Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial intelligence for digital and computational pathology

Abstract

Advances in digitizing tissue slides and the fast-paced progress in artificial intelligence, including deep learning, have boosted the field of computational pathology. This field holds tremendous potential to automate clinical diagnosis, predict patient prognosis and response to therapy, and discover new morphological biomarkers from tissue images. Some of these artificial intelligence-based systems are now getting approved to assist clinical diagnosis; however, technical barriers remain for their widespread clinical adoption and integration as a research tool. This Review consolidates recent methodological advances in computational pathology for predicting clinical end points in whole-slide images and highlights how these developments enable the automation of clinical practice and the discovery of new biomarkers. We then provide future perspectives as the field expands into a broader range of clinical and research tasks with increasingly diverse modalities of clinical data.

Key points

  • Supported by advances in artificial intelligence, curation of multi-institutional cohorts and the development of high-performance computing, computational pathology is now reaching clinical-grade performance for certain tasks.

  • Artificial intelligence-based methods in computational pathology can be distinguished into methods for predicting clinical end points from tissue specimens and assistive tools for clinical or research tasks.

  • Multiple instance learning is a rapidly growing paradigm for predicting clinical end points, such as disease diagnosis and molecular alterations, from whole-slide images.

  • Computational pathology can be used for automating tasks that pathologists already perform in daily practice and for discovering morphological biomarkers for clinical outcomes of interest.

  • Initiatives for collecting larger, well-curated and multimodal datasets, together with advances in artificial intelligence frameworks, are required for the clinical adoption of computational pathology tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications, timeline of selected milestones and trends in computational pathology.
Fig. 2: Multiple instance learning for clinical end-point prediction on whole-slide images.
Fig. 3: Interpretability methods in computational pathology.
Fig. 4: Integration of computational pathology in pathology.
Fig. 5: Future directions in computational pathology.

Similar content being viewed by others

References

  1. Abels, E. et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association. J. Pathol. 249, 286–294 (2019).

    Article  Google Scholar 

  2. Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021). This article presents an attention-based MIL approach for the prediction of the primary cancer site, one of the most challenging tasks in oncology.

    Article  Google Scholar 

  3. Bulten, W. et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat. Med. 28, 154–163 (2022). This article presents the results of the PANDA challenge, which aimed to automate Gleason grading of prostate biopsies using over 10,000 digitized samples.

    Article  Google Scholar 

  4. Skrede, O.-J. et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395, 350–360 (2020).

    Article  Google Scholar 

  5. Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017). This article presents the outcome of the CAMELYON16 challenge for the detection of breast cancer lymph node metastases.

    Article  Google Scholar 

  6. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). This article provides an overview of deep learning, highlighting its superior performance to traditional machine learning approaches.

    Article  Google Scholar 

  7. Bostrom, R., Sawyer, H. & Tolles, W. Instrumentation for automatically prescreening cytological smears. Proc. IRE 47, 1895–1900 (1959).

    Article  Google Scholar 

  8. Prewitt, J. M. S. & Mendelsohn, M. L. The analysis of cell images. Ann. N. Y. Acad. Sci. 128, 1035–1053 (1966).

    Article  Google Scholar 

  9. Fuchs, T. J., Wild, P. J., Moch, H. & Buhmann, J. M. Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. Int. Med. Image Comput. Comput. Assist. Interv. 11, 1–8 (2008).

    Google Scholar 

  10. Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011).

    Article  Google Scholar 

  11. Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016).

    Article  Google Scholar 

  12. Madabhushi, A., Agner, S., Basavanhally, A., Doyle, S. & Lee, G. Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Comput. Med. Imaging Graph. 35, 506–514 (2011).

    Article  Google Scholar 

  13. Tarantino, P., Mazzarella, L., Marra, A., Trapani, D. & Curigliano, G. The evolving paradigm of biomarker actionability: histology-agnosticism as a spectrum, rather than a binary quality. Cancer Treat. Rev. 94, 102169 (2021).

    Article  Google Scholar 

  14. Lee, Y. et al. Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00923-0 (2022).

    Article  Google Scholar 

  15. Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–193.e7 (2018).

    Article  Google Scholar 

  16. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta Stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article  Google Scholar 

  17. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article  Google Scholar 

  18. Dosovitskiy, A. et al. An image is worth 16×16 words: transformers for image recognition at scale. In International Conference on Learning Representations (ICLR, 2021). This article explores the application of the transformer, initially developed for natural language processing, to the field of computer vision.

  19. Krishnan, R., Rajpurkar, P. & Topol, E. J. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6, 1346–1352 (2022).

    Article  Google Scholar 

  20. Jiang, P. et al. Big data in basic and translational cancer research. Nat. Rev. Cancer 22, 625–639 (2022).

    Article  Google Scholar 

  21. Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).

    Article  Google Scholar 

  22. Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  Google Scholar 

  23. Liu, J. T. et al. Harnessing non-destructive 3D pathology. Nat. Biomed. Eng. 5, 203–218 (2021).

    Article  Google Scholar 

  24. Stockman, G. & Shapiro, L. G. Computer Vision (Prentice Hall PTR, 2001).

  25. Bándi, P. et al. Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks. PeerJ 7, e8242 (2019).

    Article  Google Scholar 

  26. Deng, J. et al. in IEEE Conference on Computer Vision and Pattern Recognition. 248–255 (IEEE, 2009).

  27. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    Article  Google Scholar 

  28. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article  Google Scholar 

  29. Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).

    Article  Google Scholar 

  30. Ilse, M., Tomczak, J. & Welling, M. in Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) 2127–2136 (PMLR, 2018). This article introduces attention-based MIL, which uses a neural network to assign importance scores to instances.

  31. Dietterich, T. G., Lathrop, R. H. & Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89, 31–71 (1997).

    Article  MATH  Google Scholar 

  32. Dundar, M. M. et al. in 20th International Conference on Pattern Recognition 2732–2735 (IEEE, 2010).

  33. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. In International Conference on Learning Representations (ICLR, 2015).

  34. Lu, M. Y. et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 555–570 (2021).

    Article  Google Scholar 

  35. He, K., Zhang, X., Ren, S. & Sun, J. in Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016). This article introduces a deep CNN with residual connections, enabling better performance on computer vision tasks such as classification.

  36. Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019). This study applies MIL to a cohort of 15,000 patients, demonstrating the power of weakly supervised learning at scale.

    Article  Google Scholar 

  37. Shaban, M. et al. Context-aware convolutional neural network for grading of colorectal cancer histology images. IEEE Trans. Med. Imaging 39, 2395–2405 (2020).

    Article  Google Scholar 

  38. Tellez, D. et al. Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43, 567–578 (2019).

    Article  Google Scholar 

  39. Wang, X. et al. Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. 81, 102559 (2022).

    Article  Google Scholar 

  40. Chen, R. J. et al. in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 16144–16155 (IEEE, 2022).

  41. Ciga, O., Xu, T. & Martel, A. L. Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 7, 100198 (2022).

    Google Scholar 

  42. Chen, C.-L. et al. An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning. Nat. Commun. 12, 1193 (2021).

    Article  Google Scholar 

  43. Pinckaers, H., Van Ginneken, B. & Litjens, G. Streaming convolutional neural networks for end-to-end learning with multi-megapixel images. IEEE Trans. Pattern Anal. and Mach. Intell. 44 1581–1590 (2022).

    Article  Google Scholar 

  44. Huang, S.-C. et al. Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings. Nat. Commun. 13, 3347 (2022).

    Article  Google Scholar 

  45. Wulczyn, E. et al. Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE 15, e0233678 (2020).

    Article  Google Scholar 

  46. Wulczyn, E. et al. Interpretable survival prediction for colorectal cancer using deep learning. NPJ Digit. Med. 4, 71 (2021).

    Article  Google Scholar 

  47. Laleh, N. G. et al. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal. 79, 102474 (2022).

    Article  Google Scholar 

  48. Jaume, G., Song, A. & Mahmood, F. Integrating context for superior cancer prognosis. Nat. Biomed. Eng. 6, 1323–1325 (2022).

    Article  Google Scholar 

  49. Taube, J. M. et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod. Pathol. 31, 214–234 (2018).

    Article  Google Scholar 

  50. Pati, P. et al. Hierarchical graph representations in digital pathology. Med. Image Anal. 75, 102264 (2022).

    Article  Google Scholar 

  51. Zhao, Y. et al. in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 4836–4845 (IEEE, 2020).

  52. Adnan, M., Kalra, S. & Tizhoosh H. R. in IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR) 4254–4261 (IEEE, 2020).

  53. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2008).

    Article  Google Scholar 

  54. Gunduz, C., Yener, B. & Gultekin, S. H. The cell graphs of cancer. Bioinformatics 20, i145–i151 (2004).

    Article  Google Scholar 

  55. Chen, R. J. et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41, 757–770 (2022).

    Article  Google Scholar 

  56. Zhou, Y. et al. in IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) 388–398 (IEEE, 2019).

  57. Ahmedt, D. et al. A survey on graph-based deep learning for computational histopathology. Comput. Med. Imaging Graph. 95, 102027 (2022).

    Article  Google Scholar 

  58. Vaswani, A. et al. in Advances in Neural Information Processing Systems (eds Guyon, I. et al.) (Curran Associates, Inc., 2017).

  59. Shao, Z. et al. TransMIL: transformer based correlated multiple instance learning for whole slide image classification. In Advances in Neural Information Processing Systems (eds Beygelzimer, A. et al.) (Curran Associates, Inc., 2021).

  60. Wu, H., Wu, J., Xu, J., Wang, J. & Long, M. in Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 24226–24242 (PMLR, 2022).

  61. Iizuka, O. et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci. Rep. 10, 1504 (2020).

    Article  Google Scholar 

  62. Kalra, S., Adnan, M., Taylor, G. & Tizhoosh, H. R. in European Conference on Computer Vision (eds Vedaldi, A. et al.) 677–693 (Springer, 2020).

  63. Lipkova, J. et al. Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies. Nat. Med. 28, 575–582 (2022).

    Article  Google Scholar 

  64. Sirinukunwattana, K., Alhan, N. K., Verril, C. & Rittscher, J. in International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Frangi, A. F. et al.) 192–200 (Springer, 2018).

  65. Thandiackal, K. et al. in European Conference on Computer Vision (eds Avidan, S. et al.) 699–715 (Springer, 2022).

  66. Katharopoulos, A. & Fleuret, F. in International Conference on Machine Learning (eds Chaudhuri, K. & Salakhutdinov R.) 3282–3291 (PMLR, 2019).

  67. Kong, S. & Henao, R. in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2374–2384 (IEEE/CVF, 2021).

  68. Malon, C., Miller, M., Burger, H. C., Cosatto, E. & Graf, H. P. in Proc. 5th International Conference on Soft Computing as Transdisciplinary Science and Technology 450–456 (ACM, 2008).

  69. Bulten, W. et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Sci. Rep. 9, 864 (2019).

    Article  Google Scholar 

  70. Anklin, V. et al. in International Conference on Medical Image Computing and Computer Assisted Intervention (eds de Bruijne, M. et al.) 636–646 (Springer, 2021).

  71. Chan, L., Hosseini, M. S., Rowsell, C., Plataniotis, K. N. & Damaskinos, S. in Proc. IEEE/CVF International Conference on Computer Vision 10661–10670 (IEEE/CVF, 2019).

  72. Graham, S. et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019). This article proposes a deep learning framework for simultaneous nuclear segmentation and classification from tissue images.

    Article  Google Scholar 

  73. Sirinukunwattana, K. et al. Gland segmentation in colon histology images: the GLAS challenge contest. Med. Image Anal. 35, 489–502 (2017).

    Article  Google Scholar 

  74. Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. in International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Mori, K. et al.) 411–418 (Springer, 2013).

  75. Li, C., Wang, X., Liu, W. & Latecki, L. J. DeepMitosis: mitosis detection via deep detection, verification and segmentation networks. Med. Image Anal. 45, 121–133 (2018).

    Article  Google Scholar 

  76. Long, J., Shelhamer, E. & Darrell, T. in Proc. IEEE Conference on Computer Vision and Pattern Recognition 3431–3440 (IEEE, 2015).

  77. Ronneberger, O., Fischer, P. & Brox, T. in International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Navab, N. et al.) 234–241 (Springer, 2015).

  78. He, K., Gkioxari, G., Dollár, P. & Girshick, R. in Proc. IEEE International Conference on Computer Vision 2980–2988 (IEEE, 2017).

  79. Alemi Koohbanani, N., Jahanifar, M., Zamani Tajadin, N. & Rajpoot, N. NuClick: a deep learning framework for interactive segmentation of microscopic images. Med. Image Anal. 65, 101771 (2020).

    Article  Google Scholar 

  80. Kumar, N. et al. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36, 1550–1560 (2017).

    Article  Google Scholar 

  81. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  Google Scholar 

  82. Han, W., Cheung, A. M., Yaffe, M. J. & Martel, A. L. Cell segmentation for immunofluorescence multiplexed images using two-stage domain adaptation and weakly labeled data for pre-training. Sci. Rep. 12, 4399 (2022).

    Article  Google Scholar 

  83. Martinelli, A. L. & Rapsomaniki, M. A. ATHENA: analysis of tumor heterogeneity from spatial omics measurements. Bioinformatics 38, 3151–3153 (2022).

    Article  Google Scholar 

  84. Tellez, D. et al. H and E stain augmentation improves generalization of convolutional networks for histopathological mitosis detection. In Medical Imaging 2018: Digital Pathology Vol. 10581 (eds Tomaszewski, J. E. & Gurcan, M. N.) (SPIE, 2018).

  85. Zanjani, F. G., Zinger, S., Bejnordi, B. E., van der Laak, J. A. W. M. & de With, P. H. N. in IEEE 15th International Symposium on Biomedical Imaging 573–577 (IEEE, 2018).

  86. Macenko, M. et al. in IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1107–1110 (IEEE, 2009).

  87. Vahadane, A. et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35, 1962–1971 (2016).

    Article  Google Scholar 

  88. Cho, H., Lim, S., Choi, G. & Min, H. Neural stain-style transfer learning using GAN for histopathological images. Preprint at arXiv https://doi.org/10.48550/arXiv.1710.08543 (2017).

  89. Zhou, N., Cai, D., Han, X. & Yao, J. in International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Shen, D. et al.) 694–702 (Springer, 2019).

  90. Kang, H. et al. StainNet: a fast and robust stain normalization network. Front. Med. 8, 746307 (2021).

    Article  Google Scholar 

  91. Ozyoruk, K. B. et al. A deep-learning model for transforming the style of tissue images from cryosectioned to formalin-fixed and paraffin-embedded. Nat. Biomed. Eng. 6, 1407–1419 (2022).

    Article  Google Scholar 

  92. He, B. et al. AI-enabled in silico immunohistochemical characterization for Alzheimer’s disease. Cell Rep. Methods 2, 100191 (2022).

    Article  Google Scholar 

  93. Ghahremani, P. et al. Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification. Nat. Mach. Intell. 4, 401–412 (2022).

    Article  Google Scholar 

  94. Cao, R. et al. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy. Nat. Biomed. Eng. 7, 124–134 (2023).

    Article  Google Scholar 

  95. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. in IEEE International Conference on Computer Vision (ICCV) 2242–2251 (IEEE, 2017).

  96. Park, T., Efros, A. A., Zhang, R. & Zhu, J.-Y. in European Conference on Computer Vision (eds Vedaldi, A. et al.) 319–345 (Springer, 2020).

  97. Vasiljević, J., Nisar, Z., Feuerhake, F., Wemmert, C. & Lampert, T. CycleGAN for virtual stain transfer: is seeing really believing? Artif. Intell. Med. 133, 102420 (2022).

    Article  Google Scholar 

  98. Holzinger, A. et al. Towards the augmented pathologist: challenges of explainable-AI in digital pathology. Preprint at arXiv https://doi.org/10.48550/arXiv.1712.06657 (2017).

  99. Selvaraju, R. R. et al. in IEEE International Conference on Computer Vision 618–626 (IEEE, 2017).

  100. Sundararajan, M., Taly, A. & Yan, Q. in Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 3319–3328 (PMLR, 2017).

  101. Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020).

    Article  Google Scholar 

  102. Chen, R. J. et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 40, 865–878 (2022).

    Article  Google Scholar 

  103. Javed, S. A. et al. in Advances in Neural Information Processing Systems (eds Koyejo, S. et al.) vol. 35, 20689–20702 (Curran Associates, Inc., 2022).

  104. Diao, J. A. et al. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nat. Commun. 12, 1613 (2021).

    Article  Google Scholar 

  105. Jaume, G. et al. Quantifying explainers of graph neural networks in computational pathology. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 8102–8112 (IEEE, 2021).

  106. Tellez, D. et al. Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37, 2126–2136 (2018).

    Article  Google Scholar 

  107. Kapil, A. et al. Deep semi supervised generative learning for automated tumor proportion scoring on NSCLC tissue needle biopsies. Sci. Rep. 8, 17343 (2018).

    Article  Google Scholar 

  108. Swiderska-Chadaj, Z. et al. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 58, 101547 (2019).

    Article  Google Scholar 

  109. Fassler, D. J. et al. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagn. Pathol. 15, 100 (2020).

    Article  Google Scholar 

  110. Naylor, P. et al. Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38, 448–459 (2019).

    Article  Google Scholar 

  111. Widmaier, M. et al. Comparison of continuous measures across diagnostic PD-L1 assays in non-small cell lung cancer using automated image analysis. Mod. Pathol. 33, 380–390 (2020).

    Article  Google Scholar 

  112. Matek, C., Schwarz, S., Spiekermann, K. & Marr, C. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat. Mach. Intell. 1, 538–544 (2019).

    Article  Google Scholar 

  113. Binder, T. et al. Multi-organ gland segmentation using deep learning. Front. Med. 6, 173 (2019).

    Article  Google Scholar 

  114. Fraz, M. M. et al. FABnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer. Neural Comput. Appl. 32, 9915–9928 (2020).

    Article  Google Scholar 

  115. Ing, N. et al. Semantic segmentation for prostate cancer grading by convolutional neural networks. In Medical Imaging 2018: Digital Pathology Vol. 10581 (eds Tomaszewski, J. E. & Gurcan, M. N.) (SPIE, 2018).

  116. Geessink, O. G. F. et al. Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer. Cell. Oncol. 42, 331–341 (2019).

    Article  Google Scholar 

  117. Amgad, M. et al. Report on computational assessment of tumor infiltrating lymphocytes from the international immuno-oncology biomarker working group. NPJ Breast Cancer 6, 16 (2020).

    Article  Google Scholar 

  118. Taylor-Weiner, A. et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH. Hepatology 74, 133–147 (2021).

    Article  Google Scholar 

  119. Heinemann, F. et al. Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies. Sci. Rep. 12, 19236 (2022).

    Article  Google Scholar 

  120. Jaume, G., Pati, P., Anklin, V., Foncubierta, A. & Gabrani, M. in Proc. MICCAI Workshop on Computational Pathology 117–128 (PMLR, 2021).

  121. Ström, P. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232 (2020).

    Article  Google Scholar 

  122. Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).

    Article  Google Scholar 

  123. Ertosun, M. G. & Rubin, D. L. Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. AMIA Annu. Symp. Proc. 2015, 1899–1908 (2015).

    Google Scholar 

  124. Couture, H. D. et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 4, 30 (2018).

    Article  Google Scholar 

  125. Kers, J. et al. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digit. Health 4, 18–26 (2022).

    Article  Google Scholar 

  126. Korbar, B. et al. Deep learning for classification of colorectal polyps on whole-slide images. J. Pathol. Inform. 8, 30 (2017).

    Article  Google Scholar 

  127. Ianni, J. D. et al. Tailored for real-world: a whole slide image classification system validated on uncurated multi-site data emulating the prospective pathology workload. Sci. Rep. 10, 3217 (2020).

    Article  Google Scholar 

  128. Kiani, A. et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digit. Med. 3, 23 (2020).

    Article  Google Scholar 

  129. Janowczyk, A. & Madabhushi, A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7, 29 (2016).

    Article  Google Scholar 

  130. Hollon, T. C. et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. 26, 52–58 (2020).

    Article  Google Scholar 

  131. Chen, P. C. et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat. Med. 25, 1453–1457 (2019).

    Article  Google Scholar 

  132. Gehrung, M. et al. Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat. Med. 27, 833–841 (2021).

    Article  Google Scholar 

  133. Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019). This article presents a method for predicting microsatellite instability from WSIs showing that AI can be used in patient screening.

    Article  Google Scholar 

  134. Bychkov, D. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 3395 (2018).

    Article  Google Scholar 

  135. Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16, e1002730 (2019).

    Article  Google Scholar 

  136. Leo, P. et al. Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study. NPJ Precis. Oncol. 5, 35 (2021).

    Article  MathSciNet  Google Scholar 

  137. Wang, X. et al. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Sci. Rep. 7, 13543 (2017).

    Article  Google Scholar 

  138. Shaban, M. et al. A novel digital score for abundance of tumour infiltrating lymphocytes predicts disease free survival in oral squamous cell carcinoma. Sci. Rep. 9, 13341 (2019).

    Article  Google Scholar 

  139. Kulkarni, P. M. et al. Deep learning based on standard H&E images of primary melanoma tumors identifies patients at risk for visceral recurrence and death. Clin. Cancer Res. 26, 1126–1134 (2020).

    Article  Google Scholar 

  140. Yang, J. et al. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Comput. Struct. Biotechnol. J. 20, 333–342 (2022).

    Article  Google Scholar 

  141. Klimov, S. et al. Predicting metastasis risk in pancreatic neuroendocrine tumors using deep learning image analysis. Front. Oncol. 10, 593211 (2021).

    Article  Google Scholar 

  142. Kleppe, A. et al. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study. Lancet Oncol. 23, 1221–1232 (2022).

    Article  Google Scholar 

  143. Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019).

    Article  Google Scholar 

  144. Saillard, C. et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology 72, 2000–2013 (2020).

    Article  Google Scholar 

  145. Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022).

    Article  Google Scholar 

  146. Roelofsen, L. M., Kaptein, P. & Thommen, D. S. Multimodal predictors for precision immunotherapy. Immunooncol. Technol. 14, 100071 (2022).

    Article  Google Scholar 

  147. Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).

    Article  Google Scholar 

  148. Cheerla, A. & Gevaert, O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35, i446–i454 (2019).

    Article  Google Scholar 

  149. Braman, N. et al. in International Conference on Medical Image Computing and Computer-Assisted Intervention (eds de Bruijne, M. et al.) 667–677 (Springer, 2021).

  150. Chen, R. J. et al. in Proc. IEEE/CVF International Conference on Computer Vision (ICCV) 3995–4005 (IEEE/CVF, 2021).

  151. Foersch, S. et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nat. Med. 29, 430–439 (2023).

    Article  Google Scholar 

  152. Echle, A. et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br. J. Cancer 124, 686–696 (2021).

    Article  Google Scholar 

  153. Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    Article  Google Scholar 

  154. Wang, S. et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur. Respir. J. 53, 1800986 (2019).

    Article  Google Scholar 

  155. Loeffler, C. M. L. et al. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing? Eur. Urol. Focus 8, 472–479 (2022).

    Article  Google Scholar 

  156. Schmauch, B. et al. A deep learning model to predict RNA-seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).

    Article  Google Scholar 

  157. Fremond, S. et al. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts. Lancet Digit. Health 5, e71–e82 (2023).

    Article  Google Scholar 

  158. Hong, R., Liu, W., DeLair, D., Razavian, N. & Fenyö, D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep. Med. 2, 100400 (2021).

    Article  Google Scholar 

  159. Shamai, G. et al. Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer. Nat. Commun. 13, 6753 (2022).

    Article  Google Scholar 

  160. Naik, N. et al. Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains. Nat. Commun. 11, 5727 (2020).

    Article  Google Scholar 

  161. He, B. et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat. Biomed. Eng. 4, 827–834 (2020).

    Article  Google Scholar 

  162. Acosta, P. H. et al. Intratumoral resolution of driver gene mutation heterogeneity in renal cancer using deep learning. Cancer Res. 82, 2792–2806 (2022).

    Article  Google Scholar 

  163. Song, A. H., Williamson, D. F. & Mahmood, F. Investigating morphologic correlates of driver gene mutation heterogeneity via deep learning. Cancer Res. 82, 2672–2673 (2022).

    Article  Google Scholar 

  164. Harder, N. et al. Automatic discovery of image-based signatures for ipilimumab response prediction in malignant melanoma. Sci. Rep. 9, 7449 (2019).

    Article  Google Scholar 

  165. Hu, J. et al. Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images. Transl. Oncol. 14, 100921 (2021).

    Article  Google Scholar 

  166. Berry, S. et al. Analysis of multispectral imaging with the astropath platform informs efficacy of PD-1 blockade. Science 372, eaba2609 (2021).

    Article  Google Scholar 

  167. Johannet, P. et al. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma. Clin. Cancer Res. 27, 131–140 (2021).

    Article  Google Scholar 

  168. Farahmand, S. et al. Deep learning trained on hematoxylin and eosin tumor region of interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer. Mod. Pathol. 35, 44–51 (2022).

    Article  Google Scholar 

  169. Bychkov, D. et al. Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy. Sci. Rep. 11, 4037 (2021).

    Article  Google Scholar 

  170. Li, F. et al. Deep learning-based predictive biomarker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer. J. Transl. Med. 19, 348 (2021).

    Article  Google Scholar 

  171. Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).

    Article  Google Scholar 

  172. Vanguri, R. S. et al. Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer. Nat. Cancer 3, 1151–1164 (2022).

    Article  Google Scholar 

  173. Liu, R. et al. Systematic pan-cancer analysis of mutation–treatment interactions using large real-world clinicogenomics data. Nat. Med. 28, 1656–1661 (2022).

    Article  Google Scholar 

  174. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    Article  Google Scholar 

  175. Niazi, M. K. K., Parwani, A. V. & Gurcan, M. N. Digital pathology and artificial intelligence. Lancet Oncol. 20, e253–e261 (2019).

    Article  Google Scholar 

  176. Kleppe, A. et al. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 21, 199–211 (2021).

    Article  Google Scholar 

  177. Van der Laak, J., Litjens, G. & Ciompi, F. Deep learning in histopathology: the path to the clinic. Nat. Med. 27, 775–784 (2021).

    Article  Google Scholar 

  178. Baxi, V., Edwards, R., Montalto, M. & Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 35, 23–32 (2022).

    Article  Google Scholar 

  179. Hedge, N. et al. Similar image search for histopathology: SMILY. NPJ Digit. Med. 2, 56 (2019).

    Article  Google Scholar 

  180. Kalra, S. et al. Yottixel — an image search engine for large archives of histopathology whole slide images. Med. Image Anal. 65, 101757 (2020).

    Article  Google Scholar 

  181. Chen, C. et al. Fast and scalable search of whole-slide images via self-supervised deep learning. Nat. Biomed. Eng. 6, 1420–1434 (2022).

    Article  Google Scholar 

  182. Lipkova, J. et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40, 1095–1110 (2022).

    Article  Google Scholar 

  183. Singer, D. S. A new phase of the Cancer Moonshot to end cancer as we know it. Nat. Med. 28, 1345–1347 (2022).

    Article  Google Scholar 

  184. Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat. Methods 19, 1490–1499 (2022).

    Article  Google Scholar 

  185. Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 1, 0084 (2017).

    Article  Google Scholar 

  186. Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology. Nat. Biomed. Eng. 1, 957–966 (2017).

    Article  Google Scholar 

  187. Katsamenis, O. L. et al. X-ray micro-computed tomography for nondestructive three-dimensional (3D) X-ray histology. Am. J. Pathol. 189, 1608–1620 (2019).

    Article  Google Scholar 

  188. Xie, W. et al. Prostate cancer risk stratification via non-destructive 3D pathology with deep learning assisted gland analysis. Cancer Res. 82, 334–345 (2022).

    Article  Google Scholar 

  189. Allam, M., Cai, S. & Coskun, A. F. Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precis. Oncol. 4, 11 (2020).

    Article  Google Scholar 

  190. Wu, Z. et al. Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens. Nat. Biomed. Eng. 6, 1435–1448 (2022).

    Article  Google Scholar 

  191. Wang, Y. et al. Cell graph neural networks enable the precise prediction of patient survival in gastric cancer. NPJ Precis. Oncol. 6, 45 (2022).

    Article  Google Scholar 

  192. Lu, M. Y., Sater, H. A. & Mahmood, F. Multiplex computational pathology for treatment response prediction. Cancer Cell 39, 1053–1055 (2021).

    Article  Google Scholar 

  193. Price, W. N. & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43 (2019).

    Article  Google Scholar 

  194. Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat. Cancer 3, 1026–1038 (2022).

    Article  Google Scholar 

  195. Zhang, A., Xing, L., Zou, J. & Wu, J. C. Shifting machine learning for healthcare from development to deployment and from models to data. Nat. Biomed. Eng. 6, 1330–1345 (2022).

    Article  Google Scholar 

  196. Lu, M. Y. et al. Federated learning for computational pathology on gigapixel whole slide images. Med. Image Anal. 76, 102298 (2022).

    Article  Google Scholar 

  197. Adnan, M., Kalra, S., Cresswell, J. C., Taylor, G. W. & Tizhoosh, H. R. Federated learning and differential privacy for medical image analysis. Sci. Rep. 12, 1953 (2022).

    Article  Google Scholar 

  198. Ogier du Terrail, J. et al. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nat. Med. 29, 135–146 (2023).

    Article  Google Scholar 

  199. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019).

    Article  Google Scholar 

  200. Saldanha, O. L. et al. Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 28, 1232–1239 (2022).

    Article  Google Scholar 

  201. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  Google Scholar 

  202. Seyyed-Kalantari, L., Zhang, H., McDermott, M., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

    Article  Google Scholar 

  203. Ricci Lara, M. A., Echeveste, R. & Ferrante, E. Addressing fairness in artificial intelligence for medical imaging. Nat. Commun. 13, 4581 (2022).

    Article  Google Scholar 

  204. Chen, R. J. et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).

    Article  Google Scholar 

  205. Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. & Mahmood, F. Synthetic data in machine learning for medicine and healthcare. Nat. Biomed. Eng. 5, 493–497 (2021).

    Article  Google Scholar 

  206. Krasanakis, E., Spyromitros-Xioufis, E., Papadopoulos, S. & Kompatsiaris, Y. in Proc. 2018 World Wide Web Conference 853–862 (2018).

  207. Jiang, H. & Nachum, O. in Proc. Twenty Third International Conference on Artificial Intelligence and Statistics (eds Chiappa, S. & Calandra, R.) 702–712 (PMLR, 2020).

  208. Li, B., Li, Y. & Eliceiri, K. W. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. Conf. Comput. Vis. Pattern Recognit. Workshops 2021, 14318–14328 (2021).

    Google Scholar 

  209. Huang, Z. et al. in International Conference on Medical Image Computing and Computer-Assisted Intervention (eds de Bruijne, M. et al.) 561–570 (Springer, 2021).

  210. Abbet, C., Zlobec, I., Bozorgtabar, B. & Thiran, J.-P. in International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Martel, A. L. et al.) 480–489 (Springer, 2020).

  211. Kang, M. et al. in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 3344–3354 (IEEE, 2023).

  212. Azizi, S. et al. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat. Biomed. Eng. 7, 756–779 (2023).

    Article  Google Scholar 

  213. He, K. et al. Masked autoencoders are scalable vision learners. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 15979–15988 (2022).

  214. Lu, M. Y. et al. in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19764–19775 (IEEE, 2023).

  215. Tellez, D. et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019).

    Article  Google Scholar 

  216. Howard, F. M. et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat. Commun. 12, 4423 (2021).

    Article  Google Scholar 

  217. Fort, S., Hu, H. & Lakshminarayanan, B. Deep ensembles: a loss landscape perspective. Preprint at arXiv https://doi.org/10.48550/arXiv.1912.02757 (2019).

  218. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. in Proc. 34th International Conference on Machine Learning 1321–1330 (PMLR, 2017).

  219. Pocevičiūtė, M., Eilertsen, G., Jarkman, S. & Lundström, C. Generalisation effects of predictive uncertainty estimation in deep learning for digital pathology. Sci. Rep. 12, 8329 (2022).

    Article  Google Scholar 

  220. Dolezal, J. M. et al. Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology. Nat. Commun. 13, 6572 (2022).

    Article  Google Scholar 

  221. Linmans, J., Elfwing, S., van der Laak, J. & Litjens, G. Predictive uncertainty estimation for out-of-distribution detection in digital pathology. Med. Image Anal. 83, 102655 (2023).

    Article  Google Scholar 

  222. Olsson, H. et al. Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction. Nat. Commun. 13, 7761 (2022).

    Article  Google Scholar 

  223. Castro, D. C., Walker, I. & Glocker, B. Causality matters in medical imaging. Nat. Commun. 11, 3673 (2020).

    Article  Google Scholar 

  224. Roux, L. et al. Mitosis detection in breast cancer histological images an ICPR 2012 contest. J. Pathol. Inform. 4, 8 (2013).

    Article  Google Scholar 

  225. Veta, M. et al. Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019).

    Article  Google Scholar 

  226. Aubreville, M. et al. Mitosis domain generalization in histopathology images - the MIDOG challenge. Med. Image Anal. 84, 102699 (2023).

    Article  Google Scholar 

  227. Bandi, P. et al. From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge. IEEE Trans. Med. Imaging 38, 550–560 (2018).

    Article  Google Scholar 

  228. Aresta, G. et al. BACH: Grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019).

    Article  Google Scholar 

  229. Verma, R. et al. MoNuSAC2020: a multi-organ nuclei segmentation and classification challenge. IEEE Trans. Med. Imaging 40, 3413–3423 (2021).

    Article  Google Scholar 

  230. Moulin, P., Grünberg, K., Barale-Thomas, E. & der Laak, J. V. IMI — Bigpicture: a central repository for digital pathology. Toxicol. Pathol. 49, 711–713 (2021).

    Article  Google Scholar 

  231. Jennings, C. N. et al. Bridging the gap with the UK genomics pathology imaging collection. Nat. Med. 28, 1107–1108 (2022).

    Article  Google Scholar 

  232. Wagner, S. J. et al. Make deep learning algorithms in computational pathology more reproducible and reusable. Nat. Med. 28, 1744–1746 (2022).

    Article  Google Scholar 

  233. Gilbert, B. et al. Openslide. GitHub https://github.com/openslide/openslide-python/ (2020).

  234. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  Google Scholar 

  235. Rosenthal, J. et al. Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the pathML toolkit for computational pathology. Mol. Cancer Res. 20, 202–206 (2022).

    Article  Google Scholar 

  236. Beezley, J. et al. Histomicstk. GitHub https://github.com/DigitalSlideArchive/HistomicsTK (2021).

  237. Pocock, J. et al. TIAToolbox as an end-to-end library for advanced tissue image analytics. Commun. Med. 2, 120 (2022).

    Article  Google Scholar 

  238. Raciti, P. et al. Clinical validation of artificial intelligence — augmented pathology diagnosis demonstrates significant gains in diagnostic accuracy in prostate cancer detection. Arch. Pathol. Lab. Med. (2022).

  239. Lennerz, J. K., Green, U., Williamson, D. F. & Mahmood, F. A unifying force for the realization of medical AI. NPJ Digit. Med. 5, 172 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. J. Chen for feedback on the manuscript and K. Yost for helping with the figures. This work was supported in part by the National Institute of General Medical Sciences (NIGMS) R35GM138216 (to F.M.), Brigham President’s Fund, Brigham and Women’s Hospital (BWH) and Massachusetts General Hospital (MGH) Pathology, BWH Precision Medicine Program. M.Y.L. was additionally supported by the Tau Beta Pi Fellowship and the Siebel Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.H.S., G.J. and F.M. contributed to conceptualization and outlining the review. All authors contributed to writing, reviewing and editing. F.M. supervised the project.

Corresponding author

Correspondence to Faisal Mahmood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Håvard Danielsen, who co-reviewed with Andreas Kleppe; Tingying Peng, who co-reviewed with Sophia Wagner; and Amaro Taylor-Weiner, who co-reviewed with Archit Khosla, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Artificial Intelligence and Machine Learning Software as a Medical Device Action Plan: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, A.H., Jaume, G., Williamson, D.F.K. et al. Artificial intelligence for digital and computational pathology. Nat Rev Bioeng 1, 930–949 (2023). https://doi.org/10.1038/s44222-023-00096-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00096-8

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics