Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Self-assembled lipid–prodrug nanoparticles

Abstract

Nanomedicines suffer from poor drug loading and uncontrolled ‘burst release’ after administration. Combining prodrug strategies with nanostructured carriers can help to overcome these limitations by improving diffusion through biological barriers, enzymatic activation of the lipid conjugate in the diseased area, drug protection, pharmacokinetics and biodistribution, intracellular delivery and/or targeting properties. Owing to fundamental advances in supramolecular chemistry and the fine-tuning of drug, lipid and drug–lipid chemical link modifications, it is now possible to develop lipid–prodrug conjugates that can spontaneously self-assemble into nanoparticles in aqueous media with unique supramolecular organizations and without additional excipients. In this Review, we describe the chemical synthesis, physicochemical properties, structure and pharmacological activity of lipid–prodrug-based nanomedicines and discuss the path towards clinical translation for the treatment of severe diseases.

Key points

  • Lipid–prodrug nanomedicines combine the benefits of nanoparticles and prodrugs by modulating drug release, reducing drug metabolism, improving pharmacokinetic and biodistribution and enhancing intracellular delivery.

  • A typical lipid–drug bioconjugate is composed of a lipid carrier molecule, a drug and, if required, a chemical spacer, which can be stimulus responsive.

  • The supramolecular architectures of lipid–prodrug nanomedicines is a key factor for bioactivation of the prodrug and its pharmacological activity.

  • Lipid–prodrug nanomedicines exhibit higher in vitro and in vivo pharmacological activity than their parent drugs in experimental models of cancer, neurological disorders, infectious diseases or uncontrolled inflammation.

  • Clinical translation of lipid–prodrug nanomedicines remains limited owing to difficulties in prodrug chemical synthesis, control of drug release, the lack of predictive preclinical models and the need to improve patient selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of nanomedicines.
Fig. 2: Building blocks of lipid–prodrug conjugates.
Fig. 3: Structure of lipid–prodrug conjugates that can self-assemble into nanoparticles.
Fig. 4: Relationship between the structure of squalene-based nanoparticles and their pharmacological activity.
Fig. 5: Schematic illustration of a visible-light-triggered prodrug nanoparticles.

Similar content being viewed by others

References

  1. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug. Discov. 20, 101–124 (2021).

    Article  Google Scholar 

  2. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article  Google Scholar 

  3. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  Google Scholar 

  4. Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018). This review examines prodrug design strategies to enhance the formulation, pharmacokinetic and targeting properties of drugs and discusses the preclinical and clinical challenges of the prodrug approach.

    Article  Google Scholar 

  5. Gabizon, A. et al. Therapeutic efficacy of a lipid-based prodrug of mitomycin C in pegylated liposomes: studies with human gastro-entero-pancreatic ectopic tumor models. J. Control. Release 160, 245–253 (2012).

    Article  Google Scholar 

  6. Daman, Z., Ostad, S., Amini, M. & Gilani, K. Preparation, optimization and in vitro characterization of stearoyl-gemcitabine polymeric micelles: a comparison with its self-assembled nanoparticles. Int. J. Pharm. 468, 142–151 (2014).

    Article  Google Scholar 

  7. Dhar, S., Kolishetti, N., Lippard, S. J. & Farokhzad, O. C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl Acad. Sci. USA 108, 1850–1855 (2011).

    Article  Google Scholar 

  8. Ma, P., Rahima, B. S., Feng, L. & Mumper, R. J. 2′-Behenoyl-paclitaxel conjugate containing lipid nanoparticles for the treatment of metastatic breast cancer. Cancer Lett. 334, 253–262 (2013).

    Article  Google Scholar 

  9. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021). This article describes the use of high-affinity integrin-α4β7-targeted lipid nanoparticles to deliver siRNAs to gut-homing leukocytes and achieve silencing of interferon γ in a murine model of colitis.

    Article  Google Scholar 

  10. Mirchandani, Y., Patravale, V. B. & S, B. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release 335, 457–464 (2021).

    Article  Google Scholar 

  11. Guimarães, D., Cavaco-Paulo, A. & Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 601, 120571 (2021).

    Article  Google Scholar 

  12. Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    Article  Google Scholar 

  13. Stevens, C. A., Kaur, K. & Klok, H.-A. Self-assembly of protein–polymer conjugates for drug delivery. Adv. Drug Deliv. Rev. 174, 447–460 (2021).

    Article  Google Scholar 

  14. Wang, Y. et al. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev. 110–111, 112–126 (2017).

    Article  Google Scholar 

  15. Rautio, J. et al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7, 255–270 (2008).

    Article  Google Scholar 

  16. Walther, R., Rautio, J. & Zelikin, A. N. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv. Drug Deliv. Rev. 118, 65–77 (2017).

    Article  Google Scholar 

  17. Baillet, J., Desvergnes, V., Hamoud, A., Latxague, L. & Barthélémy, P. Lipid and nucleic acid chemistries: combining the best of both worlds to construct advanced biomaterials. Adv. Mater. 30, 1705078 (2018).

    Article  Google Scholar 

  18. Allain, V., Bourgaux, C. & Couvreur, P. Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res. 40, 1891–1903 (2012).

    Article  Google Scholar 

  19. Wang, H. et al. New generation nanomedicines constructed from self-assembling small-molecule prodrugs alleviate cancer drug toxicity. Cancer Res. 77, 6963–6974 (2017). In this article, cabazitaxel lipid–prodrug-assembled PEGylated nanoparticles demonstrate less systemic toxicity while preserving anticancer efficacy and longer in vivo pharmacokinetics than free cabazitaxel.

    Article  Google Scholar 

  20. Fang, T., Ye, Z., Wu, J. & Wang, H. Reprogramming axial ligands facilitates the self-assembly of a platinum(IV) prodrug: overcoming drug resistance and safer in vivo delivery of cisplatin. Chem. Commun. Camb. Engl. 54, 9167–9170 (2018).

    Article  Google Scholar 

  21. Wu, L. et al. Self-assembled gemcitabine prodrug nanoparticles show enhanced efficacy against patient-derived pancreatic ductal adenocarcinoma. ACS Appl. Mater. Interf. 12, 3327–3340 (2020).

    Article  Google Scholar 

  22. Caron, J. et al. Squalenoyl gemcitabine monophosphate: synthesis, characterisation of nanoassemblies and biological evaluation. Eur. J. Org. Chem. 2011, 2615–2628 (2011).

    Article  Google Scholar 

  23. Coppens, E. et al. Gemcitabine lipid prodrugs: the key role of the lipid moiety on the self-assembly into nanoparticles. Bioconjug. Chem. 32, 782–793 (2021).

    Article  Google Scholar 

  24. Sun, B. et al. Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core–shell synergistic chemo-photodynamic therapy. Acta Biomater. 92, 219–228 (2019).

    Article  Google Scholar 

  25. Xu, H. et al. Prodrug-based self-assembled nanoparticles formed by 3′,5′-dioleoyl floxuridine for cancer chemotherapy. N. J. Chem. 45, 8306–8313 (2021).

    Article  Google Scholar 

  26. Sillman, B. et al. Creation of a long-acting nanoformulated dolutegravir. Nat. Commun. 9, 443 (2018).

    Article  Google Scholar 

  27. Zhou, T. et al. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 151, 53–65 (2018).

    Article  Google Scholar 

  28. Feng, J. et al. A new painkiller nanomedicine to bypass the blood–brain barrier and the use of morphine. Sci. Adv. https://doi.org/10.1126/sciadv.aau5148 (2019). This study describes the bioconjugation of Leu-enkephalin neuropeptide to squalene, whereby the resulting nanoparticles avoid central opioid receptors, thus evading the severe side effects associated with morphine.

    Article  Google Scholar 

  29. Gaudin, A. et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat. Nanotechnol. 9, 1054–1062 (2014). This study shows that the bioconjugation of adenosine to squalene confers neuroprotective effects on the resulting nanoparticles in experimental models of stroke and spinal cord injury.

    Article  Google Scholar 

  30. Hillaireau, H. et al. Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies. Biomaterials 34, 4831–4838 (2013).

    Article  Google Scholar 

  31. Couvreur, P. et al. Squalenoyl nanomedicines as potential therapeutics. Nano Lett. 6, 2544–2548 (2006). This seminal article reveals that the linkage of anticancer and antiviral nucleoside drugs to squalene leads to amphiphilic molecules that self-organize in water as nanoassemblies with improved in vivo and in vitro pharmacological efficacy.

    Article  Google Scholar 

  32. Maksimenko, A. et al. Polyisoprenoyl gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy. Cancer Lett. 334, 346–353 (2013).

    Article  Google Scholar 

  33. Reddy, L. H. et al. A new nanomedicine of gemcitabine displays enhanced anticancer activity in sensitive and resistant leukemia types. J. Control. Release 124, 20–27 (2007).

    Article  Google Scholar 

  34. Caron, J., Maksimenko, A., Mougin, J., Couvreur, P. & Desmaële, D. Combined antitumoral therapy with nanoassemblies of bolaform polyisoprenoyl paclitaxel/gemcitabine prodrugs. Polym. Chem. 5, 1662–1673 (2014).

    Article  Google Scholar 

  35. Wang, Y. et al. Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett. 14, 5577–5583 (2014).

    Article  Google Scholar 

  36. Bulanadi, J. C. et al. Biomimetic gemcitabine–lipid prodrug nanoparticles for pancreatic cancer. ChemPlusChem 85, 1283–1291 (2020).

    Article  Google Scholar 

  37. Peramo, A. et al. Squalene versus cholesterol: which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine? C. R. Chim. 21, 974–986 (2018).

    Article  Google Scholar 

  38. Dosio, F. et al. Novel nanoassemblies composed of squalenoyl−paclitaxel derivatives: synthesis, characterization, and biological evaluation. Bioconjug. Chem. 21, 1349–1361 (2010).

    Article  Google Scholar 

  39. Sémiramoth, N. et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano 6, 3820–3831 (2012).

    Article  Google Scholar 

  40. Abed, N. et al. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance. Sci. Rep. 5, 13500 (2015).

    Article  Google Scholar 

  41. Mangiapia, G. et al. Ruthenium-based complex nanocarriers for cancer therapy. Biomaterials 33, 3770–3782 (2012).

    Article  Google Scholar 

  42. Grijalvo, S., Ocampo, S. M., Perales, J. C. & Eritja, R. Synthesis of oligonucleotides carrying amino lipid groups at the 3′-end for RNA interference studies. J. Org. Chem. 75, 6806–6813 (2010).

    Article  Google Scholar 

  43. Grijalvo, S., Ocampo, S. M., Perales, J. C. & Eritja, R. Synthesis of lipid–oligonucleotide conjugates for RNA interference studies. Chem. Biodivers. 8, 287–299 (2011).

    Article  Google Scholar 

  44. Tajik-Ahmadabad, B., Polyzos, A., Separovic, F. & Shabanpoor, F. Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. Int. J. Pharm. 532, 21–28 (2017).

    Article  Google Scholar 

  45. Raouane, M. et al. Synthesis, characterization, and in vivo delivery of siRNA-squalene nanoparticles targeting fusion oncogene in papillary thyroid carcinoma. J. Med. Chem. 54, 4067–4076 (2011).

    Article  Google Scholar 

  46. Raouane, M., Desmaële, D., Urbinati, G., Massaad-Massade, L. & Couvreur, P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug. Chem. 23, 1091–1104 (2012).

    Article  Google Scholar 

  47. Massaad-Massade, L. et al. New formulation for the delivery of oligonucleotides using “clickable” siRNA-polyisoprenoid-conjugated nanoparticles: application to cancers harboring fusion oncogenes. Bioconjug. Chem. 29, 1961–1972 (2018).

    Article  Google Scholar 

  48. Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25, 1149–1157 (2007).

    Article  Google Scholar 

  49. Wang, H. et al. Doxorubicin conjugated phospholipid prodrugs as smart nanomedicine platforms for cancer therapy. J. Mater. Chem. B 3, 3297–3305 (2015).

    Article  Google Scholar 

  50. Luo, C. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel–fatty acid conjugate for cancer chemotherapy. Nano Lett. 16, 5401–5408 (2016).

    Article  Google Scholar 

  51. Sun, B. et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 18, 3643–3650 (2018).

    Article  Google Scholar 

  52. Li, Y. et al. Light-activated drug release from prodrug nanoassemblies by structure destruction. Chem. Commun. 55, 13128–13131 (2019).

    Article  Google Scholar 

  53. Huang, L. et al. Quantitative self-assembly of photoactivatable small molecular prodrug cocktails for safe and potent cancer chemo-photodynamic therapy. Nano Today 36, 101030 (2021).

    Article  Google Scholar 

  54. Choi, J. et al. Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. ACS Nano https://doi.org/10.1021/acsnano.1c03416 (2021).

    Article  Google Scholar 

  55. Tucci, S. T. et al. A scalable method for squalenoylation and assembly of multifunctional 64Cu-labeled squalenoylated gemcitabine nanoparticles. Nanotheranostics 2, 387–402 (2018).

    Article  Google Scholar 

  56. Bildstein, L. et al. Freeze-drying of squalenoylated nucleoside analogue nanoparticles. Int. J. Pharm. 381, 140–145 (2009).

    Article  Google Scholar 

  57. Rouquette, M. et al. Towards a clinical application of freeze-dried squalene-based nanomedicines. J. Drug Target. 27, 699–708 (2019).

    Article  Google Scholar 

  58. Duhem, N. et al. Self-assembling doxorubicin–tocopherol succinate prodrug as a new drug delivery system: synthesis, characterization, and in vitro and in vivo anticancer activity. Bioconjug. Chem. 25, 72–81 (2014).

    Article  Google Scholar 

  59. Rodríguez-Nogales, C. et al. A unique multidrug nanomedicine made of squalenoyl–gemcitabine and alkyl-lysophospholipid edelfosine. Eur. J. Pharm. Biopharm. 144, 165–173 (2019).

    Article  Google Scholar 

  60. Couvreur, P. et al. Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue. Small 4, 247–253 (2008).

    Article  Google Scholar 

  61. Bekkara-Aounallah, F. et al. Novel PEGylated nanoassemblies made of self-assembled squalenoyl nucleoside analogues. Adv. Funct. Mater. 18, 3715–3725 (2008).

    Article  Google Scholar 

  62. Lorscheider, M. et al. Nanoscale lipophilic prodrugs of dexamethasone with enhanced pharmacokinetics. Mol. Pharm. 16, 2999–3010 (2019).

    Article  Google Scholar 

  63. Israelachvili, J. N. Intermolecular And Surface Forces 2nd edn (Academic Press, 1992).

  64. Maksimenko, A. et al. A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc. Natl Acad. Sci. 111, E217–E226 (2014). This study shows that the bioconjugation of doxorubicin to squalene leads to the spontaneous formation of nanoassemblies with an elongated shape, long-lasting blood residence, improved antitumour efficacy and reduced cardiac toxicity.

    Article  Google Scholar 

  65. Caron, J. et al. Improving the antitumor activity of squalenoyl–paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. Adv. Healthc. Mater. 2, 172–185 (2013).

    Article  Google Scholar 

  66. Luo, C. et al. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small 12, 6353–6362 (2016).

    Article  Google Scholar 

  67. Singh, D. et al. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine 11, 1913–1927 (2016).

    Article  Google Scholar 

  68. Lepeltier, E. et al. Self-assembly of polyisoprenoyl gemcitabine conjugates: influence of supramolecular organization on their biological activity. Langmuir 30, 6348–6357 (2014).

    Article  Google Scholar 

  69. Lepeltier, E. et al. Self-assembly of squalene-based nucleolipids: relating the chemical structure of the bioconjugates to the architecture of the nanoparticles. Langmuir 29, 14795–14803 (2013).

    Article  Google Scholar 

  70. Mougin, J. et al. Stacking as a key property for creating nanoparticles with tunable shape: the case of squalenoyl–doxorubicin. ACS Nano 13, 12870–12879 (2019).

    Article  Google Scholar 

  71. GENG, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    Article  Google Scholar 

  72. Sobot, D. et al. Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nat. Commun. 8, 15678 (2017). This study shows that nanoparticles made of squalene derivatives exploit endogenous lipoproteins for drug delivery, enabling the targeting of cancer cells with high LDL receptor expression.

    Article  Google Scholar 

  73. Reid, J. M. et al. Phase I trial and pharmacokinetics of gemcitabine in children with advanced solid tumors. J. Clin. Oncol. 22, 2445–2451 (2004).

    Article  Google Scholar 

  74. Reddy, L. H. et al. Squalenoylation favorably modifies the in vivo pharmacokinetics and biodistribution of gemcitabine in mice. Drug Metab. Dispos. Biol. Fate Chem. 36, 1570–1577 (2008).

    Article  Google Scholar 

  75. Li, S. et al. The targeting mechanism of DHA ligand and its conjugate with gemcitabine for the enhanced tumor therapy. Oncotarget 5, 3622–3635 (2014).

    Article  Google Scholar 

  76. Hillaireau, H. & Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).

    Article  Google Scholar 

  77. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  Google Scholar 

  78. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  Google Scholar 

  79. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  Google Scholar 

  80. Bildstein, L. et al. Extracellular-protein-enhanced cellular uptake of squalenoyl gemcitabine from nanoassemblies. Soft Matter 6, 5570–5580 (2010).

    Article  Google Scholar 

  81. Gaudin, A. et al. Transport mechanisms of squalenoyl–adenosine nanoparticles across the blood–brain barrier. Chem. Mater. 27, 3636–3647 (2015).

    Article  Google Scholar 

  82. Liang, C.-H. et al. Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity. Mol. Pharm. 11, 1378–1390 (2014).

    Article  Google Scholar 

  83. Huan, M.-L. et al. Conjugation with α-linolenic acid improves cancer cell uptake and cytotoxicity of doxorubicin. Bioorg. Med. Chem. Lett. 19, 2579–2584 (2009).

    Article  Google Scholar 

  84. Yamamoto, M. et al. Roles for hENT1 and dCK in gemcitabine sensitivity and malignancy of meningioma. Neuro Oncol 23, 945–954 (2021).

    Article  Google Scholar 

  85. Oguri, T. et al. The absence of human equilibrative nucleoside transporter 1 expression predicts nonresponse to gemcitabine-containing chemotherapy in non-small cell lung cancer. Cancer Lett. 256, 112–119 (2007).

    Article  Google Scholar 

  86. Adema, A. D. et al. Metabolism and accumulation of the lipophilic deoxynucleoside analogs elacytarabine and CP-4126. Invest. New Drugs 30, 1908–1916 (2012).

    Article  Google Scholar 

  87. Bergman, A. M. et al. Antiproliferative activity, mechanism of action and oral antitumor activity of CP-4126, a fatty acid derivative of gemcitabine, in in vitro and in vivo tumor models. Invest. New Drugs 29, 456–466 (2011).

    Article  Google Scholar 

  88. Stuurman, F. E. et al. Phase I study of oral CP-4126, a gemcitabine derivative, in patients with advanced solid tumors. Invest. New Drugs 31, 959–966 (2013).

    Article  Google Scholar 

  89. Paliwal, R., Paliwal, S. R., Agrawal, G. P. & Vyas, S. P. Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: in vitro and in vivo evaluation. Mol. Pharm. 8, 1314–1321 (2011).

    Article  Google Scholar 

  90. Han, S. et al. Lymphatic transport and lymphocyte targeting of a triglyceride mimetic prodrug is enhanced in a large animal model: studies in greyhound dogs. Mol. Pharm. 13, 3351–3361 (2016).

    Article  Google Scholar 

  91. Porter, C. J. H., Trevaskis, N. L. & Charman, W. N. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6, 231–248 (2007).

    Article  Google Scholar 

  92. Markovic, M. et al. Lipidic prodrug approach for improved oral drug delivery and therapy. Med. Res. Rev. 39, 579–607 (2019).

    Article  Google Scholar 

  93. Han, S. et al. Profiling the role of deacylation–reacylation in the lymphatic transport of a triglyceride-mimetic prodrug. Pharm. Res. 32, 1830–1844 (2015).

    Article  Google Scholar 

  94. Han, S. et al. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies. J. Control. Release 177, 1–10 (2014).

    Article  Google Scholar 

  95. Dahan, A., Duvdevani, R., Dvir, E., Elmann, A. & Hoffman, A. A novel mechanism for oral controlled release of drugs by continuous degradation of a phospholipid prodrug along the intestine: in-vivo and in-vitro evaluation of an indomethacin–lecithin conjugate. J. Control. Release 119, 86–93 (2007).

    Article  Google Scholar 

  96. Gref, R. et al. Vitamin C–squalene bioconjugate promotes epidermal thickening and collagen production in human skin. Sci. Rep. 10, 16883 (2020).

    Article  Google Scholar 

  97. Dormont, F. et al. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents. Sci. Adv. 6, eaaz5466 (2020). This study shows that multidrug nanoparticles combining anti-inflammatory and antioxydative pharmacological activity could deliver the therapeutic agents in a targeted manner to treat acute uncontrolled inflammation.

    Article  Google Scholar 

  98. Sikorski, A. M., Hebert, N. & Swain, R. A. Conjugated linoleic acid (CLA) inhibits new vessel growth in the mammalian brain. Brain Res. 1213, 35–40 (2008).

    Article  Google Scholar 

  99. Ke, X.-Y. et al. The therapeutic efficacy of conjugated linoleic acid–paclitaxel on glioma in the rat. Biomaterials 31, 5855–5864 (2010).

    Article  Google Scholar 

  100. Jiang, M. et al. Reactive oxygen species activatable heterodimeric prodrug as tumor-selective nanotheranostics. ACS Nano https://doi.org/10.1021/acsnano.0c05722 (2020).

    Article  Google Scholar 

  101. Chen, Y. et al. Emerging small molecule-engineered hybrid nanomedicines for cancer therapy. Chem. Eng. J. 435, 135160 (2022).

    Article  Google Scholar 

  102. Mura, S., Bui, D. T., Couvreur, P. & Nicolas, J. Lipid prodrug nanocarriers in cancer therapy. J. Control. Release 208, 25–41 (2015).

    Article  Google Scholar 

  103. Réjiba, S. et al. Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer. Nanomed. Nanotechnol. Biol. Med. 7, 841–849 (2011).

    Article  Google Scholar 

  104. Zhong, T. et al. A self-assembling nanomedicine of conjugated linoleic acid–paclitaxel conjugate (CLA–PTX) with higher drug loading and carrier-free characteristic. Sci. Rep. 6, 36614 (2016).

    Article  Google Scholar 

  105. Rammal, H. et al. Investigation of squalene–doxorubicin distribution and interactions within single cancer cell using Raman microspectroscopy. Nanomed. Nanotechnol. Biol. Med. 35, 102404 (2021).

    Article  Google Scholar 

  106. Reddy, L. H. et al. Anticancer efficacy of squalenoyl gemcitabine nanomedicine on 60 human tumor cell panel and on experimental tumor. Mol. Pharm. 6, 1526–1535 (2009).

    Article  Google Scholar 

  107. Reddy, L. H. et al. Preclinical toxicology (subacute and acute) and efficacy of a new squalenoyl gemcitabine anticancer nanomedicine. J. Pharmacol. Exp. Ther. 325, 484–490 (2008).

    Article  Google Scholar 

  108. Rodríguez‐Nogales, C., Desmaële, D., Sebastián, V., Couvreur, P. & Blanco‐Prieto, M. J. Decoration of squalenoyl–gemcitabine nanoparticles with squalenyl‐hydroxybisphosphonate for the treatment of bone tumors. ChemMedChem 16, 3730–3738 (2021).

    Article  Google Scholar 

  109. Gaudin, A. et al. PEGylated squalenoyl–gemcitabine nanoparticles for the treatment of glioblastoma. Biomaterials 105, 136–144 (2016).

    Article  Google Scholar 

  110. Sarnyai, F. et al. Different metabolism and toxicity of TRANS fatty acids, elaidate and vaccenate compared to cis-oleate in HepG2 cells. Int. J. Mol. Sci. 23, 7298 (2022).

    Article  Google Scholar 

  111. Bradley, M. O. et al. Tumor targeting by covalent conjugation of a natural fatty acid to paclitaxel. Clin. Cancer Res. 7, 3229–3238 (2001).

    Google Scholar 

  112. Norbert, V. Elacytarabine — a new agent in the treatment of relapsed/refractory acute myeloid leukaemia. Eur. Oncol. Haematol. 8, 111–115 (2012).

    Article  Google Scholar 

  113. Sarpietro, M. G. et al. Synthesis of n-squalenoyl cytarabine and evaluation of its affinity with phospholipid bilayers and monolayers. Int. J. Pharm. 406, 69–77 (2011).

    Article  Google Scholar 

  114. Cosco, D. et al. Self-assembled squalenoyl-cytarabine nanostructures as a potent nanomedicine for treatment of leukemic diseases. Int. J. Nanomed. 7, 2535–2546 (2012).

    Google Scholar 

  115. Valetti, S. et al. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. J. Control. Release 192, 29–39 (2014).

    Article  Google Scholar 

  116. Jin, C. S., Cui, L., Wang, F., Chen, J. & Zheng, G. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv. Healthc. Mater. 3, 1240–1249 (2014).

    Article  Google Scholar 

  117. Kato, T. et al. Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer. Lung Cancer 113, 59–68 (2017).

    Article  Google Scholar 

  118. Kato, T. et al. Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma. Int. J. Oncol. https://doi.org/10.3892/ijo.2018.4555 (2018).

    Article  Google Scholar 

  119. Ujiie, H. et al. Porphyrin–high-density lipoprotein: a novel photosensitizing nanoparticle for lung cancer therapy. Ann. Thorac. Surg. 107, 369–377 (2019).

    Article  Google Scholar 

  120. Valetti, S. et al. Peptide conjugation: before or after nanoparticle formation? Bioconjug. Chem. 25, 1971–1983 (2014).

    Article  Google Scholar 

  121. Li, T. et al. Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy. Biomater. Res. 26, 3 (2022).

    Article  Google Scholar 

  122. Maksimenko, A. et al. Therapeutic modalities of squalenoyl nanocomposites in colon cancer: an ongoing search for improved efficacy. ACS Nano 8, 2018–2032 (2014).

    Article  Google Scholar 

  123. Rodríguez-Nogales, C. et al. Combinatorial nanomedicine made of squalenoyl–gemcitabine and edelfosine for the treatment of osteosarcoma. Cancers 12, 1895 (2020).

    Article  Google Scholar 

  124. Arias, J. L. et al. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 5, 1513–1521 (2011).

    Article  Google Scholar 

  125. Othman, M. et al. Synthesis and physicochemical characterization of new squalenoyl amphiphilic gadolinium complexes as nanoparticle contrast agents. Org. Biomol. Chem. 9, 4367–4386 (2011).

    Article  Google Scholar 

  126. Rajora, M. A. et al. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma. Chem. Sci. 8, 5371–5384 (2017).

    Article  Google Scholar 

  127. Overchuk, M. et al. Tailoring porphyrin conjugation for nanoassembly-driven phototheranostic properties. ACS Nano 13, 4560–4571 (2019).

    Article  Google Scholar 

  128. Kotelevets, L. et al. A squalene-based nanomedicine for oral treatment of colon cancer. Cancer Res. 77, 2964–2975 (2017).

    Article  Google Scholar 

  129. Reddy, L. H. et al. Squalenoyl nanomedicine of gemcitabine is more potent after oral administration in leukemia-bearing rats: study of mechanisms. Anticancer. Drugs 19, 999–1006 (2008).

    Article  Google Scholar 

  130. Tian, C. et al. Efficient intestinal digestion and on site tumor‐bioactivation are the two important determinants for chylomicron‐mediated lymph‐targeting triglyceride‐mimetic docetaxel oral prodrugs. Adv. Sci. 6, 1901810 (2019).

    Article  Google Scholar 

  131. Bala, V., Rao, S., Li, P., Wang, S. & Prestidge, C. A. Lipophilic prodrugs of SN38: synthesis and in vitro characterization toward oral chemotherapy. Mol. Pharm. 13, 287–294 (2016).

    Article  Google Scholar 

  132. Zhang, D., Li, D., Shang, L., He, Z. & Sun, J. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption. Int. J. Pharm. 511, 161–169 (2016).

    Article  Google Scholar 

  133. Zheng, Y. et al. Interface-sensitized prodrug nanoaggregate as an effective in situ antitumor vaccine. Eur. J. Pharm. Sci. 164, 105910 (2021).

    Article  Google Scholar 

  134. Tsopelas, C. & Sutton, R. Why certain dyes are useful for localizing the sentinel lymph node. J. Nucl. Med. 43, 1377–1382 (2002).

    Google Scholar 

  135. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  Google Scholar 

  136. Roboz, G. J. et al. International randomized phase III study of elacytarabine versus investigator choice in patients with relapsed/refractory acute myeloid leukemia. J. Clin. Oncol. 32, 1919–1926 (2014).

    Article  Google Scholar 

  137. Li, D. et al. A phase II, open-label, multicenter study to evaluate the antitumor efficacy of CO-1.01 as second-line therapy for gemcitabine-refractory patients with stage IV pancreatic adenocarcinoma and negative tumor hENT1 expression. Pancreatology 14, 398–402 (2014).

    Article  Google Scholar 

  138. Bedikian, A. Y. et al. Phase 3 study of docosahexaenoic acid–paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann. Oncol. 22, 787–793 (2011).

    Article  Google Scholar 

  139. Hessmann, E. et al. Microenvironmental determinants of pancreatic cancer. Physiol. Rev. 100, 1707–1751 (2020).

    Article  Google Scholar 

  140. Jacob, J. N., Hesse, G. W. & Shashoua, V. E. Synthesis, brain uptake, and pharmacological properties of a glyceryl lipid containing GABA and the GABA-T inhibitor γ-vinyl-GABA. J. Med. Chem. 33, 733–736 (1990).

    Article  Google Scholar 

  141. Garzon-Aburbeh, A., Poupaert, J. H., Claesen, M. & Dumont, P. A lymphotropic prodrug of L-dopa: synthesis, pharmacological properties and pharmacokinetic behavior of 1,3-dihexadecanoyl-2-[(S)-2-amino-3-(3,4-dihydroxyphenyl)propanoyl]propane-1,2,3-triol. J. Med. Chem. 29, 687–691 (1986).

    Article  Google Scholar 

  142. Scriba, G. K. E., Lambert, D. M. & Poupaert, J. H. Bioavailability and anticonvulsant activity of a monoglyceride‐derived prodrug of phenytoin after oral administration to rats. J. Pharm. Sci. 84, 300–302 (1995).

    Article  Google Scholar 

  143. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01334-x (2022). This study shows that the C16 lipophilic conjugate of siRNA achieves efficient delivery to the central nervous system, eyes and lungs, resulting in robust and durable gene silencing in rodents and non-human primates, and a favourable safety profile.

    Article  Google Scholar 

  144. Boutary, S. et al. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot–Marie–Tooth disease type 1A. Commun. Biol. 4, 317 (2021).

    Article  Google Scholar 

  145. McMillan, J. et al. Pharmacokinetic testing of a first-generation cabotegravir prodrug in rhesus macaques. Acquir. Immune Defic. Syndr. 33, 585–588 (2019).

    Google Scholar 

  146. Banoub, M. G. et al. Synthesis and characterization of long-acting darunavir prodrugs. Mol. Pharm. 17, 155–166 (2020).

    Article  Google Scholar 

  147. Smith, N. et al. A long acting nanoformulated lamivudine ProTide. Biomaterials 223, 119476 (2019).

    Article  Google Scholar 

  148. Lin, Z. et al. ProTide generated long-acting abacavir nanoformulations. Chem. Commun. Camb. Engl. 54, 8371–8374 (2018).

    Article  Google Scholar 

  149. Baldrick, P. Safety evaluation to support first-in-man investigations. I: Kinetic and safety pharmacology studies. Regul. Toxicol. Pharmacol. 51, 230–236 (2008).

    Article  Google Scholar 

  150. Irby, D., Du, C. & Li, F. Lipid–drug conjugate for enhancing drug delivery. Mol. Pharm. 14, 1325–1338 (2017).

    Article  Google Scholar 

  151. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.C. organized the writing of the Review, provided the first drafts of the text and the boxes, drew some figures, discussed with the co-authors and answered the reviewer and editor queries. S.L.-M. collected the data and wrote the lipid–prodrug chemical synthesis and drew the figures with the chemical structures and was involved in replying to the reviewers. E.G. and M.J.B.-P. collected data and wrote parts of the Review, drew some figures and tables, and were involved in replying to the reviewers.

Corresponding author

Correspondence to Patrick Couvreur.

Ethics declarations

Competing interests

S.L.-M. and P.C. have non-financial competing interests as inventors of patents related to squalene-based nanoparticles; M.J.B.-P. and E.G. declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Natalie Trevaskis and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couvreur, P., Lepetre-Mouelhi, S., Garbayo, E. et al. Self-assembled lipid–prodrug nanoparticles. Nat Rev Bioeng 1, 749–768 (2023). https://doi.org/10.1038/s44222-023-00082-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00082-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing