Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rewiring photosynthetic electron transport chains for solar energy conversion

Abstract

Photosynthetic organisms have evolved versatile electron transport chains that efficiently convert solar energy into chemical energy. Researchers can engineer these electron transport pathways to drive new-to-nature processes in a class of systems we term ‘rewired photosynthetic electron transport chains’ (R-PETCs). R-PETCs can be used for the light-driven production of electricity or chemicals and exhibit numerous advantages over the synthetic systems widely used for these applications, including enhanced stability, versatility and sustainability. In this Review, we summarize the current state of R-PETC research, highlighting major advances alongside outstanding research problems. We also provide descriptions of R-PETC development, outlining the different classes of R-PETCs, the research tools used in their construction and the key design considerations important for achieving high performances. Finally, we identify future avenues for R-PETC research that we expect will enhance performances sufficiently to make these systems suitable for different real-world applications.

Key points

  • Photosynthetic organisms use solar energy to generate high-energy electrons through their photosynthetic electron transport chains.

  • Electrons from different photosynthetic electron transport chains can be rewired to new-to-nature pathways, creating biotechnologies for solar-powered electricity generation and chemical synthesis.

  • Rewiring can be achieved using various biological and artificial components, including electrodes, electron mediators, polymers, redox proteins, enzymes and other organisms.

  • This biological approach to solar energy conversion is versatile, sustainable and long-lasting, although further advances in performance are required to attain real-world applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rewiring PETCs.
Fig. 2: Diversity of photosynthetic electron transport in phototrophic organisms.
Fig. 3: Biological strategies for rewiring PETCs.
Fig. 4: Semi-artificial strategies for rewiring PETCs.
Fig. 5: Applications of R-PETCs.
Fig. 6: Performance of R-PETCs compared to alternative solar energy technologies.

Similar content being viewed by others

References

  1. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Wiley, 2021).

  2. Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1857, 247–255 (2016).

    Article  Google Scholar 

  3. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  Google Scholar 

  4. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    Article  Google Scholar 

  5. Kato, N. et al. Solar fuel production from CO2 using a 1 m-square-sized reactor with a solar-to-formate conversion efficiency of 10.5%. ACS Sustain. Chem. Eng. 9, 16031–16037 (2021).

    Article  Google Scholar 

  6. Andrei, V. et al. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 608, 518–522 (2022).

    Article  Google Scholar 

  7. Wey, L. T. et al. The development of biophotovoltaic systems for power generation and biological analysis. ChemElectroChem 6, 5375–5386 (2019).

    Article  Google Scholar 

  8. Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    Article  Google Scholar 

  9. Dong, F., Lee, Y. S., Gaffney, E. M., Liou, W. & Minteer, S. D. Engineering cyanobacterium with transmembrane electron transfer ability for bioelectrochemical nitrogen fixation. ACS Catal. 11, 13169–13179 (2021).

    Article  Google Scholar 

  10. Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).

    Article  Google Scholar 

  11. Teodor, A. H. & Bruce, B. D. Putting photosystem I to work: truly green energy. Trends Biotechnol. 38, 1329–1342 (2020).

    Article  Google Scholar 

  12. Schmermund, L. et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 9, 4115–4144 (2019).

    Article  Google Scholar 

  13. Utschig, L. M., Soltau, S. R., Mulfort, K. L., Niklas, J. & Poluektov, O. G. Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes. Chem. Sci. 9, 8504–8512 (2018).

    Article  Google Scholar 

  14. Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

    Article  Google Scholar 

  15. Chen, X. et al. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 21, 811–818 (2022).

    Article  MathSciNet  Google Scholar 

  16. Jurkaš, V. et al. Transmembrane shuttling of photosynthetically produced electrons to propel extracellular biocatalytic redox reactions in a modular fashion. Angew. Chem. Int. Ed. 61, e202207971 (2022).

    Article  Google Scholar 

  17. Miller, T. E. et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 368, 649–654 (2020).

    Article  Google Scholar 

  18. Bradley, R. W., Bombelli, P., Lea-Smith, D. J. & Howe, C. J. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys. Chem. Chem. Phys. 15, 13611–13618 (2013).

    Article  Google Scholar 

  19. Jokel, M., Nagy, V., Tóth, S. Z., Kosourov, S. & Allahverdiyeva, Y. Elimination of the flavodiiron electron sink facilitates long-term H2 photoproduction in green algae. Biotechnol. Biofuels 12, 280 (2019).

    Article  Google Scholar 

  20. Mellor, S. B. et al. Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis. ACS Chem. Biol. 11, 1862–1869 (2016).

    Article  Google Scholar 

  21. Wood, P. M. & Bendall, D. S. The reduction of plastocyanin by plastoquinol-1 in the presence of chloroplasts. Eur. J. Biochem. 61, 337–344 (1976).

    Article  Google Scholar 

  22. Grattieri, M. Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochem. Photobiol. Sci. 19, 424–435 (2020).

    Article  Google Scholar 

  23. Clifford, E. R. et al. Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems. Chem. Sci. 12, 3328–3338 (2021).

    Article  Google Scholar 

  24. Schuergers, N., Werlang, C., Ajo-Franklin, C. M. & Boghossian, A. A. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci. 10, 1102–1115 (2017).

    Article  Google Scholar 

  25. Zerfaß, C., Chen, J. & Soyer, O. S. Engineering microbial communities using thermodynamic principles and electrical interfaces. Curr. Opin. Biotechnol. 50, 121–127 (2018).

    Article  Google Scholar 

  26. Huang, Q., Jiang, F., Wang, L. & Yang, C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3, 318–329 (2017).

    Article  Google Scholar 

  27. Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, 20193325 (2020).

    Article  Google Scholar 

  28. Anam, M., Gomes, H. I., Rivers, G., Gomes, R. L. & Wildman, R. Evaluation of photoanode materials used in biophotovoltaic systems for renewable energy generation. Sustain. Energy Fuels 5, 4209–4232 (2021).

    Article  Google Scholar 

  29. Zhang, J. Z. et al. Photoelectrochemistry of photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).

    Article  Google Scholar 

  30. Zhou, X. et al. Conducting polymers–thylakoid hybrid materials for water oxidation and photoelectric conversion. Adv. Electron. Mater. 5, 1800789 (2019).

    Article  Google Scholar 

  31. Hasan, K. et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676–24680 (2014).

    Article  Google Scholar 

  32. Longatte, G. et al. Investigation of photocurrents resulting from a living unicellular algae suspension with quinones over time. Chem. Sci. 9, 8271–8281 (2018).

    Article  Google Scholar 

  33. Hasan, K. et al. Photoelectrochemical communication between thylakoid membranes and gold electrodes through different quinone derivatives. ChemElectroChem 1, 131–139 (2014).

    Article  Google Scholar 

  34. Kuruvinashetti, K., Pakkiriswami, S. & Packirisamy, M. Gold nanoparticle interaction in algae enhancing quantum efficiency and power generation in microphotosynthetic power cells. Adv. Energy Sustain. Res. 3, 2100135 (2022).

    Article  Google Scholar 

  35. Krieger-Liszkay, A. & Shimakawa, G. Regulation of the generation of reactive oxygen species during photosynthetic electron transport. Biochem. Soc. Trans. 50, 1025–1034 (2022).

    Article  Google Scholar 

  36. Bombelli, P. et al. Powering a microprocessor by photosynthesis. Energy Environ. Sci. 15, 2529–2536 (2022).

    Article  Google Scholar 

  37. Wey, L. T. et al. A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochim. Acta 395, 139214 (2021).

    Article  Google Scholar 

  38. Altamura, E. et al. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. Proc. Natl Acad. Sci. USA 118, e2012170118 (2021).

    Article  Google Scholar 

  39. Pinhassi, R. I. et al. Photosynthetic membranes of Synechocystis or plants convert sunlight to photocurrent through different pathways due to different architectures. PLoS One 10, e0122616 (2015).

    Article  Google Scholar 

  40. Hasan, K. et al. Photobioelectrocatalysis of intact chloroplasts for solar energy conversion. ACS Catal. 7, 2257–2265 (2017).

    Article  Google Scholar 

  41. Zhang, H., Catania, R. & Jeuken, L. J. C. Membrane protein modified electrodes in bioelectrocatalysis. Catalysts 10, 13290–13298 (2020).

    Article  Google Scholar 

  42. Rasmussen, M. & Minteer, S. D. Investigating the mechanism of thylakoid direct electron transfer for photocurrent generation. Electrochim. Acta 126, 68–73 (2014).

    Article  Google Scholar 

  43. Bombelli, P. et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 4, 4690–4698 (2011).

    Article  Google Scholar 

  44. Pankratov, D., Pankratova, G. & Gorton, L. Thylakoid membrane-based photobioelectrochemical systems: achievements, limitations, and perspectives. Curr. Opin. Electrochem. 19, 49–54 (2020).

    Article  Google Scholar 

  45. Croce, R. & Van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    Article  Google Scholar 

  46. Oliver, T., Sánchez-Baracaldo, P., Larkum, A. W., Rutherford, A. W. & Cardona, T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochim. Biophys. Acta Bioenerg. 1862, 148400 (2021).

    Article  Google Scholar 

  47. Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).

    Article  Google Scholar 

  48. Joliot, P. & Johnson, G. N. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl Acad. Sci. USA 108, 13317–13322 (2011).

    Article  Google Scholar 

  49. Miller, N. T., Vaughn, M. D. & Burnap, R. L. Electron flow through NDH-1 complexes is the major driver of cyclic electron flow-dependent proton pumping in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1862, 148354 (2021).

    Article  Google Scholar 

  50. Puggioni, V., Tempel, S. & Latifi, A. Distribution of hydrogenases in cyanobacteria: a phylum-wide genomic survey. Front. Genet. 7, 223 (2016).

    Article  Google Scholar 

  51. Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).

    Article  Google Scholar 

  52. Nürnberg, D. J. et al. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 360, 1210–1213 (2018).

    Article  Google Scholar 

  53. Wichmann, J. et al. Engineering biocatalytic solar fuel production: the PHOTOFUEL consortium. Trends Biotechnol. 39, 323–327 (2021).

    Article  Google Scholar 

  54. Jones, M. R. The petite purple photosynthetic powerpack. Biochem. Soc. Trans. 37, 400–407 (2009).

    Article  Google Scholar 

  55. Xin, Y. et al. Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nat. Commun. 9, 1568 (2018).

    Article  Google Scholar 

  56. Swainsbury, D. J. K. et al. Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Sci. Adv. 7, eabe2631 (2021).

    Article  Google Scholar 

  57. Oh-oka, H., Harada, J. & Azai, C. in Encyclopedia of Biological Chemistry: Third Edition Vol. 2 333–351 (Elsevier, 2021).

  58. George, D. M., Vincent, A. S. & Mackey, H. R. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable resource recovery. Biotechnol. Rep. 28, e00563 (2020).

    Article  Google Scholar 

  59. LaSarre, B. et al. Restricted localization of photosynthetic intracytoplasmic membranes (ICMs) in multiple genera of purple nonsulfur bacteria. mBio 9, e00780-18 (2018).

    Article  Google Scholar 

  60. Gaisin, V. A., Kooger, R., Grouzdev, D. S., Gorlenko, V. M. & Pilhofer, M. Cryo-electron tomography reveals the complex ultrastructural organization of multicellular filamentous chloroflexota (Chloroflexi) bacteria. Front. Microbiol. 11, 1373 (2020).

    Article  Google Scholar 

  61. Capson-Tojo, G. et al. Purple phototrophic bacteria for resource recovery: challenges and opportunities. Biotechnol. Adv. 43, 107567 (2020).

    Article  Google Scholar 

  62. Tang, K. H., Tang, Y. J. & Blankenship, R. E. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front. Microbiol. 2, 165 (2011).

    Article  Google Scholar 

  63. Herter, S. M., Kortlüke, C. M. & Drews, G. Complex I of Rhodobacter capsulatus and its role in reverted electron transport. Arch. Microbiol. 169, 98–105 (1998).

    Article  Google Scholar 

  64. Gisriel, C. et al. Structure of a symmetric photosynthetic reaction center-photosystem. Science 357, 1021–1025 (2017).

    Article  Google Scholar 

  65. Chen, J. H. et al. Architecture of the photosynthetic complex from a green sulfur bacterium. Science 370, eabb6350 (2020).

    Article  Google Scholar 

  66. Leung, S. W., Baker, P. L. & Redding, K. E. Deletion of the cytochrome bc complex from Heliobacterium modesticaldum results in viable but non-phototrophic cells. Photosynth. Res. 148, 137–152 (2021).

    Article  Google Scholar 

  67. Kudryashev, M., Aktoudianaki, A., Dedoglou, D., Stahlberg, H. & Tsiotis, G. The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography. Biochim. Biophys. Acta Bioenerg. 1837, 1635–1642 (2014).

    Article  Google Scholar 

  68. Costas, A. M. G. et al. Ultrastructural analysis and identification of envelope proteins of ‘Candidatus chloracidobacterium thermophilum’ chlorosomes. J. Bacteriol. 193, 6701–6711 (2011).

    Article  Google Scholar 

  69. Orf, G. S., Gisriel, C. & Redding, K. E. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. Photosynth. Res. 138, 11–37 (2018).

    Article  Google Scholar 

  70. Hou, N. et al. H2S biotreatment with sulfide-oxidizing heterotrophic bacteria. Biodegradation 29, 511–524 (2018).

    Article  Google Scholar 

  71. Kimble-Long, L. K. & Madigan, M. T. Molecular evidence that the capacity for endosporulation is universal among phototrophic heliobacteria. FEMS Microbiol. Lett. 199, 191–195 (2001).

    Article  Google Scholar 

  72. Grattieri, M., Rhodes, Z., Hickey, D. P., Beaver, K. & Minteer, S. D. Understanding biophotocurrent generation in photosynthetic purple bacteria. ACS Catal. 9, 867–873 (2019).

    Article  Google Scholar 

  73. Kawaichi, S. et al. Anodic and cathodic extracellular electron transfer by the filamentous bacterium Ardenticatena maritima 110S. Front. Microbiol. 9, 68 (2018).

    Article  Google Scholar 

  74. Badalamenti, J. P., Torres, C. I. & Krajmalnik-Brown, R. Light-responsive current generation by phototrophically enriched anode biofilms dominated by green sulfur bacteria. Biotechnol. Bioeng. 110, 1020–1027 (2013).

    Article  Google Scholar 

  75. Mehta-Kolte, M. G. & Bond, D. R. Geothrix fermentans secretes two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl. Environ. Microbiol. 78, 6987 (2012).

    Article  Google Scholar 

  76. Hasan, K. et al. Photoelectrochemical wiring of Paulschulzia pseudovolvox (algae) to osmium polymer modified electrodes for harnessing solar energy. Adv. Energy Mater. 5, 1501100 (2015).

    Article  Google Scholar 

  77. Laohavisit, A. et al. Enhancing plasma membrane NADPH oxidase activity increases current output by diatoms in biophotovoltaic devices. Algal Res. 12, 91–98 (2015).

    Article  Google Scholar 

  78. Li, X., Liu, T., Wang, K. & Waite, T. D. Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina. Environ. Sci. Technol. 49, 1392–1399 (2015).

    Article  Google Scholar 

  79. Saper, G. et al. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat. Commun. 9, 2168(2018).

    Article  Google Scholar 

  80. Hatano, J. et al. NADPH production in dark stages is critical for cyanobacterial photocurrent generation: a study using mutants deficient in oxidative pentose phosphate pathway. Photosynth. Res. 153, 113–120 (2022).

    Article  Google Scholar 

  81. Kusama, S. et al. Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation. Nat. Commun. 13, 3067 (2022).

    Article  Google Scholar 

  82. Gupta, D. et al. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio 10, e02668-19 (2019).

    Article  Google Scholar 

  83. Manchon, C., Muniesa-Merino, F., Llorente, M. & Esteve-Núñez, A. Microbial photoelectrosynthesis: feeding purple phototrophic bacteria electricity to produce bacterial biomass. Microb. Biotechnol. 16, 569–578 (2022).

    Article  Google Scholar 

  84. Ha, P. T. et al. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat. Commun. 8, 13924 (2017).

    Article  Google Scholar 

  85. Dawiec-Liśniewska, A. et al. New trends in biotechnological applications of photosynthetic microorganisms. Biotechnol. Adv. 59, 107988 (2022).

    Article  Google Scholar 

  86. Ducat, D. C., Sachdeva, G. & Silver, P. A. Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc. Natl Acad. Sci. USA 108, 3941–3946 (2011).

    Article  Google Scholar 

  87. Liu, D., Liberton, M., Yu, J., Pakrasi, H. B. & Bhattacharyya-Pakrasi, M. Engineering nitrogen fixation activity in an oxygenic phototroph. mBio 9, e01029-18 (2018).

    Article  Google Scholar 

  88. Li, T. et al. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nat. Commun. 11, 5448 (2020).

    Article  Google Scholar 

  89. Saar, K. L. et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nat. Energy 3, 75–81 (2018).

    Article  Google Scholar 

  90. Thiel, K. et al. Redirecting photosynthetic electron flux in the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of flavodiiron protein Flv3. Microb. Cell Fact. 18, 189 (2019).

    Article  Google Scholar 

  91. Hitchcock, A. et al. Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll-protein complex. ACS Synth. Biol. 5, 948–954 (2016).

    Article  Google Scholar 

  92. Belsare, K. D. et al. Directed evolution of P450cin for mediated electron transfer. Protein Eng. Des. Sel. 30, 119–127 (2017).

    Article  Google Scholar 

  93. Makita, H. & Hastings, G. Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency. Proc. Natl Acad. Sci. USA 114, 9267–9272 (2017).

    Article  Google Scholar 

  94. Fu, H.-Y. et al. Redesigning the QA binding site of photosystem II allows reduction of exogenous quinones. Nat. Commun. 8, 15274 (2017).

    Article  Google Scholar 

  95. Bouzon, M. et al. Change in cofactor specificity of oxidoreductases by adaptive evolution of an Escherichia coli NADPH-auxotrophic strain. mBio 12, e00329-21 (2021).

    Article  Google Scholar 

  96. Aliverti, A. & Zanetti, G. A three-domain iron-sulfur flavoprotein obtained through gene fusion of ferredoxin and ferredoxin-NADP+ reductase from spinach leaves. Biochemistry 36, 14771–14777 (1997).

    Article  Google Scholar 

  97. Yacoby, I. et al. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc. Natl Acad. Sci. USA 108, 9396–9401 (2011).

    Article  Google Scholar 

  98. Appel, J., Hueren, V., Boehm, M. & Gutekunst, K. Cyanobacterial in vivo solar hydrogen production using a photosystem I–hydrogenase (PsaD-HoxYH) fusion complex. Nat. Energy 5, 458–467 (2020).

    Article  Google Scholar 

  99. Kanygin, A. et al. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H2 in vivo. Energy Environ. Sci. 13, 2903–2914 (2020).

    Article  Google Scholar 

  100. Lassen, L. M. et al. Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002: evidence for light-driven biosynthesis. PLoS One 9, e102184 (2014).

    Article  Google Scholar 

  101. Wang, P. et al. In vivo assembly of photosystem I-hydrogenase chimera for in vitro photoH2 production. Adv. Energy Mater 13, 2203232 (2023).

    Article  Google Scholar 

  102. Ueki, T. et al. An Escherichia coli chassis for production of electrically conductive protein nanowires. ACS Synth. Biol. 9, 647–654 (2020).

    Article  Google Scholar 

  103. Zhu, H. et al. A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nat. Commun. 13, 5608 (2022).

    Article  Google Scholar 

  104. Zhu, H. et al. Development of a longevous two-species biophotovoltaics with constrained electron flow. Nat. Commun. 10, 4282 (2019).

    Article  Google Scholar 

  105. Yu, W. et al. Solar-powered multi-organism symbiont mimic system for beyond natural synthesis of polypeptides from CO2 and N2. Sci. Adv. 9, eadf6772 (2023).

    Article  Google Scholar 

  106. Hays, S. G., Yan, L. L. W., Silver, P. A. & Ducat, D. C. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J. Biol. Eng. 11, 4 (2017).

    Article  Google Scholar 

  107. Zuñiga, C. et al. Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nat. Commun. 11, 3803 (2020).

    Article  Google Scholar 

  108. McCarty, N. S. & Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 37, 181–197 (2019).

    Article  Google Scholar 

  109. Kazamia, E., Aldridge, D. C. & Smith, A. G. Synthetic ecology — a way forward for sustainable algal biofuel production? J. Biotechnol. 162, 163–169 (2012).

    Article  Google Scholar 

  110. Nass, M. M. K. Uptake of isolated chloroplasts by mammalian cells. Science 165, 1128–1131 (1969).

    Article  Google Scholar 

  111. Cournoyer, J. E. et al. Engineering artificial photosynthetic life-forms through endosymbiosis. Nat. Commun. 13, 2254 (2022).

    Article  Google Scholar 

  112. McCormick, A. J. et al. Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energy Environ. Sci. 6, 2682–2690 (2013).

    Article  Google Scholar 

  113. Calkins, J. O., Umasankar, Y., O’Neill, H. & Ramasamy, R. P. High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 6, 1891–1900 (2013).

    Article  Google Scholar 

  114. Adachi, T., Kataoka, K., Kitazumi, Y., Shirai, O. & Kano, K. A bio-solar cell with thylakoid membranes and bilirubin oxidase. Chem. Lett. 48, 686–689 (2019).

    Article  Google Scholar 

  115. Lewis, C. M. et al. Electrochemically driven photosynthetic electron transport in cyanobacteria lacking photosystem II. J. Am. Chem. Soc. 144, 2933–2942 (2022).

    Article  Google Scholar 

  116. Wenzel, T., Härtter, D., Bombelli, P., Howe, C. J. & Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 9, 1299 (2018).

    Article  Google Scholar 

  117. Karthikeyan, C. et al. Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the green energy generation of Chlorella vulgaris mediated biophotovoltaic cells. Environ. Prog. Sustain. Energy 38, e13262 (2019).

    Article  Google Scholar 

  118. Aleksejeva, O., Nilsson, N., Genevskiy, V., Thulin, K. & Shleev, S. Dual-feature photobioanodes based on nanoimprint lithography for photoelectric biosupercapacitors. J. Power Sources 517, 230677 (2022).

    Article  Google Scholar 

  119. Ryu, D. et al. Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. Nanomaterials 8, 189 (2018).

    Article  Google Scholar 

  120. Fang, X. et al. Structure-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).

    Article  Google Scholar 

  121. Kim, Y. J. et al. 3D Printing of thylakoid-PEDOT:PSS composite electrode for bio-photoelectrochemical cells. ACS Appl. Energy Mater. 6, 773–781 (2023).

    Article  Google Scholar 

  122. Mevers, E. et al. An elusive electron shuttle from a facultative anaerobe. eLife 8, e48054 (2019).

    Article  Google Scholar 

  123. Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).

    Article  Google Scholar 

  124. Dietrich, L. E. P., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006).

    Article  Google Scholar 

  125. Bunea, A. I. et al. Micropatterned carbon-on-quartz electrode chips for photocurrent generation from thylakoid membranes. ACS Appl. Energy Mater. 1, 3313–3322 (2018).

    Article  Google Scholar 

  126. McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015).

    Article  Google Scholar 

  127. Shlosberg, Y. et al. NADPH performs mediated electron transfer in cyanobacterial-driven bio-photoelectrochemical cells. iScience 24, 101892 (2021).

    Article  Google Scholar 

  128. Baikie, T. K. et al. Photosynthesis re-wired on the pico-second timescale. Nature 615, 836–840 (2023).

    Article  Google Scholar 

  129. Sayegh, A. et al. Finding adapted quinones for harvesting electrons from photosynthetic algae suspensions. ChemElectroChem 8, 2968–2978 (2021).

    Article  Google Scholar 

  130. Pochon, A. et al. Photochemical oxidation of water by 2-methyl-1,4-benzoquinone: evidence against the formation of free hydroxyl radical. J. Phys. Chem. A 106, 2889–2894 (2002).

    Article  Google Scholar 

  131. Tentscher, P. R. et al. Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. Water Res. 202, 117415 (2021).

    Article  Google Scholar 

  132. Weliwatte, N. S., Grattieri, M. & Minteer, S. D. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem. Photobiol. Sci. 20, 1333–1356 (2021).

    Article  Google Scholar 

  133. Longatte, G., Rappaport, F., Wollman, F. A., Guille-Collignon, M. & Lemaître, F. Electrochemical harvesting of photosynthetic electrons from unicellular algae population at the preparative scale by using 2,6-dichlorobenzoquinone. Electrochim. Acta 236, 337–342 (2017).

    Article  Google Scholar 

  134. Gemünde, A., Lai, B., Pause, L., Krömer, J. & Holtmann, D. Redox mediators in microbial electrochemical systems. ChemElectroChem 9, e202200216 (2022).

    Article  Google Scholar 

  135. Ruff, A. Redox polymers in bioelectrochemistry: common playgrounds and novel concepts. Curr. Opin. Electrochem. 5, 66–73 (2017).

    Article  Google Scholar 

  136. Liu, L. & Choi, S. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip applications. Lab Chip 17, 3817–3825 (2017).

    Article  Google Scholar 

  137. Weliwatte, N. S., Grattieri, M., Simoska, O., Rhodes, Z. & Minteer, S. D. Unbranched hybrid conducting redox polymers for intact chloroplast-based photobioelectrocatalysis. Langmuir 37, 7821–7833 (2021).

    Article  Google Scholar 

  138. Tanaka, K. et al. Specific interaction between redox phospholipid polymers and plastoquinone in photosynthetic electron transport chain. ChemPhysChem 18, 878–881 (2017).

    Article  Google Scholar 

  139. Antonucci, A. et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. Nat. Nanotechnol. 17, 1111–1119 (2022).

    Article  Google Scholar 

  140. McCormick, A. J. et al. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 4, 4699–4709 (2011).

    Article  Google Scholar 

  141. Hong, H. et al. Enhanced interfacial electron transfer between thylakoids and RuO2 nanosheets for photosynthetic energy harvesting. Sci. Adv. 7, eabf2543 (2021).

    Article  Google Scholar 

  142. Kim, S. I. L., Kim, Y. J., Hong, H., Yun, J. & Ryu, W. Electrosprayed thylakoid-alginate film on a micro-pillar electrode for scalable photosynthetic energy harvesting. ACS Appl. Mater. Interfaces 12, 54683–54693 (2020).

    Article  Google Scholar 

  143. Sokol, K. P. et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. Energy Environ. Sci. 9, 3698–3709 (2016).

    Article  Google Scholar 

  144. Friebe, V. M., Barszcz, A. J., Jones, M. R. & Frese, R. N. Sustaining electron transfer pathways extends biohybrid photoelectrode stability to years. Angew. Chem. Int. Ed. 61, e202201148 (2022).

    Article  Google Scholar 

  145. Pinhassi, R. I. et al. Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat. Commun. 7, 12552 (2016).

    Article  Google Scholar 

  146. Pankratova, G. et al. Supercapacitive photo-bioanodes and biosolar cells: a novel approach for solar energy harnessing. Adv. Energy Mater. 7, 1602285 (2017).

    Article  Google Scholar 

  147. Liu, L. & Choi, S. A self-charging cyanobacterial supercapacitor. Biosens. Bioelectron. 140, 111354 (2019).

    Article  Google Scholar 

  148. Bombelli, P. et al. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys. Chem. Chem. Phys. 14, 12221–12229 (2012).

    Article  Google Scholar 

  149. Sawa, M. et al. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 8, 1327 (2017).

    Article  Google Scholar 

  150. Kracke, F., Vassilev, I. & Krömer, J. O. Microbial electron transport and energy conservation — the foundation for optimizing bioelectrochemical systems. Front. Microbiol. 6, 575 (2015).

    Article  Google Scholar 

  151. Silva, V. D., Carletto, J. S., Carasek, E., Stambuk, B. U. & Da Graça Nascimento, M. Asymmetric reduction of (4S)-(+)-carvone catalyzed by baker’s yeast: a green method for monitoring the conversion based on liquid–liquid–liquid microextraction with polypropylene hollow fiber membranes. Process. Biochem. 48, 1159–1165 (2013).

    Article  Google Scholar 

  152. Wang, F. et al. One-pot biocatalytic route from cycloalkanes to α,ω‐dicarboxylic acids by designed Escherichia coli consortia. Nat. Commun. 11, 5035 (2020).

    Article  Google Scholar 

  153. Böhmer, S. et al. Enzymatic oxyfunctionalization driven by photosynthetic water-splitting in the cyanobacterium Synechocystis sp. PCC 6803. Catalysts 7, 240 (2017).

    Article  Google Scholar 

  154. Köninger, K. et al. Recombinant cyanobacteria for the asymmetric reduction of C=C bonds fueled by the biocatalytic oxidation of water. Angew. Chem. Int. Ed. 55, 5582–5585 (2016).

    Article  Google Scholar 

  155. Erdem, E. et al. Photobiocatalytic oxyfunctionalization with high reaction rate using a baeyer-villiger monooxygenase from Burkholderia xenovorans in metabolically engineered cyanobacteria. ACS Catal. 12, 66–72 (2022).

    Article  Google Scholar 

  156. Sengupta, A., Sunder, A. V., Sohoni, S. V. & Wangikar, P. P. The effect of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. J. Biotechnol. 289, 1–6 (2019).

    Article  Google Scholar 

  157. Büchsenschütz, H. C. et al. Stereoselective biotransformations of cyclic imines in recombinant cells of Synechocystis sp. PCC 6803. ChemCatChem 12, 726–730 (2020).

    Article  Google Scholar 

  158. Hoschek, A., Bühler, B. & Schmid, A. Stabilization and scale-up of photosynthesis-driven ω-hydroxylation of nonanoic acid methyl ester by two-liquid phase whole-cell biocatalysis. Biotechnol. Bioeng. 116, 1887–1900 (2019).

    Article  Google Scholar 

  159. Jurkaš, V. et al. Expression and activity of heterologous hydroxyisocaproate dehydrogenases in Synechocystis sp. PCC 6803 ΔhoxYH. Eng. Microbiol. 2, 100008 (2022).

    Article  Google Scholar 

  160. Hoschek, A. et al. Light-dependent and aeration-independent gram-scale hydroxylation of cyclohexane to cyclohexanol by CYP450 harboring Synechocystis sp. PCC 6803. Biotechnol. J. 14, 1800724 (2019).

    Article  Google Scholar 

  161. Assil-Companioni, L. et al. Engineering of NADPH supply boosts photosynthesis-driven biotransformations. ACS Catal. 10, 11864–11877 (2020).

    Article  Google Scholar 

  162. Berepiki, A., Gittins, J. R., Moore, C. M. & Bibby, T. S. Rational engineering of photosynthetic electron flux enhances light-powered cytochrome P450 activity. Synth. Biol. 3, ysy009 (2018).

    Article  Google Scholar 

  163. Spasic, J., Oliveira, P., Pacheco, C., Kourist, R. & Tamagnini, P. Engineering cyanobacterial chassis for improved electron supply toward a heterologous ene-reductase. J. Biotechnol. 360, 152–159 (2022).

    Article  Google Scholar 

  164. Meng, H. et al. Over-expression of an electron transport protein OmcS provides sufficient NADH for d-lactate production in cyanobacterium. Biotechnol. Biofuels 14, 109 (2021).

    Article  Google Scholar 

  165. Tóth, G. S. et al. Photosynthetically produced sucrose by immobilized Synechocystis sp. PCC 6803 drives biotransformation in E. coli. Biotechnol. Biofuels Bioprod. 15, 146 (2022).

    Article  Google Scholar 

  166. Li, C. et al. A highly compatible phototrophic community for carbon-negative biosynthesis. Angew. Chem. Int. Ed. 62, e202215013 (2023).

    Article  Google Scholar 

  167. Löwe, H. & Kremling, A. In-depth computational analysis of natural and artificial carbon fixation pathways.BioDesign Res. 2021, 9898316 (2021).

    Article  Google Scholar 

  168. Gabrielyan, L., Sargsyan, H. & Trchounian, A. Novel properties of photofermentative biohydrogen production by purple bacteria Rhodobacter sphaeroides: effects of protonophores and inhibitors of responsible enzymes. Microb. Cell Fact. 14, 131 (2015).

    Article  Google Scholar 

  169. Gosse, J. L. et al. Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol. Prog. 23, 124–130 (2007).

    Article  Google Scholar 

  170. Wegelius, A., Land, H., Berggren, G. & Lindblad, P. Semisynthetic [FeFe]-hydrogenase with stable expression and H2 production capacity in a photosynthetic microbe. Cell Rep. Phys. Sci. 2, 100376 (2021).

    Article  Google Scholar 

  171. Wegelius, A. et al. Generation of a functional, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Energy Environ. Sci. 11, 3163–3167 (2018).

    Article  Google Scholar 

  172. Lupacchini, S. et al. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab. Eng. 68, 199–209 (2021).

    Article  Google Scholar 

  173. Ben-Zvi, O., Dafni, E., Feldman, Y. & Yacoby, I. Re-routing photosynthetic energy for continuous hydrogen production in vivo. Biotechnol. Biofuels 12, 266 (2019).

    Article  Google Scholar 

  174. Li, H. et al. Suppressing hydrogen peroxide generation to achieve oxygen-insensitivity of a [NiFe] hydrogenase in redox active films. Nat. Commun. 11, 920 (2020).

    Article  Google Scholar 

  175. Xu, Z. et al. Algal cell bionics as a step towards photosynthesis-independent hydrogen production. Nat. Commun. 14, 1872 (2023).

    Article  Google Scholar 

  176. Khetkorn, W., Baebprasert, W., Lindblad, P. & Incharoensakdi, A. Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour. Technol. 118, 265–271 (2012).

    Article  Google Scholar 

  177. Li, Z. et al. Exogenous electricity flowing through cyanobacterial photosystem I drives CO2 valorization with high energy efficiency. Energy Environ. Sci. 14, 5480–5490 (2021).

    Article  Google Scholar 

  178. Dong, F. et al. An engineered, non-diazotrophic cyanobacterium and its application in bioelectrochemical nitrogen fixation. Cell Rep. Phys. Sci. 2, 100444 (2021).

    Article  Google Scholar 

  179. Perona-Vico, E., Feliu-Paradeda, L., Puig, S. & Bañeras, L. Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis. Sci. Rep. 10, 19852 (2020).

    Article  Google Scholar 

  180. Bai, W., Ranaivoarisoa, T. O., Singh, R., Rengasamy, K. & Bose, A. n-Butanol production by Rhodopseudomonas palustris TIE-1. Commun. Biol. 4, 1257 (2021).

    Article  Google Scholar 

  181. Ranaivoarisoa, T. O., Singh, R., Rengasamy, K., Guzman, M. S. & Bose, A. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. J. Ind. Microbiol. Biotechnol. 46, 1401–1417 (2019).

    Article  Google Scholar 

  182. Zhang, J. Z. et al. Competing charge transfer pathways at the photosystem II-electrode interface. Nat. Chem. Biol. 12, 1046–1052 (2016).

    Article  Google Scholar 

  183. Caserta, G. et al. Engineering an [FeFe]-hydrogenase: do accessory clusters influence O2 resistance and catalytic bias? J. Am. Chem. Soc. 140, 5516–5526 (2018).

    Article  Google Scholar 

  184. Adamson, H. et al. Retuning the catalytic bias and overpotential of a [NiFe]-hydrogenase via a single amino acid exchange at the electron entry/exit site. J. Am. Chem. Soc. 139, 10677–10686 (2017).

    Article  Google Scholar 

  185. Shapiro, D. M. et al. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat. Commun. 13, 829 (2022).

    Article  Google Scholar 

  186. Bateson, P. et al. Electrochemical characterisation of bio-bottle-voltaic (BBV) systems operated with algae and built with recycled materials. Biology 7, 26 (2018).

    Article  Google Scholar 

  187. Bozan, M., Schmid, A. & Bühler, K. Evaluation of self-sustaining cyanobacterial biofilms for technical applications. Biofilm 4, 100073 (2022).

    Article  Google Scholar 

  188. Srikanth, S., Pavani, T., Sarma, P. N. & Venkata Mohan, S. Synergistic interaction of biocatalyst with bio-anode as a function of electrode materials. Int. J. Hydrog. Energy 36, 2271–2280 (2011).

    Article  Google Scholar 

  189. Welter, E. S. et al. Figures of merit for photocatalysis: comparison of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a semiconductor and a bio-photocatalyst for water splitting. Catalysts 11, 1415 (2021).

    Article  Google Scholar 

  190. Howe, C. J. & Bombelli, P. Is it realistic to use microbial photosynthesis to produce electricity directly? PLoS Biol. 21, e3001970 (2023).

    Article  Google Scholar 

  191. Sheppard, T. J., Specht, D. & Barstow, B. Upper limit efficiency estimates for electromicrobial production of drop-in jet fuels. Bioelectrochemistry 154, 108506 (2023).

    Article  Google Scholar 

  192. Ehrler, B. et al. Photovoltaics reaching for the Shockley–Queisser limit. ACS Energy Lett. 5, 3029–3033 (2020).

    Article  Google Scholar 

  193. Tucci, M. et al. A storable mediatorless electrochemical biosensor for herbicide detection. Microorganisms 7, 630 (2019).

    Article  Google Scholar 

  194. Eidenberger, L., Kogelmann, B. & Steinkellner, H. Plant-based biopharmaceutical engineering. Nat. Rev. Bioeng. 1, 426–439 (2023).

    Article  Google Scholar 

  195. Jester, B. W. et al. Development of spirulina for the manufacture and oral delivery of protein therapeutics. Nat. Biotechnol. 40, 956–964 (2022).

    Article  Google Scholar 

  196. Dos Santos Fernandes de Araujo, R. in The European Commission’s Knowledge Center for Bioeconomy Vol. 12 (Publications Office of the European Union, 2019).

  197. Rodero, M., del, R., Herrero-Lobo, R., Pérez, V. & Muñoz, R. Influence of operational conditions on the performance of biogas bioconversion into ectoines in pilot bubble column bioreactors. Bioresour. Technol. 358, 127398 (2022).

    Article  Google Scholar 

  198. Hellingwerf, K. J., Veetil, V. P. & van der Woude, A. D. Erythritol Production in Cyanobacteria Patent no. US20190194671A1 (2015).

  199. van der Woude, A. D. et al. Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol. Microb. Cell Fact. 15, 60 (2016).

    Article  Google Scholar 

  200. Marques Lameirinhas, R. A., Torres, J. P. N. & de Melo Cunha, J. P. A photovoltaic technology review: history, fundamentals and applications. Energies 15, 1823 (2022).

    Article  Google Scholar 

  201. Lips, D., Schuurmans, J. M., Branco Dos Santos, F. & Hellingwerf, K. J. Many ways towards ‘solar fuel’: quantitative analysis of the most promising strategies and the main challenges during scale-up. Energy Environ. Sci. 11, 10–22 (2018).

    Article  Google Scholar 

  202. Pérez, A. A., Chen, Q., Hernández, H. P., Branco dos Santos, F. & Hellingwerf, K. J. On the use of oxygenic photosynthesis for the sustainable production of commodity chemicals. Physiol. Plant. 166, 413–427 (2019).

    Article  Google Scholar 

  203. Kiran Kumar, V., Man mohan, K., Manangath, S. P. & Gajalakshmi, S. Innovative pilot-scale constructed wetland-microbial fuel cell system for enhanced wastewater treatment and bioelectricity production. Chem. Eng. J. 460, 141686 (2023).

    Article  Google Scholar 

  204. Wen, X. et al. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol. Biofuels 9, 123 (2016).

    Article  Google Scholar 

  205. Heimann, K. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production. Curr. Opin. Biotechnol. 38, 183–189 (2016).

    Article  Google Scholar 

  206. Liao, Q. et al. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor. Bioresour. Technol. 243, 528–538 (2017).

    Article  Google Scholar 

  207. Ng, S. K. Y., Abunasser, N., Danton, M. E., Perez, G. & Salley, S. O. Enclosed Photobioreactors with Adaptive Internal Illumination for the Cultivation of Algae Patent no. US20100028977A1 (2009).

  208. Oey, M., Sawyer, A. L., Ross, I. L. & Hankamer, B. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol. J. 14, 1487–1499 (2016).

    Article  Google Scholar 

  209. Engler, C. et al. A Golden Gate modular cloning toolbox for plants. ACS Synth. Biol. 3, 839–843 (2014).

    Article  Google Scholar 

  210. Crozet, P. et al. Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 7, 2074–2086 (2018).

    Article  Google Scholar 

  211. Vasudevan, R. et al. CyanoGate: a modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant. Physiol. 180, 39–55 (2019).

    Article  Google Scholar 

  212. Immethun, C. M., Kathol, M., Changa, T. & Saha, R. Synthetic biology tool development advances predictable gene expression in the metabolically versatile soil bacterium Rhodopseudomonas palustris. Front. Bioeng. Biotechnol. 10, 318 (2022).

    Article  Google Scholar 

  213. Baker, P. L. et al. A molecular biology tool kit for the phototrophic firmicute Heliobacterium modesticaldum. Appl. Environ. Microbiol. 85, e01287-19 (2019).

    Article  Google Scholar 

  214. Gisriel, C. J., Azai, C. & Cardona, T. Recent advances in the structural diversity of reaction centers. Photosynth. Res. 149, 329–343 (2021).

    Article  Google Scholar 

  215. Kopf, M. et al. Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res. 21, 527–539 (2014).

    Article  Google Scholar 

  216. Białek, R. et al. In situ spectroelectrochemical investigation of a biophotoelectrode based on photoreaction centers embedded in a redox hydrogel. Electrochim. Acta 330, 135190 (2020).

    Article  Google Scholar 

  217. Nawrocki, W. J., Jones, M. R., Frese, R. N., Croce, R. & Friebe, V. M. In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance. Joule 7, 529–544 (2023).

    Article  Google Scholar 

  218. Johnson, J. E. & Berry, J. A. The role of cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model. Photosynth. Res. 148, 101–136 (2021).

    Article  Google Scholar 

  219. Saadat, N. P. et al. Computational analysis of alternative photosynthetic electron flows linked with oxidative stress. Front. Plant Sci. 12, 2285 (2021).

    Article  Google Scholar 

  220. Cengic, I., Cañadas, I. C., Minton, N. P. & Hudson, E. P. Inducible CRISPR/Cas9 allows for multiplexed and rapidly segregated single-target genome editing in Synechocystis sp. PCC 6803. ACS Synth. Biol. 11, 3100–3113 (2022).

    Article  Google Scholar 

  221. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  Google Scholar 

  222. Sokol, K. P. et al. Photoreduction of CO2 with a formate dehydrogenase driven by photosystem II using a semi-artificial Z-scheme architecture. J. Am. Chem. Soc. 140, 16418–16422 (2018).

    Article  Google Scholar 

  223. Lawrence, J. M. et al. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. Sci. Adv. 8, 5091 (2022).

    Article  Google Scholar 

  224. Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019).

    Article  Google Scholar 

  225. Satanowski, A. et al. Awakening a latent carbon fixation cycle in Escherichia coli. Nat. Commun. 11, 5812 (2020).

    Article  Google Scholar 

  226. Cohen-Ofri, I. et al. Zinc-bacteriochlorophyllide dimers in de novo designed four-helix bundle proteins. A model system for natural light energy harvesting and dissipation. J. Am. Chem. Soc. 133, 9526–9535 (2011).

    Article  Google Scholar 

  227. Lishchuk, A. et al. A synthetic biological quantum optical system. Nanoscale 10, 13064–13073 (2018).

    Article  Google Scholar 

  228. Mancini, J. A. et al. De novo synthetic biliprotein design, assembly and excitation energy transfer. J. R. Soc. Interface 15, 20180021 (2018).

    Article  Google Scholar 

  229. Kodali, G. et al. Design and engineering of water-soluble light-harvesting protein maquettes. Chem. Sci. 8, 316–324 (2016).

    Article  Google Scholar 

  230. Ennist, N. M. et al. De novo protein design of photochemical reaction centers. Nat. Commun. 13, 4937 (2022).

    Article  Google Scholar 

  231. Atkinson, J. T. et al. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat. Chem. Biol. 15, 189–195 (2019).

    Article  Google Scholar 

  232. Hardy, B. J. et al. Cellular production of a de novo membrane cytochrome. Biophys. Comput. Biol. 120, e2300137120 (2023).

    Google Scholar 

  233. Yu, K. et al. Photosynthesis-assisted remodeling of three-dimensional printed structures. Proc. Natl Acad. Sci. USA 118, e2016524118 (2021).

    Article  Google Scholar 

  234. Kristensen, S. B., van Mourik, T., Pedersen, T. B., Sørensen, J. L. & Muff, J. Simulation of electrochemical properties of naturally occurring quinones. Sci. Rep. 10, 13571 (2020).

    Article  Google Scholar 

  235. Zajdel, T. J. et al. PEDOT:PSS-based multilayer bacterial-composite films for bioelectronics. Sci. Rep. 8, 15293 (2018).

    Article  Google Scholar 

  236. Qi, R. et al. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions. Angew. Chem. Int. Ed. 60, 5759–5765 (2021).

    Article  Google Scholar 

  237. Yu, Y. Y. et al. Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces. Nat. Commun. 11, 4087 (2020).

    Article  Google Scholar 

  238. Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    Article  Google Scholar 

  239. Lea-Smith, D. J. et al. Phycobilisome-deficient strains of Synechocystis sp. PCC 6803 have reduced size and require carbon-limiting conditions to exhibit enhanced productivity. Plant Physiol. 165, 705–714 (2014).

    Article  Google Scholar 

  240. Friedland, N. et al. Fine-tuning the photosynthetic light harvesting apparatus for improved photosynthetic efficiency and biomass yield. Sci. Rep. 9, 13028 (2019).

    Article  Google Scholar 

  241. Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).

    Article  Google Scholar 

  242. Ermakova, M. et al. Installation of C4 photosynthetic pathway enzymes in rice using a single construct. Plant Biotechnol. J. 19, 575–588 (2021).

    Article  Google Scholar 

  243. Roell, M. S. et al. A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants. Proc. Natl Acad. Sci. USA 118, e2022307118 (2021).

    Article  Google Scholar 

  244. Hitchcock, A. et al. Redesigning the photosynthetic light reactions to enhance photosynthesis — the PhotoRedesign consortium. Plant J. 109, 23–34 (2022).

    Article  Google Scholar 

  245. Liu, J., Friebe, V. M., Frese, R. N. & Jones, M. R. Polychromatic solar energy conversion in pigment-protein chimeras that unite the two kingdoms of (bacterio)chlorophyll-based photosynthesis. Nat. Commun. 11, 1542 (2020).

    Article  Google Scholar 

  246. Liu, H. et al. Boosting cyanobacteria growth by fivefold with aggregation-induced emission luminogens: toward the development of a biofactory. ACS Sustain. Chem. Eng. 9, 15258–15266 (2021).

    Article  Google Scholar 

  247. Seo, Y. H., Lee, Y., Jeon, D. Y. & Han, J. I. Enhancing the light utilization efficiency of microalgae using organic dyes. Bioresour. Technol. 181, 355–359 (2015).

    Article  Google Scholar 

  248. Yoneda, Y. et al. Ultrafast photodynamics and quantitative evaluation of biohybrid photosynthetic antenna and reaction center complexes generating photocurrent. J. Phys. Chem. C 124, 8605–8615 (2020).

    Article  Google Scholar 

  249. Yoneda, Y. et al. Extension of light-harvesting ability of photosynthetic light-harvesting complex 2 (LH2) through ultrafast energy transfer from covalently attached artificial chromophores. J. Am. Chem. Soc. 137, 13121–13129 (2015).

    Article  Google Scholar 

  250. Liu, J. et al. Mechanisms of self-assembly and energy harvesting in tuneable conjugates of quantum dots and engineered photovoltaic proteins. Small 15, 1804267 (2019).

    Article  Google Scholar 

  251. Amoruso, G. et al. High-efficiency excitation energy transfer in biohybrid quantum dot-bacterial reaction center nanoconjugates. J. Phys. Chem. Lett. 12, 5448–5455 (2021).

    Article  Google Scholar 

  252. Nabiev, I. et al. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew. Chem. Int. Ed. 49, 7217–7221 (2010).

    Article  Google Scholar 

  253. Li, Z. et al. Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 10, 765–771 (2017).

    Article  Google Scholar 

  254. Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3, 944–951 (2018).

    Article  Google Scholar 

  255. Martín, S. S., Rivero, M. J. & Ortiz, I. Unravelling the mechanisms that drive the performance of photocatalytic hydrogen production. Catalysts 10, 901 (2020).

    Article  Google Scholar 

  256. Hu, Q. et al. Ultrafast electron transfer in Au-cyanobacteria hybrid for solar to chemical production. ACS Energy Lett. 20, 677–684 (2022).

    Google Scholar 

  257. Croce, R., van Grondelle, R., van Amerongen, H. & van Stokkum, I. Light Harvesting in Photosynthesis (CRC Press, 2018).

  258. Nicholls, D. G. & Ferguson, S. Bioenergetics: Fourth Edition (Elsevier, 2013).

Download references

Acknowledgements

This work was supported by the Biotechnology and Biological Sciences Research Council (BB/M011194/1 to J.M.L. and A.S., BB/R011923/1 to J.Z.), the Cambridge Trust (R.E. and L.S.), and the China Scholarship Council (no. 202008440417 to L.S.). We thank N. Plumeré and V. Friebe for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.M.L. developed the concept for the article under the guidance of J.Z.Z.; J.M.L., R.M.E., T.H., A.S. and L.S. researched data for the article; and T.H. performed the calculations. All authors contributed substantially to discussion of the content. J.M.L. wrote the article with input from all authors. J.M.L., C.J.H. and J.Z.Z. reviewed and/or edited the manuscript before submission. J.M.L. and J.Z.Z. assembled the team and coordinated the writing process.

Corresponding authors

Correspondence to Christopher J. Howe or Jenny Z. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Ivo H.M. van Stokkum, Robert Kourist and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, J.M., Egan, R.M., Hoefer, T. et al. Rewiring photosynthetic electron transport chains for solar energy conversion. Nat Rev Bioeng 1, 887–905 (2023). https://doi.org/10.1038/s44222-023-00093-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00093-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research