Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain imaging with portable low-field MRI

A Publisher Correction to this article was published on 04 August 2023

This article has been updated

Abstract

The advent of portable, low-field MRI (LF-MRI) heralds new opportunities in neuroimaging. Low power requirements and transportability have enabled scanning outside the controlled environment of a conventional MRI suite, enhancing access to neuroimaging for indications that are not well suited to existing technologies. Maximizing the information extracted from the reduced signal-to-noise ratio of LF-MRI is crucial to developing clinically useful diagnostic images. Progress in electromagnetic noise cancellation and machine learning reconstruction algorithms from sparse k-space data as well as new approaches to image enhancement have now enabled these advancements. Coupling technological innovation with bedside imaging creates new prospects in visualizing the healthy brain and detecting acute and chronic pathological changes. Ongoing development of hardware, improvements in pulse sequences and image reconstruction, and validation of clinical utility will continue to accelerate this field. As further innovation occurs, portable LF-MRI will facilitate the democratization of MRI and create new applications not previously feasible with conventional systems.

Key points

  • Portable, low-field MRI (LF-MRI) has enabled scanning outside the controlled environment of a conventional MRI suite, enhancing access to neuroimaging for indications that are not well suited to existing technologies.

  • Advancements in electromagnetic noise cancellation and machine learning reconstruction algorithms as well as new approaches to image enhancement seek to maximize the information extracted from the reduced signal-to-noise ratio of LF-MRI.

  • The reduced fringe field and the transportability of LF-MR have expanded the imaging capacity for neurological conditions such as stroke, intracerebral haemorrhage, cardiac arrest, hydrocephalus and multiple sclerosis.

  • Hardware developments, improvements in pulse sequences and image reconstruction, and validation of clinical utility across a range of environments will continue to accelerate LF-MRI into the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of MRI geometries for portable LF-MRI.
Fig. 2: Examples of images acquired on LF-MRI compared with conventional HF-MRI.
Fig. 3: The evolution of LF-MR neuroimaging.

Similar content being viewed by others

Change history

References

  1. Pfahler, G. E. In Proceedings of the 5th Annual Meeting of the American Roentgen Ray Society Vol. 4, 175–183 (St. Louis, MO, 1904).

  2. Burr, C. W., Pfahler, G. E. & Camp, C. D. Thrombosis of the midcerebral artery, causing aphasia and hemiplegia, with remarks on cerebral skiagraphy. J. Nerv. Ment. Dis. 31, 558 (1904).

    Google Scholar 

  3. Ambrose, J. Computerized transverse axial scanning (tomography). 2. Clinical application. Br. J. Radiol. 46, 1023–1047 (1973).

    Google Scholar 

  4. Hounsfield, G. N. Computerized transverse axial scanning (tomography). 1. Description system. Br. J. Radiol. 46, 1016–1022 (1973).

    Google Scholar 

  5. Lauterbur, P. C. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973.Clin. Orthop. Relat. Res. 244, 3–6 (1989).

    Google Scholar 

  6. Mansfield, P. & Maudsley, A. A. Planar spin imaging by NMR. J. Magn. Reson. 27, 101–119 (1977).

    Google Scholar 

  7. Raich, H. & Blümler, P. Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas. Concepts Magn. Reson. Part B Magn. Reson. Eng. 23B, 16–25 (2004).

    Google Scholar 

  8. Lother, S., Schiff, S. J., Neuberger, T., Jakob, P. M. & Fidler, F. Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI. Magn. Reson. Mater. Phys. Biol. Med. 29, 691–698 (2016).

    Google Scholar 

  9. Obungoloch, J. et al. Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus. Magnetic Reson. Mater. Phys. Biol. Med. 31, 665–676 (2018).

    Google Scholar 

  10. Harper, J. R. et al. An unmatched radio frequency chain for low-field magnetic resonance imaging. Front. Phys. https://doi.org/10.3389/fphy.2021.727536 (2022).

    Article  Google Scholar 

  11. Sarracanie, M. et al. Low-cost high-performance MRI. Sci. Rep. 5, 15177 (2015).

    Google Scholar 

  12. He, Y. et al. Use of 2.1 MHz MRI scanner for brain imaging and its preliminary results in stroke. J. Magn. Reson. 319, 106829 (2020).

    Google Scholar 

  13. Sheth, K. N. et al. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78, 41–47 (2020).

    Google Scholar 

  14. Liu, Y. et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat. Commun. 12, 7238 (2021).

    Google Scholar 

  15. Halbach, K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl. Instrum. Methods 169, 1–10 (1980).

    Google Scholar 

  16. Blümler, P. & Casanova, F. In Mobile NMR and MRI: Developments and Applications 133–157 (The Royal Society of Chemistry, 2016).

  17. Soltner, H. & Blümler, P. Dipolar Halbach magnet stacks made from identically shaped permanent magnets for magnetic resonance. Concepts Magn. Reson. Part A 36, 211–222 (2010).

    Google Scholar 

  18. Cooley, C. Z. et al. Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn. Reson. Med. 73, 872–883 (2015).

    Google Scholar 

  19. Stockmann, J. P., Cooley, C. Z., Guerin, B., Rosen, M. S. & Wald, L. L. Transmit array spatial encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields. J. Magn. Reson. 268, 36–48 (2016).

    Google Scholar 

  20. Cooley, C. Z. et al. A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5, 229–239 (2021).

    Google Scholar 

  21. Cooley, C. Z. et al. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans. Magn. https://doi.org/10.1109/tmag.2017.2751001 (2018).

    Article  Google Scholar 

  22. Martens, M. A. et al. Insertable biplanar gradient coils for magnetic resonance imaging. Rev. Sci. Instrum. 62, 2639–2645 (1991).

    Google Scholar 

  23. While, P. T., Forbes, L. K. & Crozier, S. 3D gradient coil design for open MRI systems. J. Magn. Reson. 207, 124–133 (2010).

    Google Scholar 

  24. Zhang, R. et al. An optimized target-field method for MRI transverse biplanar gradient coil design. Meas. Sci. Technol. 22, 125505 (2011).

    Google Scholar 

  25. Matsuzawa, K., Abe, M., Kose, K. & Terada, Y. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field. J. Magn. Reson. 278, 51–59 (2017).

    Google Scholar 

  26. Shen, S., Koonjoo, N., Kong, X., Rosen, M. S. & Xu, Z. Gradient coil design and optimization for an ultra-low-field MRI system. Appl. Magn. Reson. 53, 895–914 (2022).

    Google Scholar 

  27. de Vos, B., Fuchs, P., O’Reilly, T., Webb, A. & Remis, R. Gradient coil design and realization for a halbach-based MRI system. IEEE Trans. Magn. 56, 1–8 (2020).

    Google Scholar 

  28. Přibil, J., Přibilová, A. & Frollo, I. Vibration and noise in magnetic resonance imaging of the vocal tract: differences between whole-body and open-air devices. Sensors https://doi.org/10.3390/s18041112 (2018).

    Article  Google Scholar 

  29. Sharp, J. C. & King, S. B. MRI using radiofrequency magnetic field phase gradients. Magn. Reson. Med. 63, 151–161 (2010).

    Google Scholar 

  30. Wang, P. et al. Correcting image distortions from a nonlinear B1+-gradient field in frequency-modulated Rabi-encoded echoes. Magn. Reson. Med. https://doi.org/10.1002/mrm.29549 (2022).

    Article  Google Scholar 

  31. Torres, E. et al. B(1)-gradient-based MRI using frequency-modulated Rabi-encoded echoes. Magn. Reson. Med. 87, 674–685 (2022).

    Google Scholar 

  32. Gruber, B., Froeling, M., Leiner, T. & Klomp, D. W. J. RF coils: a practical guide for nonphysicists. J. Magn. Reson. Imaging 48, 590–604 (2018).

    Google Scholar 

  33. Shen, S. et al. An optimized quadrature RF receive coil for very-low-field (50.4 mT) magnetic resonance brain imaging. J. Magn. Reson. 342, 107269 (2022).

    Google Scholar 

  34. O’Reilly, T., Teeuwisse, W. M., de Gans, D., Koolstra, K. & Webb, A. G. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magn. Reson. Med. 85, 495–505 (2021).

    Google Scholar 

  35. Shen, S., Xu, S., Koonjoo, N. & Rosen, M. S. Optimization of a close-fitting volume RF coil for brain imaging at 6.5 mT using linear programming. IEEE Trans. Biomed. Eng. 68, 1106–1114 (2021).

    Google Scholar 

  36. de Vos, B. et al. Design, characterisation and performance of an improved portable and sustainable low-field MRI system. Front. Phys. https://doi.org/10.3389/fphy.2021.701157 (2021).

    Article  Google Scholar 

  37. Tewari, S., Yousefi, S. & Webb, A. Deep neural-network based optimization for the design of a multi-element surface magnet for MRI applications. Inverse Probl. https://doi.org/10.1088/1361-6420/ac492a (2022).

    Article  MathSciNet  MATH  Google Scholar 

  38. Giovannetti, G. & Menichetti, L. Litz wire RF coils for low frequency NMR applications. Measurement 110, 116–120 (2017).

    Google Scholar 

  39. Miltner, O. et al. Portable NMR-MOUSE (R): a new method and its evaluation of the Achilles tendon. Z. Orthop. Grenzgeb. 141, 148–152 (2003).

    Google Scholar 

  40. Perlo, J., Casanova, F. & Blumich, B. 3D imaging with a single-sided sensor: an open tomograph. J. Magn. Reson. 166, 228–235 (2004).

    Google Scholar 

  41. Perlo, J. et al. Desktop MRI as a promising tool for mapping intra-aneurismal flow. Magn. Reson. Imaging 33, 328–335 (2015).

    Google Scholar 

  42. Srinivas, S. A. et al. External dynamic interference estimation and removal (EDITER) for low field MRI. Magn. Reson. Med. https://doi.org/10.1002/mrm.28992 (2021).

    Article  Google Scholar 

  43. Srinivas, S. A., Cooley, C. Z., Stockmann, J. P., McDaniel, P. C. & Wald, L. L. In Proceedings of International Society of Magnetic Resonance in Medicine 1269 (2020).

  44. Rearick, T., Charvat, G. L., Rosen, M. S. & Rothberg, J. M. Noise Supression Methods and Apparatus. United States of America Patent US9797971B2 (2017).

  45. Yuen, M. M. et al. Portable, low-field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke. Sci. Adv. 8, eabm3952 (2022).

    Google Scholar 

  46. Dyvorne, H. et al. Freeing MRI from its Faraday cage with Interference Rejection. Proceedings of the International Society for Magnetic Resonance in Medicine 749 (2021).

  47. Zhao, Y., Xiao, L., Liu, Y., Leong, A. T. L. & Wu, E. X. Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding-free MRI. NMR Biomed. 3864 (2023).

  48. Kibret, B., Teshome, A. K. & Lai, D. T. H. Analysis of the human body as an antenna for wireless implant communication. IEEE Trans. Antennas Propag. 64, 1466–1476 (2016).

    MathSciNet  MATH  Google Scholar 

  49. Sen, S., Maity, S. & Das, D. The body is the network: to safeguard sensitive data, turn flesh and tissue into a secure wireless channel. IEEE Spectr. 57, 44–49 (2020).

    Google Scholar 

  50. Ingle, V., Kogon, S. & Manolakis, D. Statistical and Adaptive Signal Processing (Artech, 2005).

  51. Stearns, S. D. In Advanced Topics in Signal Processing 246–288 (Prentice-Hall, Inc., 1987).

  52. Lu, H. et al. Routine clinical brain MRI sequences for use at 3.0 Tesla. J. Magn. Reson. Imaging 22, 13–22 (2005).

    Google Scholar 

  53. O’Reilly, T. & Webb, A. G. In vivo T1 and T2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT. Magn. Reson. Med. https://doi.org/10.1002/mrm.29009 (2021).

    Article  Google Scholar 

  54. Ma, D. et al. Magnetic resonance fingerprinting. Nature 495, 187–192 (2013).

    Google Scholar 

  55. Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R. & Rosen, M. S. Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018).

    Google Scholar 

  56. Lin, D. J., Johnson, P. M., Knoll, F. & Lui, Y. W. Artificial intelligence for MR image reconstruction: an overview for clinicians. J. Magn. Reson. Imaging 53, 1015–1028 (2021).

    Google Scholar 

  57. Xiao, L. et al. Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks. Magn. Reson. Med. 87, 999–1014 (2022).

    Google Scholar 

  58. Koonjoo, N., Zhu, B., Cody Bagnall, G., Bhutto, D. & Rosen, M. S. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci. Rep. 11, 8248 (2021).

    Google Scholar 

  59. Waddington, D. E. J. et al. Real-time radial reconstruction with domain transform manifold learning for MRI-guided radiotherapy. Med Phys. 50, 1962–1974 (2023).

    Google Scholar 

  60. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Google Scholar 

  61. Wang, Z., Chen, J. & Hoi, S. C. H. Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3365–3387 (2021).

    Google Scholar 

  62. Yang, W. et al. Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. 21, 3106–3121 (2019).

    Google Scholar 

  63. Cherukuri, V., Guo, T., Schiff, S. J. & Monga, V. Deep MR brain image super-resolution using spatio-structural priors. IEEE Trans. Image Process. https://doi.org/10.1109/tip.2019.2942510 (2019).

    Article  MATH  Google Scholar 

  64. Goodfellow, I. et al. Generative adversarial networks. Adv. Neural Inf. Process. Syst. https://doi.org/10.1145/3422622 (2014).

    Article  Google Scholar 

  65. Song, T. A., Chowdhury, S. R., Yang, F. & Dutta, J. PET image super-resolution using generative adversarial networks. Neural Netw. 125, 83–91 (2020).

    Google Scholar 

  66. Sotiras, A., Davatzikos, C. & Paragios, N. Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32, 1153–1190 (2013).

    Google Scholar 

  67. Kondrateva, E. et al. Domain Sshift in Computer Vision Models for MRI Data Analysis: An Overview. Vol. 11605 (SPIE, 2021).

  68. Wang, M. & Deng, W. Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018).

    Google Scholar 

  69. Iglesias, J. et al. Quantitative Brain Morphometry of Portable Low-Field-Strength MRI Using Super-Resolution Machine Learning. Radiology 306, 3 (2023).

    Google Scholar 

  70. Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 23–30 (IEEE, 2017).

  71. Cohen, J., Luck, M. & Honari, S. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds Frangi, A. et al.), 529–536, (Springer, 2018).

  72. Malinin, A. & Gales, M. In Proceedings of the 32nd International Conference on Neural Information Processing Systems 7047–7058 (Curran Associates Inc., 2018).

  73. Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? 31st Conference on Neural Information Processing Systems vol. 30 (NIPS, 2017).

  74. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. PMLR 48, 1050–1059 (2016).

    Google Scholar 

  75. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. 31st Conference on Neural Information Processing Systems 6405–6416 (2017).

  76. Sensoy, M., Kaplan, L. & Kandemir, M. In Proceedings of the 32nd International Conference on Neural Information Processing Systems 3183–3193 (Curran Associates Inc., 2018).

  77. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 1–35 (2021).

    Google Scholar 

  78. Petersen, E. et al. Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer’s disease detection. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference Proceedings 88–98 (2022).

  79. Dressel, J. & Farid, H. The accuracy, fairness, and limits of predicting recidivism. Sci. Adv. 4, eaao5580 (2018).

    Google Scholar 

  80. Larson, J., Mattu, S., Kirchner, L. & Angwin, J. Machine Bias https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencingProPublica (2016).

  81. Chouldechova, A., Benavides-Prado, D., Fialko, O. & Vaithianathan, R. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency Vol. 81 (eds Sorelle, A. F. & Christo, W.) 134–148 (Proceedings of Machine Learning Research, 2018).

  82. Puyol Anton, E. et al. Fairness in AI: are deep learning-based CMR segmentation algorithms biased. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehab724.3055 (2021).

    Article  Google Scholar 

  83. Ruijsink, B. et al. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC: Cardiovasc. Imaging 13, 684–695 (2019).

    Google Scholar 

  84. Bellamy, R. K. E. et al. AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM J. Res. Dev. https://doi.org/10.1147/JRD.2019.2942287 (2019).

    Article  Google Scholar 

  85. Chalela, J. A. et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369, 293–298 (2007).

    Google Scholar 

  86. Campbell, B. C. & Parsons, M. W. Imaging selection for acute stroke intervention. Int. J. Stroke 13, 554–567 (2018).

    Google Scholar 

  87. Shah, S. et al. Screening with MRI for accurate and rapid stroke treatment: SMART. Neurology 84, 2438–2444 (2015).

    Google Scholar 

  88. Sorensen, A. G. et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199, 391–401 (1996).

    Google Scholar 

  89. Fiebach, J. B. et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33, 2206–2210 (2002).

    Google Scholar 

  90. Thomalla, G. et al. Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data. Lancet 396, 1574–1584 (2020).

    Google Scholar 

  91. Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50, e344–e418 (2019).

    Google Scholar 

  92. Thomalla, G. et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 10, 978–986 (2011).

    Google Scholar 

  93. Kidwell, C. S. et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. J. Am. Med. Assoc. 292, 1823–1830 (2004).

    Google Scholar 

  94. Yuen, M. M. et al. Qualitative description of ischemic stroke appearance on low-field, point-of-care magnetic resonance imaging. Stroke 52, A33–A33 (2021).

    Google Scholar 

  95. Mazurek, M. H. et al. Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nat. Commun. 12, 5119 (2021).

    Google Scholar 

  96. Grotta, J. C. et al. Prospective, multicenter, controlled trial of mobile stroke units. N. Engl. J. Med. 385, 971–981 (2021).

    Google Scholar 

  97. Lahner, D. et al. Incidence of complications in intrahospital transport of critically ill patients–experience in an Austrian university hospital. Wien. Klin. Wochenschr. 119, 412–416 (2007).

    Google Scholar 

  98. Papson, J. P., Russell, K. L. & Taylor, D. M. Unexpected events during the intrahospital transport of critically ill patients. Acad. Emerg. Med. 14, 574–577 (2007).

    Google Scholar 

  99. Venkategowda, P. M., Rao, S. M., Mutkule, D. P. & Taggu, A. N. Unexpected events occurring during the intra-hospital transport of critically ill ICU patients. Indian J. Crit. Care Med. 18, 354–357 (2014).

    Google Scholar 

  100. Knight, P. H. et al. Complications during intrahospital transport of critically ill patients: focus on risk identification and prevention. Int. J. Crit. Illn. Inj. Sci. 5, 256–264 (2015).

    Google Scholar 

  101. Andrews, P. J., Piper, I. R., Dearden, N. M. & Miller, J. D. Secondary insults during intrahospital transport of head-injured patients. Lancet 335, 327–330 (1990).

    Google Scholar 

  102. Kaups, K. L., Davis, J. W. & Parks, S. N. Routinely repeated computed tomography after blunt head trauma: does it benefit patients? J. Trauma Acute Care Surg. 56, 475–480 (2004).

    Google Scholar 

  103. Martin, M. et al. Secondary insults and adverse events during intrahospital transport of severe traumatic brain-injured patients. Neurocrit. Care 26, 87–95 (2017).

    Google Scholar 

  104. Smith, I., Fleming, S. & Cernaianu, A. Mishaps during transport from the intensive care unit. Crit. Care Med. 18, 278–281 (1990).

    Google Scholar 

  105. Beekman, R. et al. Bedside monitoring of hypoxic ischemic brain injury using low-field, portable brain magnetic resonance imaging after cardiac arrest. Resuscitation 176, 150–158 (2022).

    Google Scholar 

  106. Cho, S. M. et al. Assessing the safety and feasibility of bedside portable low-field brain magnetic resonance imaging in patients on ECMO (SAFE-MRI ECMO study): study protocol and first case series experience. Crit. Care 26, 119 (2022).

    Google Scholar 

  107. Turpin, J. et al. Portable magnetic resonance imaging for ICU patients. Crit. Care Explor. 2, e0306 (2020).

    Google Scholar 

  108. Lopez Soto, C. et al. Imaging for neuroprognostication after cardiac arrest: systematic review and meta-analysis. Neurocrit. Care 32, 206–216 (2020).

    Google Scholar 

  109. Maciel, C. B., Barden, M. M., Youn, T. S., Dhakar, M. B. & Greer, D. M. Neuroprognostication practices in postcardiac arrest patients: an international survey of critical care providers. Crit. Care Med. 48, e107–e114 (2020).

    Google Scholar 

  110. Peterson, M. R. et al. Normal childhood brain growth and a universal sex and anthropomorphic relationship to cerebrospinal fluid. J. Neurosurg. Pediatr. 28, 458–468 (2021).

    Google Scholar 

  111. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Google Scholar 

  112. Cherukuri, V. et al. Learning based segmentation of CT brain images: application to postoperative hydrocephalic scans. Transl. Biomed. Eng. 65, 1871–1884 (2018).

    Google Scholar 

  113. Deoni, S. C. L. et al. Accessible pediatric neuroimaging using a low field strength MRI scanner. NeuroImage 238, 118273 (2021).

    Google Scholar 

  114. Whitby, E. H. et al. Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible incubator with a built-in coil. Pediatrics 113, e150–e152 (2004).

    Google Scholar 

  115. Bekiesinska-Figatowska, M. et al. First experience with neonatal examinations with the use of MR-compatible incubator. Pol. J. Radiol. 79, 268–274 (2014).

    Google Scholar 

  116. Sien, M. E. et al. Feasibility of and experience using a portable MRI scanner in the neonatal intensive care unit. Arch. Dis. Childhood. Fetal Neonatal Ed. 108, 45–50 (2023).

    Google Scholar 

  117. Mathur, A. M., Neil, J. J., McKinstry, R. C. & Inder, T. E. Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr. Radiol. 38, 260–264 (2008).

    Google Scholar 

  118. Whitby, E. H. et al. Low field strength magnetic resonance imaging of the neonatal brain. Arch. Dis. Child. Fetal Neonatal Ed. 88, F203–F208 (2003).

    Google Scholar 

  119. Karimy, J. K. et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat. Rev. Neurol. 16, 285–296 (2020).

    Google Scholar 

  120. Sinnar, S. A. & Schiff, S. J. The problem of microbial dark matter in neonatal sepsis. Emerg. Infect. Dis. 26, 2543–2548 (2020).

    Google Scholar 

  121. Paulson, J. N. et al. Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aba0565 (2020).

    Article  Google Scholar 

  122. Kulkarni, A. V. et al. Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N. Engl. J. Med. 377, 2456–2464 (2017).

    Google Scholar 

  123. Schiff, S. J. et al. Brain growth after surgical treatment for infant postinfectious hydrocephalus in sub-Saharan Africa: 2-year results of a randomized trial. J. Neurosurg. Pediatr. https://doi.org/10.3171/2021.2.PEDS20949 (2021).

    Article  Google Scholar 

  124. Brenner, D. J. & Hall, E. J. Computed tomography — an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007).

    Google Scholar 

  125. Lane, J. R. et al. Preoperative risk and postoperative outcome from subdural fluid collections in African infants with postinfectious hydrocephalus. J. Neurosurg. Pediatr. 29, 31–39 (2022).

    Google Scholar 

  126. Harper, J. R. et al. Assessing the utility of low resolution brain imaging: treatment of infant hydrocephalus. Neuroimage Clin. 32, 102896 (2021).

    Google Scholar 

  127. Bos, D. et al. Prevalence, clinical management, and natural course of incidental findings on brain MR images: the population-based Rotterdam Scan Study. Radiology 281, 507–515 (2016).

    Google Scholar 

  128. Bunnik, E. M. & Vernooij, M. W. Incidental findings in population imaging revisited. Eur. J. Epidemiol. 31, 1–4 (2016).

    Google Scholar 

  129. Gibson, L. M. et al. Potentially serious incidental findings on brain and body magnetic resonance imaging of apparently asymptomatic adults: systematic review and meta-analysis. BMJ 363, k4577 (2018).

    Google Scholar 

  130. Ivanovic, V. et al. Prevalence of incidental brain MRI findings of clinical relevance in a diverse Hispanic/Latino population. J. Neuroimaging 31, 1166–1175 (2021).

    Google Scholar 

  131. Vernooij, M. W. et al. Incidental findings on brain MRI in the general population. N. Engl. J. Med. 357, 1821–1828 (2007).

    Google Scholar 

  132. Neugut, A. I. et al. Magnetic resonance imaging-based screening for asymptomatic brain tumors: a review. Oncologist 24, 375–384 (2019).

    Google Scholar 

  133. Gupta, S. et al. Challenges and possible solutions to colorectal cancer screening for the underserved. J. Natl Cancer Inst. 106, dju032 (2014).

    Google Scholar 

  134. Neal, C. D. et al. Patient navigation to improve cancer screening in underserved populations: reported experiences, opportunities, and challenges. J. Am. Coll. Radiol. 15, 1565–1572 (2018).

    Google Scholar 

  135. Bryan, R. N. et al. Prevalence and anatomic characteristics of infarct-like lesions on MR images of middle-aged adults: the atherosclerosis risk in communities study. Am. J. Neuroradiol. 20, 1273–1280 (1999).

    Google Scholar 

  136. Liao, D. et al. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control. The ARIC Study. Atherosclerosis risk in communities study. Stroke 27, 2262–2270 (1996).

    Google Scholar 

  137. Prabhakaran, S. et al. Prevalence and determinants of subclinical brain infarction: the Northern Manhattan study. Neurology 70, 425–430 (2008).

    Google Scholar 

  138. Poels, M. M. F. et al. Incidence of cerebral microbleeds in the general population. Stroke 42, 656–661 (2011).

    Google Scholar 

  139. Au, R. et al. Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham heart study. Arch. Neurol. 63, 246–250 (2006).

    Google Scholar 

  140. Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010).

    Google Scholar 

  141. Debette, S., Schilling, S., Duperron, M. G., Larsson, S. C. & Markus, H. S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 76, 81–94 (2019).

    Google Scholar 

  142. de Havenon, A. et al. Blood pressure, glycemic control, and white matter hyperintensity progression in type 2 diabetics. Neurology 92, e1168–e1175 (2019).

    Google Scholar 

  143. Nasrallah, I. M. et al. Association of intensive vs standard blood pressure control with cerebral white matter lesions. J. Am. Med. Assoc. 322, 524–534 (2019).

    Google Scholar 

  144. Sheibani, N. et al. White matter hyperintensity and cardiovascular disease outcomes in the SPRINT MIND trial. J. Stroke Cerebrovasc. Dis. 30, 105764 (2021).

    Google Scholar 

  145. Williamson, J. D. et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. J. Am. Med. Assoc. 321, 553–561 (2019).

    Google Scholar 

  146. de Havenon, A. et al. Identification of white matter hyperintensities in routine emergency department visits using portable bedside magnetic resonance imaging. J. Am. Heart Assoc. 12, e029242 (2023).

    Google Scholar 

  147. Ross, A. B. et al. Racial and/or ethnic disparities in the use of imaging: results from the 2015 National Health Interview Survey. Radiology 302, 140–142 (2022).

    Google Scholar 

  148. Arnold, T. C. et al. Portable, low-field magnetic resonance imaging sensitively detects and accurately quantifies multiple sclerosis lesions. NeuroImage: Clinical 35, 103101 (2022).

    Google Scholar 

  149. Arnold, T. C. et al. Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions. NeuroImage Clin. 35, 103101 (2022).

    Google Scholar 

  150. Deoni, S. C. L. et al. Development of a mobile low-field MRI scanner. Sci. Rep. 12, 5690 (2022).

    Google Scholar 

  151. Schrager, J. D. et al. Racial and ethnic differences in diagnostic imaging utilization during adult emergency department visits in the United States, 2005 to 2014. J. Am. Coll. Radiol. 16, 1036–1045 (2019).

    Google Scholar 

  152. Marin, J. R. et al. Racial and ethnic differences in emergency department diagnostic imaging at US children’s hospitals, 2016-2019. JAMA Netw. Open 4, e2033710 (2021).

    Google Scholar 

  153. Haas, J. S. et al. Disparities in the use of screening magnetic resonance imaging of the breast in community practice by race, ethnicity, and socioeconomic status. Cancer 122, 611–617 (2016).

    Google Scholar 

  154. Ross, A. B., Kalia, V., Chan, B. Y. & Li, G. The influence of patient race on the use of diagnostic imaging in United States emergency departments: data from the National Hospital Ambulatory Medical Care survey. BMC Health Serv. Res. 20, 840 (2020).

    Google Scholar 

  155. Sheth, K. N. et al. Bedside detection of intracranial midline shift using portable magnetic resonance imaging. Sci. Rep. 12, 67 (2022).

    Google Scholar 

  156. Alexandrov, A. W. et al. Perfusion augmentation in acute stroke using mechanical counter-pulsation-phase IIa: effect of external counterpulsation on middle cerebral artery mean flow velocity in five healthy subjects. Stroke 39, 2760–2764 (2008).

    Google Scholar 

  157. Zubair, A. S., Crawford, A., Prabhat, A. M. & Sheth, K. N. Use of portable imaging modalities in patients with neurologic disorders: a case-based discussion. Cureus 13, e15841 (2021).

    Google Scholar 

  158. Parker, S. A. et al. Establishing the first mobile stroke unit in the United States. Stroke 46, 1384–1391 (2015).

    Google Scholar 

  159. Bowry, R. et al. Benefits of stroke treatment using a mobile stroke unit compared with standard management: the BEST-MSU study run-in phase. Stroke 46, 3370–3374 (2015).

    Google Scholar 

  160. Brekenfeld, C. et al. Enhancement of cerebral diseases: how much contrast agent is enough? Comparison of 0.1, 0.2, and 0.3 mmol/kg gadoteridol at 0.2 T with 0.1 mmol/kg gadoteridol at 1.5 T. Investig. Radiol. 36, 266–275 (2001).

    Google Scholar 

  161. Desai, N. K. & Runge, V. M. Contrast use at low field: a review. Top. Magn. Reson. Imaging 14, 360–364 (2003).

    Google Scholar 

  162. Waddington, D. E. J., Boele, T., Maschmeyer, R., Kuncic, Z. & Rosen, M. S. High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles. Sci. Adv. 6, eabb0998 (2020).

    Google Scholar 

  163. Van Zandwijk, J. K. et al. Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PLoS One 16, e0256252 (2021).

    Google Scholar 

  164. Masouridis, M., Dyrby, T. B. & Zhurbenko, V. Design and implementation of solenoid and Alderman-Grant coils for magnetic resonance microscopy at 7T. in 2020 14th European Conference on Antennas and Propagation (EuCAP) 1–4 (2020).

  165. Oh, S., Hong, S. E. & Choi, H. D. Proposed safety guidelines for patient assistants in an open MRI Environment. Int. J. Environ. Res. Public Health 19, 15185 (2022).

    Google Scholar 

  166. Marques, J. P., Simonis, F. F. J. & Webb, A. G. Low-field MRI: an MR physics perspective. J. Magn. Reson. Imaging 49, 1528–1542 (2019).

    Google Scholar 

  167. Cooley, C. Z. et al. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans Magn. 54, 5100112 (2018).

    Google Scholar 

  168. Huang, S. et al. Portable low-cost MRI system based on permanent magnets/magnet arrays. Investig. Magn. Reson. Imaging 23, 179–201 (2019).

    Google Scholar 

  169. Smith, F. W., Mallard, J. R., Reid, A. & Hutchison, J. M. Nuclear magnetic resonance tomographic imaging in liver disease. Lancet 1, 963–966 (1981).

    Google Scholar 

  170. Crooks, L. et al. Nuclear magnetic resonance whole-body imager operating at 3.5 KGauss. Radiology 143, 169–174 (1982).

    Google Scholar 

  171. Bottomley, P. A. et al. NMR imaging/spectroscopy system to study both anatomy and metabolism. Lancet 2, 273–274 (1983).

    Google Scholar 

  172. Hart, H. R. Jr. et al. Nuclear magnetic resonance imaging: contrast-to-noise ratio as a function of strength of magnetic field. Am. J. Roentgenol. 141, 1195–1201 (1983).

    Google Scholar 

  173. Bilaniuk, L. T. et al. Cerebral magnetic resonance: comparison of high and low field strength imaging. Radiology 153, 409–414 (1984).

    Google Scholar 

  174. Sepponen, R. E., Sipponen, J. T. & Sivula, A. Low field (0.02 T) nuclear magnetic resonance imaging of the brain. J. Comput. Assist. Tomogr. 9, 237–241 (1985).

    Google Scholar 

  175. Halbach, K. Application of permanent magnets in accelerators and electron storage rings (invited).J. Appl. Phys. 57, 3605–3608 (1985).

    Google Scholar 

  176. Macovski, A. & Conolly, S. Novel approaches to low-cost MRI. Magn. Reson. Med. 30, 221–230 (1993).

    Google Scholar 

  177. Hittmair, K., Kramer, J., Rand, T., Bernert, G. & Wimberger, D. Infratentorial brain maturation: a comparison of MRI at 0.5 and 1.5T. Neuroradiology 38, 360–366 (1996).

    Google Scholar 

  178. Lee, S. K. et al. SQUID-detected MRI at 132 microT with T1-weighted contrast established at 10 microT–300 mT. Magn. Reson. Med. 53, 9–14 (2005).

    Google Scholar 

  179. Tsai, L. L. et al. Posture-dependent human 3He lung imaging in an open-access MRI system: initial results. Acad. Radiol. 15, 728–739 (2008).

    Google Scholar 

  180. Zotev, V. S. et al. Parallel MRI at microtesla fields. J. Magn. Reson. 192, 197–208 (2008).

    Google Scholar 

  181. Zotev, V. S. et al. Microtesla MRI with dynamic nuclear polarization. J. Magn. Reson. 207, 78–88 (2010).

    Google Scholar 

  182. Sarracanie, M., Armstrong, B. D., Stockmann, J. & Rosen, M. S. High speed 3D overhauser-enhanced MRI using combined b-SSFP and compressed sensing. Magn. Reson. Med. 71, 735–745 (2014).

    Google Scholar 

  183. Schellhammer, S. M. et al. Integrating a low-field open MR scanner with a static proton research beam line: proof of concept. Phys. Med. Biol. 63, 23LT01 (2018).

    Google Scholar 

  184. Chetcuti, K. et al. Implementation of a low-field portable MRI scanner in a resource-constrained environment: our experience in Malawi. Am. J. Neuroradiol. 43, 670–674 (2022).

    Google Scholar 

  185. Prabhat, A. M. et al. Methodology for low-field, portable magnetic resonance neuroimaging at the bedside. Front. Neurol. 12, 760321 (2021).

    Google Scholar 

  186. Bhat, S. S. et al. Low-field MRI of stroke: challenges and opportunities. J. Magn. Reson. Imaging 54, 372–390 (2021).

    Google Scholar 

  187. OECD. OECD Regions and Cities at a Glance 2020 https://doi.org/10.1787/26173212 (2020).

  188. Bierman, H. The safety of MRI. JAMA 261, 3412 (1989).

    Google Scholar 

  189. Russo, R. J. et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N. Engl. J. Med. 376, 755–764 (2017).

    Google Scholar 

  190. Nazarian, S. et al. Safety of magnetic resonance imaging in patients with cardiac devices. N. Engl. J. Med. 377, 2555–2564 (2017).

    Google Scholar 

  191. Shen, F. X., Wolf, S. M., Gonzalez, R. G. & Garwood, M. Ethical issues posed by field research using highly portable and cloud-enabled neuroimaging. Neuron 105, 771–775 (2020).

    Google Scholar 

  192. Shen, F. X. et al. Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings. Neuroimage 238, 118210 (2021).

    Google Scholar 

  193. Shen, F. X. Highly Portable and Cloud-Enabled Neuroimaging Research: Confronting Ethics Challenges in Field Research with New Populations https://www.neuroimagingethics.org/ (2022).

Download references

Acknowledgements

W.T.K., J.E.I., M.S.R. and K.N.S. are funded by a National Institute of Biomedical Imaging and Bioengineering R01 (EB031114-01A1). A.J.S.-A. is funded by the Fulbright Commission. A.G.W. is supported by an ERC Advanced Grant (101021218, PASMAR), an NWO-Open Technology grant (18981), and an NWO Stevin Prijs. E.X.W. is supported by Hong Kong Research Grant Council (R7003-19, HKU17112120, HKU17127121 and HKU17127022) and Lam Woo Foundation. F.X.S work is supported by NIH/NIMH grant RF1MH123698 on “Highly Portable and Cloud-Enabled Neuroimaging Research: Confronting Ethics in Field Research with New Populations.” The content is solely the responsibility of the authors and does not necessarily represent the official views of NIMH or NIH. S.J.S. is supported by NIH Director’s Transformative Award (1R01AI145057), and NIH grants (2R01HD085853-07, 1R01HD096693-01, 1U01NS107486 and 1UG3NS123307). J.E.I. is funded by Alzheimer’s Research UK (ARUK-IRG2019A-003), NIH BRAIN Initiative (1RF1MH123195, 1UM1MH130981) and NIH grant (1R01AG07098). M.S.R. acknowledges the gracious support of the Kiyomi and Ed Baird MGH Research Scholar Award. All other co-authors report no relevant disclosures or funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the planning, drafting and editing of this Review.

Corresponding authors

Correspondence to W. Taylor Kimberly or Kevin N. Sheth.

Ethics declarations

Competing interests

M.S.R. is a founder and equity holder of Hyperfine Inc. W.T.K. and K.N.S. have sponsored research agreements between their respective institutions and Hyperfine Inc. All other co-authors declare no conflict of interest.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Mark Griswold, who co-reviewed with Reid Bolding; and Peter Basser for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimberly, W.T., Sorby-Adams, A.J., Webb, A.G. et al. Brain imaging with portable low-field MRI. Nat Rev Bioeng 1, 617–630 (2023). https://doi.org/10.1038/s44222-023-00086-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00086-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research