rules for gene-edited plants. Science https://www.science.org/content/article/european-commission-proposes-loosening-rules-gene-edited-plants (2023).

  196. Hoffman, N. E. Revisions to USDA biotechnology regulations: the SECURE rule. Proc. Natl Acad. Sci. USA 118, e2004841118 (2021).

    Article  Google Scholar 

  197. Goberna, M. F., Whelan, A. I., Godoy, P. & Lewi, D. M. Genomic editing: the evolution in regulatory management accompanying scientific progress. Front. Bioeng. Biotechnol. 10, 835378 (2022).

    Article  Google Scholar 

  198. Blaner, W. S. in Present Knowledge in Nutrition 11th edn (eds Marriott, B. P., Birt, D. F., Stallings, V. A., & Yates, A. A.) 73–91 (Academic, 2020).

  199. National Institutes of Health Office of Dietary Supplements. Vitamin A and carotenoids. NIH ODS https://ods.od.nih.gov/factsheets/VitaminA-HealthProfessional (2022).

  200. Tang, G., Qin, J., Dolnikowski, G. G., Russell, R. M. & Grusak, M. A. Golden rice is an effective source of vitamin A. Am. J. Clin. Nutr. 89, 1776–1783 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (IOS-1758745, IOS-2029889, IOS-2132693 and IOS-2224203), the USDA National Institute of Food and Agriculture (2018-33522-28789, 2020-33522-32274, 2020-70029-33161, 2021-67013-34554 and 2021-70029-36056), the Foundation for Food & Agriculture Research (21010111), the United States Agency for International Development (22010332) and the Food Futures Institute of Murdoch University.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q. proposed the project and planned the content with A.T. A.T. drafted the outline and the manuscript. T.S. drafted the section ‘Regulations and evolving public view’. C.P., T.S. and A.T. prepared the figures and the table. A.T., C.P., T.S. and Y.Q. researched the data for the article and contributed to discussing, writing, reviewing and editing the manuscript before submission. R.W., R.B., L.L., P.M.S., R.K.V., L.T., J.V.E. and K.M. contributed to reviewing and editing of manuscript before submission.

Corresponding author

Correspondence to Yiping Qi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Kan Wang, Cathie Martin and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HarvestPlus: https://www.harvestplus.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncel, A., Pan, C., Sprink, T. et al. Genome-edited foods. Nat Rev Bioeng 1, 799–816 (2023). https://doi.org/10.1038/s44222-023-00115-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00115-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research