Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular agriculture for milk bioactive production

Abstract

Cellular agriculture, that is, the cell culture-based production of food, may provide an alternative to traditional farming, minimizing the environmental effect, while ensuring nutritional quality, ingredient safety and security of food products. In addition to the cell-based production of animal-based products (meat, poultry and seafood), cellular agriculture of dairy, such as milk, is being increasingly explored. Cellular agriculture could drive specific applications of new and functional ingredients tailored to infant needs, particularly in the dairy industry. Given the known long-term benefits of exclusive breastfeeding, this technology has the potential to supply functional milk bioactives for infants who cannot be breastfed. In this Review, we discuss cell-based biotechnology approaches, applying synthetic biology or precision fermentation, for the production of functional and personalized milk bioactives. We highlight cell culture-based techniques, including mammary gland organoids, and microbial-based approaches to produce milk bioactives, such as human milk oligosaccharides and human milk lactoferrin. Finally, we emphasize challenges of scale, costs and socio-political aspects with regard to human milk production and outline the key future milestones of this field.

Key points

  • Cellular agriculture, involving microbial-based or cell culture-based technologies, has the potential to produce functional milk bioactives, such as sugars, lipids and proteins, for infant nutrition to bring infant formula functionality closer to maternal milk.

  • Large-scale milk bioactive production with a microbial-based (precision fermentation) approach has been demonstrated by the commercialization of human milk oligosaccharides (HMOs) in infant formula.

  • Cell culture-based technology, including mammary organoids or mammary epithelial cells, can be applied to produce functional and complex milk bioactives; however, industrial scaling for this technology remains a challenge.

  • Cellular agriculture and cultured food products must be properly regulated, labelled and communicated with consumers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones of cellular agriculture.
Fig. 2: Dairy and non-dairy cellular agriculture products.
Fig. 3: Production of milk bioactives.

Similar content being viewed by others

References

  1. Department of Economic and Social Affairs Population Division. World population prospects: the 2012 revision: highlights and advance tables ESA/P/WP.228 (Department of Economic and Social Affairs Population Division — United Nations, 2013).

  2. Bongaarts, J. FAO, IFAD, UNICEF, WFP and WHO: The state of food security and nutrition in the world 2020. Transforming food systems for affordable healthy diets FAO, 2020, 320 p. Popul. Dev. Rev. 47, 558–558 (2021).

    Article  Google Scholar 

  3. Farrell, P., Thow, A. M., Abimbola, S., Faruqui, N. & Negin, J. How food insecurity could lead to obesity in LMICs: when not enough is too much: a realist review of how food insecurity could lead to obesity in low-and middle-income countries. Health Promotion Int. 33, 812–826 (2018).

    Article  Google Scholar 

  4. Seligman, H. K., Bindman, A. B., Vittinghoff, E., Kanaya, A. M. & Kushel, M. B. Food insecurity is associated with diabetes mellitus: results from the National Health Examination and Nutrition Examination Survey (NHANES) 1999–2002. J. Gen. Intern. Med. 22, 1018–1023 (2007).

    Article  Google Scholar 

  5. Nkambule, S. J., Moodley, I., Kuupiel, D. & Mashamba-Thompson, T. P. Association between food insecurity and key metabolic risk factors for diet-sensitive non-communicable diseases in sub-Saharan Africa: a systematic review meta-analysis. Sci. Rep. 11, 1–19 (2021).

    Article  Google Scholar 

  6. Tuomisto, H. L. Challenges of assessing the environmental sustainability of cellular agriculture. Nat. Food 3, 801–803 (2022).

    Article  Google Scholar 

  7. Drewnowski, A. et al. Toward healthy diets from sustainable food systems. Curr. Dev. Nutr. 4, nzaa083 (2020).

    Article  Google Scholar 

  8. De Schutter, O., Jacobs, N. & Clément, C. A ‘Common Food Policy’ for Europe: how governance reforms can spark a shift to healthy diets and sustainable food systems. Food Policy 96, 101849 (2020).

    Article  Google Scholar 

  9. Smetana, S., Aganovic, K. & Heinz, V. Food supply chains as cyber-physical systems: a path for more sustainable personalized nutrition. Food Eng. Rev. 13, 92–103 (2021).

    Article  Google Scholar 

  10. Rischer, H., Szilvay, G. R. & Oksman-Caldentey, K.-M. Cellular agriculture — industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 61, 128–134 (2020).

    Article  Google Scholar 

  11. Mattick, C. S. Cellular agriculture: the coming revolution in food production. Bull. At. Sci. 74, 32–35 (2018).

    Article  Google Scholar 

  12. Handral, H. K., Hua Tay, S., Wan Chan, W. & Choudhury, D. 3D printing of cultured meat products. Crit. Rev. Food Sci. Nutr. 62, 272–281 (2022).

    Article  Google Scholar 

  13. Terefe, N. S. in Food Engineering Innovations Across the Food Supply Chain (eds Juliano, P. et al.) 89–106 (Elsevier, 2022).

  14. Choudhury, D., Tseng, T. W. & Swartz, E. The business of cultured meat. Trends Biotechnol. 38, 573–577 (2020).

    Article  Google Scholar 

  15. Swartz, E. & Bomkamp, C. The science of cultivated meat. Good Food Institute https://gfi.org/science/the-science-of-cultivated-meat/ (2021).

  16. Chalupa-Krebzdak, S., Long, C. J. & Bohrer, B. M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 87, 84–92 (2018).

    Article  Google Scholar 

  17. Hettinga, K. & Bijl, E. Can recombinant milk proteins replace those produced by animals? Curr. Opin. Biotechnol. 75, 102690 (2022). This review article discusses the technical feasibility, environmental impact and economic interests of introducing microbial-based products into human nutrition.

    Article  Google Scholar 

  18. Boutinaud, M. & Jammes, H. Potential uses of milk epithelial cells: a review. Reprod. Nutr. Dev. 42, 133–147 (2002).

    Article  Google Scholar 

  19. Sumbal, J., Chiche, A., Charifou, E., Koledova, Z. & Li, H. Primary mammary organoid model of lactation and involution. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2020.00068 (2020).

    Article  Google Scholar 

  20. Kumar, P. et al. In-vitro meat: a promising solution for sustainability of meat sector. J. Anim. Sci. Technol. 63, 693 (2021).

    Article  Google Scholar 

  21. Ercili-Cura, D. & Barth, D. Cellular Agriculture: Lab Grown Foods (American Chemical Society, 2021).

  22. Post, M. J. Cultured beef: medical technology to produce food. J. Sci. Food Agriculture 94, 1039–1041 (2014). This article describes the technology used for the development of the first laboratory-grown beef burger.

    Article  Google Scholar 

  23. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  Google Scholar 

  24. Rowe, R. G. & Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 20, 377–388 (2019).

    Article  Google Scholar 

  25. Qu, Y. et al. Differentiation of human induced pluripotent stem cells to mammary-like organoids. Stem Cell Rep. 8, 205–215 (2017). This article presents a detailed methodology and characterization of mammary gland organoids derived from iPS cells.

    Article  Google Scholar 

  26. Mendly-Zambo, Z., Powell, L. J. & Newman, L. L. Dairy 3.0: cellular agriculture and the future of milk. Food Cult. Soc. 24, 675–693 (2021).

    Article  Google Scholar 

  27. Cohen, S. N., Chang, A. C., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

    Article  Google Scholar 

  28. Vandenplas, Y. et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161 (2018). This article reviews infant health outcomes related to breast milk and infant formula supplemented with HMOs.

    Article  Google Scholar 

  29. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  Google Scholar 

  30. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  Google Scholar 

  31. Zhang, J., Zhu, Y., Zhang, W. & Mu, W. Efficient production of a functional human milk oligosaccharide 3′-sialyllactose in genetically engineered Escherichia coli. ACS Synth. Biol. 11, 2837–2845 (2022).

    Article  Google Scholar 

  32. Stout, A. J. et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5, 466 (2022).

    Article  Google Scholar 

  33. Messmer, T. et al. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nat. Food 3, 74–85 (2022).

    Article  Google Scholar 

  34. Pasitka, L. et al. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food 4, 35–50 (2023). This article reports that spontaneously immortalized fibroblasts, which can drive adipogenesis, rapidly expand in a serum-free culture medium in a bioreactor for the production of cultured foods.

    Article  Google Scholar 

  35. FDA. FDA completes first pre-market consultation for human food made using animal cell culture technology. FDA https://www.fda.gov/food/cfsan-constituent-updates/fda-completes-first-pre-market-consultation-human-food-made-using-animal-cell-culture-technology (2022).

  36. Sternlicht, M. D. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 8, 1–11 (2005).

    Article  Google Scholar 

  37. Hannan, F. M., Elajnaf, T., Vandenberg, L. N., Kennedy, S. H. & Thakker, R. V. Hormonal regulation of mammary gland development and lactation. Nat. Rev. Endocrinol. 19, 46–61 (2023).

    Article  Google Scholar 

  38. Watson, C. J. Key stages in mammary gland development — involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 8, 1–5 (2006).

    Article  Google Scholar 

  39. Hovey, R. C., Trott, J. F. & Vonderhaar, B. K. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J. Mammary Gland. Biol. Neoplasia 7, 17–38 (2002).

    Article  Google Scholar 

  40. Stein, T., Salomonis, N. & Gusterson, B. A. Mammary gland involution as a multi-step process. J. Mammary Gland. Biol. Neoplasia 12, 25–35 (2007).

    Article  Google Scholar 

  41. Christian, P. et al. The need to study human milk as a biological system. Am. J. Clin. Nutr. 113, 1063–1072 (2021).

    Article  Google Scholar 

  42. Ballard, O. & Morrow, A. L. Human milk composition: nutrients and bioactive factors. Pediatr. Clin. 60, 49–74 (2013).

    Google Scholar 

  43. Binte Abu Bakar, S. Y., Salim, M., Clulow, A. J., Nicholas, K. R. & Boyd, B. J. Human milk composition and the effects of pasteurisation on the activity of its components. Trends Food Sci. Technol. 111, 166–174 (2021).

    Article  Google Scholar 

  44. Perrella, S. et al. Human milk composition promotes optimal infant growth, development and health. Semin. Perinatol. 45, 151380 (2021).

    Article  Google Scholar 

  45. Lönnerdal, B. Effects of maternal dietary intake on human milk composition. J. Nutr. 116, 499–513 (1986).

    Article  Google Scholar 

  46. Pace, R. M. et al. Variation in human milk composition is related to differences in milk and infant fecal microbial communities. Microorganisms 9, 1153 (2021).

    Article  Google Scholar 

  47. Italianer, M. F. et al. Circadian variation in human milk composition, a systematic review. Nutrients 12, 2328 (2020).

    Article  Google Scholar 

  48. Grunewald, M. et al. Variation and interdependencies of human milk macronutrients, fatty acids, adiponectin, insulin, and IGF-II in the European PreventCD Cohort. Nutrients 11, 2034 (2019).

    Article  Google Scholar 

  49. Jenness, R. The composition of human milk. Semin. Perinatol. 3, 225–239 (1979).

    Google Scholar 

  50. Kim, S. Y. & Yi, D. Y. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 63, 301 (2020).

    Article  Google Scholar 

  51. Bardanzellu, F., Fanos, V. & Reali, A. “Omics” in human colostrum and mature milk: looking to old data with new eyes. Nutrients 9, 843 (2017).

    Article  Google Scholar 

  52. Yi, D. Y. & Kim, S. Y. Human breast milk composition and function in human health: from nutritional components to microbiome and microRNAs. Nutrients 13, 3094 (2021).

    Article  Google Scholar 

  53. Innis, S. M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 99, 734S–741S (2014).

    Article  Google Scholar 

  54. Boué, G. et al. Public health risks and benefits associated with breast milk and infant formula consumption. Crit. Rev. Food Sci. Nutr. 58, 126–145 (2018).

    Article  Google Scholar 

  55. Jeurink, P. V. et al. Human milk: a source of more life than we imagine. Benef. Microbes 4, 17–30 (2013).

    Article  Google Scholar 

  56. UNICEF. Breastfeeding: monitoring the situation of children and women. UNICEF https://data.unicef.org/topic/nutrition/breastf (2022).

  57. Segura‐Pérez, S. et al. Risk factors for self‐reported insufficient milk during the first 6 months of life: a systematic review. Matern. Child Nutr. 18, e13353 (2022).

    Article  Google Scholar 

  58. Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387, 475–490 (2016).

    Article  Google Scholar 

  59. Pfeuffer, M. & Schrezenmeir, J. Bioactive substances in milk with properties decreasing risk of cardiovascular diseases. Br. J. Nutr. 84, 155–159 (2000).

    Article  Google Scholar 

  60. Lopez, C. et al. Human milk and infant formulae: peptide differences and the opportunity to address the functional gap. Curr. Res. Food Sci. 3, 217–226 (2020).

    Article  Google Scholar 

  61. Liu, L. et al. A comparative analysis of lipid digestion in human milk and infant formulas based on simulated in vitro infant gastrointestinal digestion. Foods 11, 200 (2022).

    Article  Google Scholar 

  62. Stuebe, A. The risks of not breastfeeding for mothers and infants. Rev. Obstet. Gynecol. 2, 222 (2009).

    Google Scholar 

  63. Colen, C. G. & Ramey, D. M. Is breast truly best? Estimating the effects of breastfeeding on long-term child health and wellbeing in the United States using sibling comparisons. Soc. Sci. Med. 109, 55–65 (2014).

    Article  Google Scholar 

  64. Horta, B. L., Victora, C. G. & World Health Organization. Short-term Effects of Breastfeeding: A Systematic Review on the Benefits of Breastfeeding on Diarrhoea and Pneumonia Mortality (WHO, 2013).

  65. Rangel, A. Hd. N. et al. Lactose intolerance and cow’s milk protein allergy. Food Sci. Technol. 36, 179–187 (2016).

    Article  Google Scholar 

  66. Roy, D., Ye, A., Moughan, P. J. & Singh, H. Composition, structure, and digestive dynamics of milk from different species — a review. Front. Nutr. 7, 577759 (2020).

    Article  Google Scholar 

  67. Innis, S. M., Gilley, J. & Werker, J. Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? J. Pediatr. 139, 532–538 (2001).

    Article  Google Scholar 

  68. Jasani, B., Simmer, K., Patole, S. K. & Rao, S. C. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000376.pub4 (2017).

    Article  Google Scholar 

  69. Chen, X. Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis. Adv. Carbohydr. Chem. Biochem. 72, 113–190 (2015).

    Article  Google Scholar 

  70. Tonon, K. M. et al. Gut microbiota comparison of vaginally and cesarean born infants exclusively breastfed by mothers secreting α1–2 fucosylated oligosaccharides in breast milk. PLoS ONE 16, e0246839 (2021).

    Article  Google Scholar 

  71. Ramirez-Farias, C., Baggs, G. E. & Marriage, B. J. Growth, tolerance, and compliance of infants fed an extensively hydrolyzed infant formula with added 2′-FL fucosyllactose (2′-FL) human milk oligosaccharide. Nutrients 13, 186 (2021).

    Article  Google Scholar 

  72. Bosheva, M. et al. Infant formula with a specific blend of five human milk oligosaccharides drives the gut microbiota development and improves gut maturation markers: a randomized controlled trial. Front. Nutr. 9, 920362 (2022).

    Article  Google Scholar 

  73. Vandenplas, Y. et al. Effects of an extensively hydrolyzed formula supplemented with two human milk oligosaccharides on growth, tolerability, safety and infection risk in infants with cow’s milk protein allergy: a randomized, multi-center trial. Nutrients 14, 530 (2022).

    Article  Google Scholar 

  74. Carr, L. E. et al. Role of human milk bioactives on infants’ gut and immune health. Front. Immunol. 12, 604080 (2021).

    Article  Google Scholar 

  75. Chiurazzi, M. et al. Human milk and brain development in infants. Reprod. Med. 2, 107–117 (2021).

    Article  Google Scholar 

  76. Kosmerl, E., Rocha-Mendoza, D., Ortega-Anaya, J., Jiménez-Flores, R. & García-Cano, I. Improving human health with milk fat globule membrane, lactic acid bacteria, and bifidobacteria. Microorganisms 9, 341 (2021).

    Article  Google Scholar 

  77. Hernell, O., Timby, N., Domellöf, M. & Lönnerdal, B. Clinical benefits of milk fat globule membranes for infants and children. J. Pediatr. 173, S60–S65 (2016).

    Article  Google Scholar 

  78. Lewis, Z. T. et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3, 1–21 (2015).

    Article  Google Scholar 

  79. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  Google Scholar 

  80. McGeough, K. et al. The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions. Biogeosciences 9, 4909–4919 (2012).

    Article  Google Scholar 

  81. Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article  Google Scholar 

  82. Lv, X. et al. Synthetic biology for future food: research progress and future directions. Future Foods 3, 100025 (2021).

    Article  Google Scholar 

  83. Shapira, P., Kwon, S. & Youtie, J. Tracking the emergence of synthetic biology. Scientometrics 112, 1439–1469 (2017).

    Article  Google Scholar 

  84. Katz, L. et al. Synthetic biology advances and applications in the biotechnology industry: a perspective. J. Ind. Microbiol. Biotechnol. 45, 449–461 (2018).

    Article  Google Scholar 

  85. Soyyılmaz, B. et al. The mean of milk: a review of human milk oligosaccharide concentrations throughout lactation. Nutrients 13, 2737 (2021).

    Article  Google Scholar 

  86. Bych, K. et al. Production of HMOs using microbial hosts — from cell engineering to large scale production. Curr. Opin. Biotechnol. 56, 130–137 (2019).

    Article  Google Scholar 

  87. Puccio, G. et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 64, 624 (2017).

    Article  Google Scholar 

  88. Faijes, M., Castejón-Vilatersana, M., Val-Cid, C. & Planas, A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol. Adv. 37, 667–697 (2019).

    Article  Google Scholar 

  89. Jung, S. M., Chin, Y. W., Lee, Y. G. & Seo, J. H. Enhanced production of 2′‐fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered Escherichia coli. Biotechnol. Bioeng. 116, 2412–2417 (2019).

    Article  Google Scholar 

  90. Zhu, Y. et al. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto-N-tetraose, and lacto-N-neotetraose. Crit. Rev. Biotechnol. 42, 578–596 (2022).

    MathSciNet  Google Scholar 

  91. Chin, Y. W., Seo, N., Kim, J. H. & Seo, J. H. Metabolic engineering of Escherichia coli to produce 2′‐fucosyllactose via salvage pathway of guanosine 5′‐diphosphate (GDP)‐l‐fucose. Biotechnol. Bioeng. 113, 2443–2452 (2016).

    Article  Google Scholar 

  92. Deng, J. et al. Recent advances and challenges in microbial production of human milk oligosaccharides. Syst. Microbiol. Biomanuf. 1, 1–14 (2021).

    Article  Google Scholar 

  93. Baumgärtner, F., Seitz, L., Sprenger, G. A. & Albermann, C. Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose. Microb. Cell Fact. 12, 1–13 (2013).

    Article  Google Scholar 

  94. Triantis, V., Bode, L. & van Neerven, R. J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 6, 190 (2018).

    Article  Google Scholar 

  95. Elison, E. et al. Oral supplementation of healthy adults with 2′-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br. J. Nutr. 116, 1356–1368 (2016).

    Article  Google Scholar 

  96. Craft, K. M., Thomas, H. C. & Townsend, S. D. Sialylated variants of lacto-N-tetraose exhibit antimicrobial activity against Group B Streptococcus. Org. Biomol. Chem. 17, 1893–1900 (2019).

    Article  Google Scholar 

  97. Parschat, K., Melsaether, C., Jäpelt, K. R. & Jennewein, S. Clinical evaluation of 16-week supplementation with 5HMO-mix in healthy-term human infants to determine tolerability, safety, and effect on growth. Nutrients 13, 2871 (2021).

    Article  Google Scholar 

  98. Johanson, B. Isolation of an iron-containing red protein from milk. Acta Chem. Scand. 14, 510–512 (1960).

    Article  Google Scholar 

  99. Spik, G., Coddeville, B. & Montreuil, J. Comparative study of the primary structures of sero-, lacto-and ovotransferrin glycans from different species. Biochimie 70, 1459–1469 (1988).

    Article  Google Scholar 

  100. Gifford, J., Hunter, H. & Vogel, H. Lactoferricin. Cell. Mol. Life Sci. 62, 2588–2598 (2005).

    Article  Google Scholar 

  101. Zimecki, M., Właszczyk, A., Wojciechowski, R., Dawiskiba, J. & Kruzel, M. Lactoferrin regulates the immune responses in post-surgical patients. Arch. Immunol. Ther. Exp. 49, 325–333 (2001).

    Google Scholar 

  102. Wakabayashi, H., Oda, H., Yamauchi, K. & Abe, F. Lactoferrin for prevention of common viral infections. J. Infect. Chemother. 20, 666–671 (2014).

    Article  Google Scholar 

  103. Niaz, B. et al. Lactoferrin (LF): a natural antimicrobial protein. Int. J. Food Prop. 22, 1626–1641 (2019).

    Article  Google Scholar 

  104. Liepke, C. et al. Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur. J. Biochem. 269, 712–718 (2002).

    Article  Google Scholar 

  105. Safaeian, L., Javanmard, S. H., Mollanoori, Y. & Dana, N. Cytoprotective and antioxidant effects of human lactoferrin against H2O2-induced oxidative stress in human umbilical vein endothelial cells. Adv. Biomed. Res. 4, 188 (2015).

    Article  Google Scholar 

  106. Lönnerdal, B. Nutritional roles of lactoferrin. Curr. Opin. Clin. Nutr. Metab. Care 12, 293–297 (2009).

    Article  Google Scholar 

  107. Sienkiewicz, M., Jaśkiewicz, A., Tarasiuk, A. & Fichna, J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit. Rev. Food Sci. Nutr. 62, 6016–6033 (2022).

    Article  Google Scholar 

  108. Motoki, N. et al. Effects of lactoferrin-fortified formula on acute gastrointestinal symptoms in children aged 12–32 months: a randomized, double-blind, placebo-controlled trial. Front. Pediatr. 8, 233 (2020).

    Article  Google Scholar 

  109. Ellison, R. III, Giehl, T. J. & LaForce, F. M. Damage of the outer membrane of enteric Gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56, 2774–2781 (1988).

    Article  Google Scholar 

  110. Chen, K. et al. Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutrition 32, 222–227 (2016).

    Article  Google Scholar 

  111. Kaufman, D. A. et al. Dose escalation study of bovine lactoferrin in preterm infants: getting the dose right. Biochem. Cell Biol. 99, 7–13 (2021).

    Article  Google Scholar 

  112. Neville, M. & Zhang, P. Lactoferrin secretion into milk: comparison between ruminant, murine, and human milk. J. Anim. Sci. 78, 26–35 (2000).

    Article  Google Scholar 

  113. Cutone, A. et al. Lactoferrin’s anti-cancer properties: safety, selectivity, and wide range of action. Biomolecules 10, 456 (2020).

    Article  Google Scholar 

  114. Feng, X.-J. et al. Fusion expression of bovine lactoferricin in Escherichia coli. Protein Expr. Purif. 47, 110–117 (2006).

    Article  Google Scholar 

  115. Des Soye, B. J., Davidson, S. R., Weinstock, M. T., Gibson, D. G. & Jewett, M. C. Establishing a high-yielding cell-free protein synthesis platform derived from Vibrio natriegens. ACS Synth. Biol. 7, 2245–2255 (2018).

    Article  Google Scholar 

  116. Choi, B.-K. et al. Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj. J. 25, 581–593 (2008).

    Article  Google Scholar 

  117. Ward, P. P. et al. A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Nat. Biotechnol. 13, 498–503 (1995).

    Article  Google Scholar 

  118. Wang, M. et al. Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows. Sci. Rep. 7, 1–10 (2017).

    Google Scholar 

  119. Yu, H. et al. The dominant expression of functional human lactoferrin in transgenic cloned goats using a hybrid lactoferrin expression construct. J. Biotechnol. 161, 198–205 (2012).

    Article  Google Scholar 

  120. Marnila, P. & Korhonen, H. J. in Dairy-Derived Ingredients (ed. Corredig, M.) Ch. 11 (Woodhead Publishing, 2009).

  121. Barboza, M. et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria–host interactions. Mol. Cell. Proteomics 11, M111.015248 (2012).

    Article  Google Scholar 

  122. Almond, R. J. et al. Differential immunogenicity and allergenicity of native and recombinant human lactoferrins: role of glycosylation. Eur. J. Immunol. 43, 170–181 (2013).

    Article  Google Scholar 

  123. Parc, A. L. et al. Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows. PLoS ONE 12, e0171477 (2017).

    Article  Google Scholar 

  124. Moritz, M. S., Verbruggen, S. E. & Post, M. J. Alternatives for large-scale production of cultured beef: a review. J. Integr. Agric. 14, 208–216 (2015).

    Article  Google Scholar 

  125. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  Google Scholar 

  126. Reiss, J., Robertson, S. & Suzuki, M. Cell sources for cultivated meat: applications and considerations throughout the production workflow. Int. J. Mol. Sci. 22, 7513 (2021).

    Article  Google Scholar 

  127. Tong, H.-L., Li, Q.-Z., Gao, X.-J. & Yin, D.-Y. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line. In Vitro Cell. Dev. Biol. Anim. 48, 149–155 (2012).

    Article  Google Scholar 

  128. Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    Article  Google Scholar 

  129. Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  Google Scholar 

  130. Finot, L., Chanat, E. & Dessauge, F. Mammary gland 3D cell culture systems in farm animals. Vet. Res. 52, 78 (2021). This article provides an overview of in vitro mammary gland models for lactation, including their limitations and suggestions for improving the lactation models.

    Article  Google Scholar 

  131. Jamieson, P. R. et al. Derivation of a robust mouse mammary organoid system for studying tissue dynamics. Development 144, 1065–1071 (2017).

    Google Scholar 

  132. Rosenbluth, J. M. et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat. Commun. 11, 1711 (2020).

    Article  Google Scholar 

  133. Dekkers, J. F. et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat. Protoc. 16, 1936–1965 (2021).

    Article  Google Scholar 

  134. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e10 (2018).

    Article  Google Scholar 

  135. Muschler, J. & Streuli, C. H. Cell–matrix interactions in mammary gland development and breast cancer. Cold Spring Harb. Perspect. Biol. 2, a003202 (2010).

    Article  Google Scholar 

  136. Choi, Y. et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 15, 3350–3357 (2015).

    Article  Google Scholar 

  137. Gioiella, F., Urciuolo, F., Imparato, G., Brancato, V. & Netti, P. A. An engineered breast cancer model on a chip to replicate ECM‐activation in vitro during tumor progression. Adv. Healthc. Mater. 5, 3074–3084 (2016).

    Article  Google Scholar 

  138. Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022).

    Article  Google Scholar 

  139. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  Google Scholar 

  140. Rye, M., Lin, F., Toor, R. H., Yong, G. & Shahid, S. Nutrient compositions and methods, kits, and cell compositions for producing the same. World patent WO2021067641A1 (2021).

  141. Goh, H., Wu, Y. Y. & Yong, G. Bioreactor systems and methods for culturing cells. World patent WO2022115033 (2022).

  142. Strickland, L. Milk product compositions. World patent WO2023097012 (2023).

  143. Bosco, M. N. et al. Method for producing milk like products. World patent WO2021219634A2 (2021).

  144. Bosco, M. N., Destaillats, F., Colombo Mottaz, S. & Kraus, M. Method for producing milk like products. World patent WO2021219635A2 (2021).

  145. Thum, C., Roy, N. C., Everett, D. W. & McNabb, W. C. Variation in milk fat globule size and composition: a source of bioactives for human health. Crit. Rev. Food Sci. Nutr. 63, 87–113 (2021).

    Article  Google Scholar 

  146. Chutipongtanate, S., Morrow, A. L. & Newburg, D. S. Human milk extracellular vesicles: a biological system with clinical implications. Cells 11, 2345 (2022).

    Article  Google Scholar 

  147. Stephens, N. et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends food Sci. Technol. 78, 155–166 (2018).

    Article  Google Scholar 

  148. Ashizawa, R. et al. Entomoculture: a preliminary techno-economic assessment. Foods 11, 3037 (2022). This article presents a comprehensive techno-economic model for cell-based meat production.

    Article  Google Scholar 

  149. Wikandari, R., Manikharda, Baldermann, S., Ningrum, A. & Taherzadeh, M. J. Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered 12, 11305–11330 (2021).

    Article  Google Scholar 

  150. Ye, Y., Zhou, J., Guan, X. & Sun, X. Commercialization of cultured meat products: current status, challenges, and strategic prospects. Future Foods 6, 100177 (2022).

    Article  Google Scholar 

  151. Junker, B. H. Scale-up methodologies for Escherichia coli and yeast fermentation processes. J. Biosci. Bioeng. 97, 347–364 (2004).

    Article  Google Scholar 

  152. Chin, Y.-W., Kim, J.-Y., Kim, J.-H., Jung, S.-M. & Seo, J.-H. Improved production of 2′-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase, WcfB from Bacteroides fragilis. J. Biotechnol. 257, 192–198 (2017).

    Article  Google Scholar 

  153. Takors, R. Scale-up of microbial processes: impacts, tools and open questions. J. Biotechnol. 160, 3–9 (2012). This article provides an overview of the challenges and tools for scaling up industrial bioprocesses.

    Article  Google Scholar 

  154. Zhou, W., Seth, G., Guardia, M. J. & Hu, W.-S. Mammalian cell bioreactors. in Encyclopedia of Industrial Biotechnology (ed. Flickinger, M. C.) (Wiley, 2010).

  155. Gelves, R., Dietrich, A. & Takors, R. Modeling of gas–liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess Biosyst. Eng. 37, 365–375 (2014).

    Article  Google Scholar 

  156. Zhu, H., Nienow, A. W., Bujalski, W. & Simmons, M. J. Mixing studies in a model aerated bioreactor equipped with an up-or a down-pumping ‘elephant ear’ agitator: power, hold-up and aerated flow field measurements. Chem. Eng. Res. Des. 87, 307–317 (2009).

    Article  Google Scholar 

  157. Garcia-Ochoa, F. & Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27, 153–176 (2009).

    Article  Google Scholar 

  158. Li, C. et al. Novel scale-up strategy based on three-dimensional shear space for animal cell culture. Chem. Eng. Sci. 212, 115329 (2020).

    Article  Google Scholar 

  159. Manstein, F. et al. High density bioprocessing of human pluripotent stem cells by metabolic control and in silico modeling. Stem Cell Transl. Med. 10, 1063–1080 (2021). This article describes the first high-density culture of pluripotent stem cells in a bioreactor.

    Article  Google Scholar 

  160. Liu, Y. et al. Strategies for enhancing microbial production of 2′-fucosyllactose, the most abundant human milk oligosaccharide. J. Agric. Food Chem. 70, 11481–11499 (2022).

    Article  Google Scholar 

  161. Hu, M., Li, M., Li, C. & Zhang, T. Biosynthesis of lacto-N-fucopentaose I in Escherichia coli by metabolic pathway rational design. Carbohydr. Polym. 297, 120017 (2022).

    Article  Google Scholar 

  162. Cardoso, V. M. et al. Cost analysis based on bioreactor cultivation conditions: production of a soluble recombinant protein using Escherichia coli BL21 (DE3). Biotechnol. Rep. 26, e00441 (2020).

    Article  Google Scholar 

  163. Isidro, I. A. et al. Online monitoring of hiPSC expansion and hepatic differentiation in 3D culture by dielectric spectroscopy. Biotechnol. Bioeng. 118, 3610–3617 (2021). This article demonstrates the online monitoring of pluripotent stem cell expansion and differentiation using dielectric spectroscopy in a bioreactor.

    Article  Google Scholar 

  164. Singh, V. Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30, 149–158 (1999).

    Article  Google Scholar 

  165. Timmins, N. E. et al. Clinical scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells. Biotechnol. Bioeng. 104, 832–840 (2009).

    Article  Google Scholar 

  166. Woodgate, J. M. Perfusion N – 1 culture — opportunities for process intensification. Biopharm. Process. https://doi.org/10.1016/B978-0-08-100623-8.00037-2 (2018).

    Article  Google Scholar 

  167. Yongky, A. et al. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. mAbs 11, 1502–1514 (2019).

    Article  Google Scholar 

  168. Glazyrina, J. et al. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb. Cell Fact. 9, 1–11 (2010).

    Article  Google Scholar 

  169. Jeske, R. et al. Engineering human mesenchymal bodies in a novel 3D-printed microchannel bioreactor for extracellular vesicle biogenesis. Bioengineering 9, 795 (2022).

    Article  Google Scholar 

  170. Moreira, A. S. et al. Establishing suspension cell cultures for improved manufacturing of oncolytic adenovirus. Biotechnol. J. 15, 1900411 (2020).

    Article  Google Scholar 

  171. Ravi, M., Paramesh, V., Kaviya, S., Anuradha, E. & Solomon, F. P. 3D cell culture systems: advantages and applications. J. Cell. Physiol. 230, 16–26 (2015).

    Article  Google Scholar 

  172. Branco, M. A. et al. Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D culture. Sci. Rep. 9, 1–13 (2019).

    Article  Google Scholar 

  173. Correia, C. et al. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol. Bioeng. 115, 630–644 (2018).

    Article  Google Scholar 

  174. Gramer, M. J., Maas, J. & Lieberman, M. M. Use of hollow fiber systems for rapid and direct scale up of antibody production from hybridoma cell lines cultured in CL-1000 flasks using BD Cell MAb medium. Cytotechnology 42, 155–162 (2003).

    Article  Google Scholar 

  175. Yan, L. & Wu, X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Biol. Toxicol. 36, 165–178 (2020).

    Article  Google Scholar 

  176. Rivera, F. J. C. & Chen, J. Computational fluid dynamics modeling of cell cultures in bioreactors and its potential for cultivated meat production — a mini-review. Future Foods 6, 100195 (2022).

    Article  Google Scholar 

  177. Chatterjee, S. FDA Perspective on Continuous Manufacturing. Presented at the 26th IFPAC Annual Meeting (2012).

  178. Fan, L. et al. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines. J. Microbiol. Biotechnol. 19, 1695–1702 (2009).

    Article  Google Scholar 

  179. Chen, K. G., Mallon, B. S., McKay, R. D. & Robey, P. G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14, 13–26 (2014).

    Article  Google Scholar 

  180. Sinharoy, P., Aziz, A. H., Majewska, N. I., Ahuja, S. & Handlogten, M. W. Perfusion reduces bispecific antibody aggregation via mitigating mitochondrial dysfunction-induced glutathione oxidation and ER stress in CHO cells. Sci. Rep. 10, 1–12 (2020).

    Article  Google Scholar 

  181. Chen, C., Wong, H. E. & Goudar, C. T. Upstream process intensification and continuous manufacturing. Curr. Opin. Chem. Eng. 22, 191–198 (2018).

    Article  Google Scholar 

  182. Garrison, G. L., Biermacher, J. T. & Brorsen, B. W. How much will large-scale production of cell-cultured meat cost? J. Agric. Food Res. 10, 100358 (2022).

    Google Scholar 

  183. Ritchie, H., Rosado, P. & Roser, M. Meat and dairy production. Our World in Data https://ourworldindata.org/meat-production (2017).

  184. Humbird, D., Davis, R. & McMillan, J. Aeration costs in stirred-tank and bubble column bioreactors. Biochem. Eng. J. 127, 161–166 (2017).

    Article  Google Scholar 

  185. Tajsoleiman, T., Mears, L., Krühne, U., Gernaey, K. V. & Cornelissen, S. An industrial perspective on scale-down challenges using miniaturized bioreactors. Trends Biotechnol. 37, 697–706 (2019).

    Article  Google Scholar 

  186. Wang, G., Haringa, C., Noorman, H., Chu, J. & Zhuang, Y. Developing a computational framework to advance bioprocess scale-up. Trends Biotechnol. 38, 846–856 (2020).

    Article  Google Scholar 

  187. Post, M. J. et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1, 403–415 (2020).

    Article  Google Scholar 

  188. Jungbauer, A. Continuous downstream processing of biopharmaceuticals. Trends Biotechnol. 31, 479–492 (2013).

    Article  Google Scholar 

  189. Lin, T., Meletharayil, G., Kapoor, R. & Abbaspourrad, A. Bioactives in bovine milk: chemistry, technology, and applications. Nutr. Rev. 79, 48–69 (2021).

    Article  Google Scholar 

  190. Bouzas, J., Kamarei, A. & Karel, M. Storage stability of milkfat globule membrane. J. Food Process. Preserv. 9, 11–24 (1985).

    Article  Google Scholar 

  191. Atehli, D., Wang, J., Yu, J., Ali, F. & Wang, Y. Effects of mono‐and diglycerides of fatty acids on the milk fat globule membrane after heat treatment. Int. J. Dairy Technol. 73, 667–673 (2020).

    Article  Google Scholar 

  192. Walsh, C., Lane, J. A., van Sinderen, D. & Hickey, R. M. From lab bench to formulated ingredient: characterization, production, and commercialization of human milk oligosaccharides. J. Funct. Foods 72, 104052 (2020).

    Article  Google Scholar 

  193. Sagmeister, P. et al. Soft sensor assisted dynamic bioprocess control: efficient tools for bioprocess development. Chem. Eng. Sci. 96, 190–198 (2013).

    Article  Google Scholar 

  194. Watts, C. PAT — A framework for Innovative Pharmaceutical Development Manufacturing and Quality Assurance. Presented at the FDA/RPSGB Guidance Workshop (2004).

  195. Montague, G. A., Morris, A. J. & Bush, J. R. Considerations in control scheme development for fermentation process control. IEEE Control. Syst. Mag. 8, 44–48 (1988).

    Article  Google Scholar 

  196. Teixeira, A., Oliveira, R., Alves, P. & Carrondo, M. Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol. Adv. 27, 726–732 (2009).

    Article  Google Scholar 

  197. Giaever, I. & Keese, C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl Acad. Sci. USA 81, 3761–3764 (1984).

    Article  Google Scholar 

  198. Giaever, I. & Keese, C. R. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans. Biomed. Eng. 33, 242–247 (1986).

    Article  Google Scholar 

  199. Giaever, I. & Keese, C. R. A morphological biosensor for mammalian cells. Nature 366, 591–592 (1993).

    Article  Google Scholar 

  200. Bagnaninchi, P. O. & Drummond, N. Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc. Natl Acad. Sci. USA 108, 6462–6467 (2011).

    Article  Google Scholar 

  201. Matuszczyk, J.-C. et al. Raman spectroscopy provides valuable process insights for cell-derived and cellular products. Curr. Opin. Biotechnol. 81, 102937 (2023).

    Article  Google Scholar 

  202. Merdalimova, A. et al. Identification and analysis of exosomes by surface-enhanced Raman spectroscopy. Appl. Sci. 9, 1135 (2019).

    Article  Google Scholar 

  203. Wilks, M., Phillips, C. J., Fielding, K. & Hornsey, M. J. Testing potential psychological predictors of attitudes towards cultured meat. Appetite 136, 137–145 (2019).

    Article  Google Scholar 

  204. Chriki, S. & Hocquette, J.-F. The myth of cultured meat: a review. Front. Nutr. 7, 7 (2020).

    Article  Google Scholar 

  205. Halpern, B. S. et al. The long and narrow path for novel cell‐based seafood to reduce fishing pressure for marine ecosystem recovery. Fish Fish. 22, 652–664 (2021).

    Article  Google Scholar 

  206. Eibl, R. et al. Cellular agriculture: opportunities and challenges. Annu. Rev. Food Sci. Technol. 12, 51–73 (2021).

    Article  Google Scholar 

  207. Mancini, M. C. & Antonioli, F. Exploring consumers’ attitude towards cultured meat in Italy. Meat Sci. 150, 101–110 (2019).

    Article  Google Scholar 

  208. Bekker, G. A., Fischer, A. R., Tobi, H. & van Trijp, H. C. Explicit and implicit attitude toward an emerging food technology: the case of cultured meat. Appetite 108, 245–254 (2017).

    Article  Google Scholar 

  209. Hocquette, A. et al. Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. J. Integr. Agric. 14, 273–284 (2015).

    Article  Google Scholar 

  210. O’Keefe, L., McLachlan, C., Gough, C., Mander, S. & Bows-Larkin, A. Consumer responses to a future UK food system. Br. Food J. 118, 412–428 (2016).

    Article  Google Scholar 

  211. Wilks, M. & Phillips, C. J. Attitudes to in vitro meat: a survey of potential consumers in the United States. PLoS one 12, e0171904 (2017).

    Article  Google Scholar 

  212. Bryant, C. & Barnett, J. Consumer acceptance of cultured meat: a systematic review. Meat Sci. 143, 8–17 (2018).

    Article  Google Scholar 

  213. Food Safety and Inspection Service. Labeling of meat or poultry products comprised of or containing cultured animal cells. Fed. Regist. 86, 49491–49496 (2021).

    Google Scholar 

  214. Webster, A. IFIC survey: consumer viewpoints and purchasing behaviors regarding plant and animal protein. Food Insight https://foodinsight.org/plant-and-animal-protein-consumer-survey/ (2021).

  215. Birch, K., Levidow, L. & Papaioannou, T. Sustainable capital? The neoliberalization of nature and knowledge in the European “knowledge-based bio-economy”. Sustainability 2, 2898–2918 (2010).

    Article  Google Scholar 

  216. Bryant, C. & Dillard, C. The impact of framing on acceptance of cultured meat. Front. Nutr. 6, 103 (2019).

    Article  Google Scholar 

  217. Teng, T. S., Chin, Y. L., Chai, K. F. & Chen, W. N. Fermentation for future food systems: precision fermentation can complement the scope and applications of traditional fermentation. EMBO Rep. 22, e52680 (2021).

    Article  Google Scholar 

  218. Zhu, Y., Zhang, W. & Mu, W. Human milk oligosaccharides: the new gold standard for premium infant formula. J. Agric. Food Chem. 70, 2061–2063 (2022).

    Article  Google Scholar 

  219. Pérez-Escalante, E. et al. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit. Rev. Food Sci. Nutr. 62, 181–214 (2022).

    Article  Google Scholar 

  220. Haschke, F., Haiden, N. & Thakkar, S. K. Nutritive and bioactive proteins in breastmilk. Ann. Nutr. Metab. 69, 16–26 (2016).

    Article  Google Scholar 

  221. Lien, E. L., Davis, A. M., Euler, A. R. & Group, M. S. Growth and safety in term infants fed reduced-protein formula with added bovine α-lactalbumin. J. Pediatr. Gastroenterol. Nutr. 38, 170–176 (2004).

    Article  Google Scholar 

  222. Trabulsi, J. et al. Effect of an α-lactalbumin-enriched infant formula with lower protein on growth. Eur. J. Clin. Nutr. 65, 167–174 (2011).

    Article  Google Scholar 

  223. Björmsjö, M., Hernell, O., Lönnerdal, B. & Berglund, S. K. Immunological effects of adding bovine lactoferrin and reducing iron in infant formula: a randomized controlled trial. J. Pediatr. Gastroenterol. Nutr. 74, e65 (2022).

    Article  Google Scholar 

  224. Li, F. et al. Improved neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: a randomized, controlled trial. J. Pediatr. 215, 24–31.e8 (2019).

    Article  Google Scholar 

  225. Turck, D. et al. Safety of bovine milk osteopontin as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 20, 7137 (2022).

    Google Scholar 

  226. Donovan, S. et al. Osteopontin supplementation of formula shifts the peripheral blood mononuclear cell transcriptome to be more similar to breastfed infants (38.3). FASEB J. 28, 38.3 (2014).

    Article  Google Scholar 

  227. Ellingson, D. J., Ruosch, A. J., Foster, K. L., Duchniak, K. M. & Laessig, I. M. Analysis of six human milk oligosaccharides (HMO) in infant formula and adult nutritionals by 2AB labeling and quantification with HILIC-FLD: first action 2022.02. J. AOAC Int. 106, 112–126 (2023).

    Article  Google Scholar 

  228. Thum, C. et al. Changes in human milk fat globule composition throughout lactation: a review. Front. Nutr. 9, 835856 (2022).

    Article  Google Scholar 

  229. Mohamed, H. J. J. et al. Brain–immune–gut benefits with early life supplementation of milk fat globule membrane. JGH Open 6, 454–461 (2022).

    Article  Google Scholar 

  230. Huang, D. et al. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab. Eng. 41, 23–38 (2017).

    Article  Google Scholar 

  231. Yu, S. et al. Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb. Cell Fact. 17, 101 (2018).

    Article  Google Scholar 

  232. Chin, Y. W., Kim, J. Y., Kim, J. H., Jung, S. M. & Seo, J. H. Improved production of 2′-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase, WcfB from Bacteroides fragilis. J. Biotechnol. 257, 192–198 (2017).

    Article  Google Scholar 

  233. Zhang, W. et al. Metabolic engineering of Escherichia coli for the production of lacto-N-neotetraose (LNnT). Syst. Microbiol. Biomanuf. 1, 291–301 (2021).

    Article  Google Scholar 

  234. Baumgartner, F., Seitz, L., Sprenger, G. A. & Albermann, C. Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose. Microb. Cell Fact. 12, 40 (2013).

    Article  Google Scholar 

  235. Sugita, T. & Koketsu, K. Transporter engineering enables the efficient production of lacto-N-triose II and lacto-N-tetraose in Escherichia coli. J. Agric. Food Chem. 70, 5106–5114 (2022).

    Article  Google Scholar 

  236. Zhu, Y. et al. Metabolic engineering of Escherichia coli for efficient biosynthesis of lacto-N-tetraose using a novel β-1,3-galactosyltransferase from Pseudogulbenkiania ferrooxidans. J. Agric. Food Chem. 69, 11342–11349 (2021).

    Article  Google Scholar 

  237. Zhu, Y. et al. Metabolic engineering of Escherichia coli for lacto-N-triose II production with high productivity. J. Agric. Food Chem. 69, 3702–3711 (2021).

    Article  Google Scholar 

  238. Gest, H. The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society. Notes Rec. R. Soc. Lond. 58, 187–201 (2004).

    Article  Google Scholar 

  239. Carrel, A. On the permanent life of tissues outside of the organism. J. Exp. Med. 15, 516 (1912).

    Article  Google Scholar 

  240. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  Google Scholar 

  241. Edelman, P., McFarland, D., Mironov, V. & Matheny, J. Commentary: in vitro-cultured meat production. Tissue Eng. 11, 659–662 (2005).

    Article  Google Scholar 

  242. Jha, A. & Topham, L. First hamburger made from lab-grown meat to be served at press conference. The Guardian https://www.theguardian.com/science/2013/aug/05/first-hamburger-lab-grown-meat-press-conference (5 August 2013).

  243. Qu, Y. et al. Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells. PLoS ONE 10, e0131285 (2015).

    Article  Google Scholar 

  244. Gupta, P., Miller, D. & Sokol, E. Three-dimensional hydrogels that support growth of physiologically relevant tissue and methods of use thereof. US patent US20170267970A1 (2017).

  245. Genovese, N. J., Firpo, M. T. & Dambournet, D. Compositions and methods for increasing the culture density of a cellular biomass within a cultivation infrastructure. US patent US20200165569A1 (2020).

  246. US Food and Drug Administration. GRAS Notice for Non-Animal Whey Protein from Fermentation by Trichoderma reesei (GRN 863) FDA https://www.fda.gov/media/136754/download (2018).

  247. Kowitt, B. The first ‘animal-free’ ice cream hits the market. Fortune (11 July 2019).

  248. Olena, A. Cultured meat advances toward the market. The Scientist (14 February 2022).

  249. Haller, C. et al. Method for producing milk like products. World patent WO2023073119 (2023).

  250. Ettinger, J. The world’s first precision fermentation lactoferrin is market ready. Green Queen (23 August 2022).

  251. ILLUMA® LUXA® HUMAN AFFINITY® Formula. Wyeth Nutrition https://www.wyethnutrition.com.hk/en/products/illuma (2022).

  252. Buxton, A. Wilk confirms successful production of human lactoferrin proteins in cultivated breast milk breakthrough. Green Queen (15 June 2022).

  253. Ververis, E. et al. Novel foods in the European Union: scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res. Int. 137, 109515 (2020).

    Article  Google Scholar 

  254. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J. 14, e04594 (2016).

    Article  Google Scholar 

  255. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Safety of lacto‐N‐neotetraose as a novel food ingredient pursuant to Regulation (EC) No 258/97. EFSA J. 13, 4183 (2015).

    Google Scholar 

  256. Byrne, B., Murray, S. & Ignaszewski, E. State of the Industry Report: Cultivated Meat (Good Food Institute, 2020).

  257. Rubio, N. R., Xiang, N. & Kaplan, D. L. Plant-based and cell-based approaches to meat production. Nat. Commun. 11, 1–11 (2020).

    Article  Google Scholar 

  258. Food and Drug Administration & Department Of Health And Human Services. Substances generally recognized as safe. Code of Federal Regulations https://faolex.fao.org/docs/pdf/us156422.pdf (2003).

  259. Thorrez, L. & Vandenburgh, H. Challenges in the quest for ‘clean meat’. Nat. Biotechnol. 37, 215–216 (2019).

    Article  Google Scholar 

  260. Ong, S., Choudhury, D. & Naing, M. W. Cell-based meat: Current ambiguities with nomenclature. Trends Food Sci. Technol. 102, 223–231 (2020).

    Article  Google Scholar 

  261. United States Food and Drug Administration. FDA Guideline for Chemistry and Technology. Requirements of Indirect Additive Petitions (FDA, 1988).

  262. Singapore Food Agency. A growing culture of safe, sustainable meat. Singapore Food Agency https://www.sfa.gov.sg/food-for-thought/article/detail/a-growing-culture-of-safe-sustainable-meat (2021).

  263. Singapore Food Agency. Safety of alternative protein. Singapore Food Agency https://www.sfa.gov.sg/food-information/risk-at-a-glance/safety-of-alternative-protein (2023).

  264. Donovan, S. M. et al. Summary of the joint National Institutes of Health and the Food and Drug Administration workshop titled “Exploring the science surrounding the safe use of bioactive ingredients in infant formula: Considerations for an assessment framework”. J. Pediatr. 255, 30–41.e1 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Leneuf and O. Jordan for their contributions to our scientific literature and patent analysis in the cellular agriculture field, P. Diby and J. Athanatos for their contribution to drafting the regulatory framework section, and F. Destaillats and N. Bosco for their comments during the early discussion of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Marine R.-C. Kraus or Omid Mashinchian.

Ethics declarations

Competing interests

All authors are employees of the Société des Produits Nestlé S.A. Switzerland.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Laxmi Yeruva, Hans Clevers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GRN 571: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=GRASNotices&id=571&sort=GRN_No&order=DESC&startrow=1&type=basic&search=571

GRN 669: https://fda.report/media/124473/GRAS-Notice-GRN-669-Part-2.pdf

GRN 880: https://www.fda.gov/media/135801/download

GRN 895: https://www.fda.gov/media/136915/download

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yart, L., Wijaya, A.W., Lima, M.J. et al. Cellular agriculture for milk bioactive production. Nat Rev Bioeng 1, 858–874 (2023). https://doi.org/10.1038/s44222-023-00112-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00112-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research