Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Co-culture approaches for cultivated meat production

Abstract

The need and demand for sustainable, nutritious and animal-welfare-conscious meat substitutes has spurred research into cultivated meat production. Meat mainly contains muscle and fat tissue, which can be fabricated using various tissue engineering strategies, including monoculture and co-culture approaches in different scaffolds. In this Review, we outline how co-culture approaches commonly used in biomedical tissue engineering can be applied to produce cultured meat. We discuss the relevant cell types and cell sources and examine different co-culture approaches for skeletal muscle and adipose tissue engineering. Finally, we discuss the application of such approaches for animal-free meat production, highlighting their potential to reduce cultured meat production costs, improve the organoleptic properties of cultured meat and increase tissue thickness.

Key points

  • Multiple challenges still stand as barriers to the mass and low-cost production of in vitro meat with desirable nutritional and organoleptic properties.

  • Insights from tissue engineering may advance cultured meat fabrication: in particular, co-culture approaches can promote tissue growth, differentiation and maturation.

  • Co-culture approaches for cultivated meat production may reduce the need for growth factor supplementation, accelerate the fabrication and improve the properties of the final product, making such cultured meat more similar to animal-derived meat.

  • Co-culture may also lead to undesired effects, and scaling up an efficient co-culture system remains technologically challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cultured meat production.
Fig. 2: Co-culture approaches.
Fig. 3: Co-culture methods in cultivated meat production.

Similar content being viewed by others

References

  1. Goodwin, J. N. & Shoulders, C. W. The future of meat: a qualitative analysis of cultured meat media coverage. Meat Sci. 95, 445–450 (2013).

    Article  Google Scholar 

  2. Mattick, C. S. Cellular agriculture: the coming revolution in food production. Bull. At. Sci. 74, 32–35 (2018).

    Article  Google Scholar 

  3. Ben-Arye, T. & Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 3, 46 (2019). This review discusses the adjustment needed to create skeletal muscle for cultured meat development using tissue engineering.

    Article  Google Scholar 

  4. World Livestock 2011 — Livestock in Food Security (FAO, 2011).

  5. Hubalek, S., Post, M. J. & Moutsatsou, P. Towards resource-efficient and cost-efficient cultured meat. Curr. Opin. Food Sci. 47, 100885 (2022). This review discusses the hurdles that need to be overcome for the cost-efficient production of cultured meat, describing cost-effective nutrient replacements for cell growth and differentiation, as well as medium recyclability options.

    Article  Google Scholar 

  6. Reddi, A. H. Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. J. Cell. Biochem. 56, 192–195 (1994).

    Article  Google Scholar 

  7. Mol, A. et al. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33, 1778–1788 (2005).

    Article  Google Scholar 

  8. Edelman, P. D., McFarland, D. C., Mironov, V. A. & Matheny, J. G. In vitro-cultured meat production. Tissue Eng. 11, 659–662 (2005).

    Article  Google Scholar 

  9. Post, M. J. Cultured beef: medical technology to produce food. J. Sci. Food Agric. 94, 1039–1041 (2014).

    Article  Google Scholar 

  10. Boldrin, L. et al. Efficient delivery of human single fiber-derived muscle precursor cells via biocompatible scaffold. Cell Transpl. 17, 576–584 (2008).

    Article  Google Scholar 

  11. Listrat, A. et al. How muscle structure and composition determine meat quality. Prod. Anim. 28, 125–136 (2015).

    Google Scholar 

  12. Listrat, A. et al. How muscle structure and composition influence meat and flesh quality. Sci. World J. https://doi.org/10.1155/2016/3182746 (2016).

    Article  Google Scholar 

  13. Gomillion, C. T. & Burg, K. J. L. Stem cells and adipose tissue engineering. Biomaterials 27, 6052–6063 (2006).

    Article  Google Scholar 

  14. Yao, R., Zhang, R., Lin, F. & Luan, J. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering. Biotechnol. Bioeng. 110, 1430–1443 (2013).

    Article  Google Scholar 

  15. Vandenburgh, H. et al. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37, 438–447 (2008).

    Article  Google Scholar 

  16. Nam, K. H., Smith, A. S. T., Lone, S., Kwon, S. & Kim, D. H. Biomimetic 3D tissue models for advanced high-throughput drug screening. J. Lab. Autom. 20, 201–215 (2015).

    Article  Google Scholar 

  17. Lesman, A., Rosenfeld, D., Landau, S. & Levenberg, S. Mechanical regulation of vascular network formation in engineered matrices. Adv. Drug Deliv. Rev. 96, 176–182 (2016).

    Article  Google Scholar 

  18. Guo, S. et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces. Nano Lett. 21, 2497–2504 (2021).

    Article  Google Scholar 

  19. Rubio, N. R., Xiang, N. & Kaplan, D. L. Plant-based and cell-based approaches to meat production. Nat. Commun. 11, 6276 (2020).

    Article  Google Scholar 

  20. Stout, A. J. et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5, 466 (2022).

    Article  Google Scholar 

  21. Humbird, D. Scale‐up economics for cultured meat. Biotechnol. Bioeng. 118, 3239–3250 (2021).

    Article  Google Scholar 

  22. Messmer, T. et al. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nat. Food 3, 74–85 (2022).

    Article  Google Scholar 

  23. Post, M. J. et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1, 403–415 (2020). This review discusses the scientific and social challenges in transforming cultured meat into a viable commercial option.

    Article  Google Scholar 

  24. Fraeye, I., Kratka, M., Vandenburgh, H. & Thorrez, L. Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: much to be inferred. Front. Nutr. 7, 35 (2020).

    Article  Google Scholar 

  25. Bomkamp, C. et al. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. Adv. Sci. 9, 2102908 (2022).

    Article  Google Scholar 

  26. Haraguchi, Y. & Shimizu, T. Three-dimensional tissue fabrication system by co-culture of microalgae and animal cells for production of thicker and healthy cultured food. Biotechnol. Lett. 43, 1117–1129 (2021).

    Article  Google Scholar 

  27. Kim, H. et al. A novel 3D indirect co-culture system based on a collagen hydrogel scaffold for enhancing the osteogenesis of stem cells. J. Mater. Chem. B 8, 9481–9491 (2020).

    Article  Google Scholar 

  28. Paschos, N. K., Brown, W. E., Eswaramoorthy, R., Hu, J. C. & Athanasiou, K. A. Advances in tissue engineering through stem cell-based co-culture. J. Tissue Eng. Regen. Med. 9, 488–503 (2015). This review discusses the use of stem cells in co-culture systems, describing different methods and emphasizing the advantages of stem cell co-culture strategies and their applications in tissue engineering.

    Article  Google Scholar 

  29. Khademhosseini, A. et al. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 25, 3583–3592 (2004).

    Article  Google Scholar 

  30. Weizman, A., Michael, I., Wiesel-Motiuk, N., Rezania, A. & Levenberg, S. The effect of endothelial cells on hESC-derived pancreatic progenitors in a 3D environment. Biomater. Sci. 2, 1706–1714 (2014).

    Article  Google Scholar 

  31. Freiman, A. et al. Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Res. Ther. 7, 5 (2016).

    Article  Google Scholar 

  32. Goers, L., Freemont, P. & Polizzi, K. M. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11, 20140065 (2014).

    Article  Google Scholar 

  33. Ben-Arye, T. et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food 1, 210–220 (2020). This article reports the use of textured soy protein as a scaffold for monoculture and co-culture to create 3D engineered bovine muscle tissue.

    Article  Google Scholar 

  34. Goulet, F., Normand, C. & Morin, O. Cellular interactions promote tissue‐specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8, 1010–1018 (1988).

    Article  Google Scholar 

  35. Bian, L., Zhai, D. Y., Mauck, R. L. & Burdick, J. A. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng. Part A 17, 1137–1145 (2011).

    Article  Google Scholar 

  36. Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA. 115, 2090–2095 (2018).

    Article  Google Scholar 

  37. Lu, Y. et al. Avian-induced pluripotent stem cells derived using human reprogramming factors. Stem Cell Dev. 21, 394–403 (2012).

    Article  Google Scholar 

  38. Ding, S. et al. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 8, 10808 (2018).

    Article  Google Scholar 

  39. Li, B. J. et al. Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australas. J. Anim. Sci 28, 1171–1177 (2015).

    Article  Google Scholar 

  40. Musina, R. A., Bekchanova, E. S., Belyavskii, A. V. & Sukhikh, G. T. Differentiation potential of mesenchymal stem cells of different origin. Bull. Exp. Biol. Med. 141, 147–151 (2006).

    Article  Google Scholar 

  41. Uezumi, A., Fukada, S. I., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).

    Article  Google Scholar 

  42. Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network. Front. Physiol. 10, 1074 (2019).

    Article  Google Scholar 

  43. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  Google Scholar 

  44. Lipsitz, Y. Y., Woodford, C., Yin, T., Hanna, J. H. & Zandstra, P. W. Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc. Natl Acad. Sci. USA. 115, 6369–6374 (2018).

    Article  Google Scholar 

  45. Singh, H., Mok, P., Balakrishnan, T., Rahmat, S. N. B. & Zweigerdt, R. Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 4, 165–179 (2010).

    Article  Google Scholar 

  46. Bodiou, V., Moutsatsou, P. & Post, M. J. Microcarriers for upscaling cultured meat production. Front. Nutr. 7, 10 (2020).

    Article  Google Scholar 

  47. Kwok, C. K. et al. Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using single-use bioreactors. J. Tissue Eng. Regen. Med. 12, e1076–e1087 (2018).

    Article  Google Scholar 

  48. Manstein, F., Halloin, C. & Zweigerdt, R. Human pluripotent stem cell expansion in stirred tank bioreactors. Methods Mol. Biol. 1994, 79–91 (2019).

    Article  Google Scholar 

  49. Assou, S. et al. Recurrent genetic abnormalities in human pluripotent stem cells: definition and routine detection in culture supernatant by targeted droplet digital PCR. Stem Cell Rep. 14, 1–8 (2020).

    Article  Google Scholar 

  50. Bar, S. & Benvenisty, N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 38, e101033 (2019).

    Article  Google Scholar 

  51. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  Google Scholar 

  52. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA. 78, 7634–7638 (1981).

    Article  Google Scholar 

  53. Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013).

    Article  Google Scholar 

  54. Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).

    Article  Google Scholar 

  55. Valamehr, B. et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Reports 2, 366–382 (2014).

    Article  Google Scholar 

  56. Ware, C. B. et al. Derivation of naïve human embryonic stem cells. Proc. Natl Acad. Sci. USA. 111, 4484–4489 (2014).

    Article  Google Scholar 

  57. Pain, B. et al. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122, 2339–2348 (1996).

    Article  Google Scholar 

  58. Collodi, P. et al. Culture of cells from zebrafish (Brachydanio rerio) embryo and adult tissues. Cell Biol. Toxicol. 8, 43–61 (1992).

    Article  Google Scholar 

  59. Wakamatsu, Y., Ozato, K. & Sasado, T. Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryo. Mol. Mar. Biol. Biotechnol. 3, 185–191 (1994).

    Google Scholar 

  60. Lavon, N. New technologies for cultivated meat production. Trends Biotechnol. 40, 632–633 (2022).

    Article  Google Scholar 

  61. Karagiannis, P. et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol. Rev. 99, 79–114 (2019).

    Article  Google Scholar 

  62. Seki, T. Methods of induced pluripotent stem cells for clinical application. World J. Stem Cells 7, 116–125 (2015).

    Article  Google Scholar 

  63. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  Google Scholar 

  64. Ezashi, T. et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl. Acad. Sci. USA 106, 10993–10998 (2009).

    Article  Google Scholar 

  65. Wu, Z. et al. Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol. 1, 46–54 (2009).

    Article  Google Scholar 

  66. Fuet, A. & Pain, B. Chicken induced pluripotent stem cells: establishment and characterization. Methods Mol. Biol. 1650, 211–228 (2017).

    Article  Google Scholar 

  67. Peng, L. et al. Generation of stable induced pluripotent stem-like cells from adult zebra fish fibroblasts. Int. J. Biol. Sci. 15, 2340–2349 (2019).

    Article  Google Scholar 

  68. Su, Y. et al. Establishment of bovine-induced pluripotent stem cells. Int. J. Mol. Sci. 22, 10489 (2021).

    Article  Google Scholar 

  69. Pawlowski, M. et al. Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Rep. 8, 803–812 (2017).

    Article  Google Scholar 

  70. Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9, 17–23 (2011).

    Article  Google Scholar 

  71. Tobin, S. C., Kim, K., De La Rosa, M., Wieland, F. & Just, W. Generating pluripotent stem cells: differential epigenetic changes during cellular reprogramming. FEBS Lett. https://doi.org/10.1016/j.febslet.2012.07.024 (2012).

    Article  Google Scholar 

  72. Pillai, V. V. et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim. Sci. J. 90, 1149–1160 (2019).

    Article  Google Scholar 

  73. Rosselló, R. A. et al. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. Elife 2, e00036 (2013).

    Article  Google Scholar 

  74. Roobrouck, V. D., Ulloa-Montoya, F. & Verfaillie, C. M. Self-renewal and differentiation capacity of young and aged stem cells. Exp. Cell Res. 314, 1937–1944 (2008).

    Article  Google Scholar 

  75. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  Google Scholar 

  76. Verbruggen, S., Luining, D., van Essen, A. & Post, M. J. Bovine myoblast cell production in a microcarriers-based system. Cytotechnology 70, 503–512 (2018).

    Article  Google Scholar 

  77. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).

    Article  Google Scholar 

  78. Sui, M. H. et al. Isolation, culture and myogenic differentiation of muscle stem cells in goat fetal. Sci. Agric. Sin. 51, 1590–1597 (2018).

    Google Scholar 

  79. Dodson, M. V., Martin, E. L., Brannon, M. A., Mathison, B. A. & McFarland, D. C. Optimization of bovine satellite cell-derived myotube formation in vitro. Tissue Cell 19, 159–166 (1987).

    Article  Google Scholar 

  80. Matsuda, R., Spector, D. H. & Strohman, R. C. Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms. Dev. Biol. 100, 478–488 (1983).

    Article  Google Scholar 

  81. Yablonka-Reuveni, Z., Quinn, L. B. S. & Nameroff, M. Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev. Biol. 119, 252–259 (1987).

    Article  Google Scholar 

  82. Kong, X. et al. Establishment of myoblast cell line and identification of key genes regulating myoblast differentiation in a marine teleost, Sebastes schlegelii. Gene 802, 145869 (2021).

    Article  Google Scholar 

  83. Powell, R. L., Dodson, M. V. & Cloud, J. G. Cultivation and differentiation of satellite cells from skeletal muscle of the rainbow trout Salmo gairdneri. J. Exp. Zool. 250, 333–338 (1989).

    Article  Google Scholar 

  84. Dodson, M. V., McFarland, D. C., Martin, E. L. & Brannon, M. A. Isolation of satellite cells from ovine skeletal muscles. J. Tissue Cult. Methods 10, 233–237 (1986).

    Article  Google Scholar 

  85. Blanton, J. R., Grant, A. L., Mcfarland, D. C., Robinson, J. P. & Bidwell, C. A. Isolation of two populations of myoblasts from porcine skeletal muscle. Muscle Nerve 22, 43–50 (1999).

    Article  Google Scholar 

  86. McFarland, D. C., Doumit, M. E. & Minshall, R. D. The turkey myogenic satellite cell: optimization of in vitro proliferation and differentiation. Tissue Cell 20, 899–908 (1988).

    Article  Google Scholar 

  87. Mouly, V. et al. The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol. Scand. 184, 3–15 (2005).

    Article  Google Scholar 

  88. Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).

    Article  Google Scholar 

  89. Kolkmann, A. M., Van Essen, A., Post, M. J. & Moutsatsou, P. Development of a chemically defined medium for in vitro expansion of primary bovine satellite cells. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2022.895289 (2022).

    Article  Google Scholar 

  90. Haynesworth, S. E., Goshima, J., Goldberg, V. M. & Caplan, A. I. Characterization of cells with osteogenic potential from human marrow. Bone 13, 81–88 (1992).

    Article  Google Scholar 

  91. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  Google Scholar 

  92. Testa, S. et al. Skeletal muscle-derived human mesenchymal stem cells: influence of different culture conditions on proliferative and myogenic capabilities. Front. Physiol. 11, 553198 (2020).

    Article  Google Scholar 

  93. Bosnakovski, D. et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319, 243–253 (2005).

    Article  Google Scholar 

  94. Raoufi, M. F., Tajik, P., Dehghan, M. M., Eini, F. & Barin, A. Isolation and differentiation of mesenchymal stem cells from bovine umbilical cord blood. Reprod. Domest. Anim. 46, 95–99 (2011).

    Article  Google Scholar 

  95. Khatri, M., O’Brien, T. D. & Sharma, J. M. Isolation and differentiation of chicken mesenchymal stem cells from bone marrow. Stem Cells Dev 18, 1495–1492 (2009).

    Article  Google Scholar 

  96. Feyen, D. A. M. et al. Isolation of pig bone marrow-derived mesenchymal stem cells. Methods Mol. Biol. 1416, 225–232 (2016).

    Article  Google Scholar 

  97. Lund, T. C. et al. Sdf1 expression reveals a source of perivascular-derived mesenchymal stem cells in zebrafish. Stem Cells 32, 2767–2779 (2014).

    Article  Google Scholar 

  98. Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

    Article  Google Scholar 

  99. Okamura, L. H. et al. Myogenic differentiation potential of mesenchymal stem cells derived from fetal bovine bone marrow. Anim. Biotechnol. 29, 1–11 (2018).

    Article  Google Scholar 

  100. Meatafora company website. https://meatafora.com/.

  101. Low, M., Eisner, C. & Rossi, F. Fibro/adipogenic progenitors (FAPs): isolation by FACS and culture. Methods Mol. Biol. 1556, 179–189 (2017).

    Article  Google Scholar 

  102. Dohmen, R. G. J. et al. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Sci. Food 6, 6 (2022).

    Article  Google Scholar 

  103. Uezumi, A. et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664 (2011).

    Article  Google Scholar 

  104. Maqsood, M. I., Matin, M. M., Bahrami, A. R. & Ghasroldasht, M. M. Immortality of cell lines: challenges and advantages of establishment. Cell Biol. Int. 37, 1038–1045 (2013).

    Article  Google Scholar 

  105. Soice, E. & Johnston, J. Immortalizing cells for human consumption. Int. J. Mol. Sci. 22, 11660 (2021).

    Article  Google Scholar 

  106. Kazama, T., Fujie, M., Endo, T. & Kano, K. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochem. Biophys. Res. Commun. 377, 780–785 (2008).

    Article  Google Scholar 

  107. Pasitka, L. et al. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food https://doi.org/10.1038/s43016-022-00658-w (2022).

    Article  Google Scholar 

  108. Kuo, H. H. et al. Negligible-cost and weekend-free chemically defined human iPSC Culture. Stem Cell Rep. 14, 256–270 (2020).

    Article  Google Scholar 

  109. Dakhore, S., Nayer, B. & Hasegawa, K. Human pluripotent stem cell culture: Current status, challenges, and advancement. Stem Cells Int. 2018, 7396905 (2018).

    Article  Google Scholar 

  110. Kolkmann, A. M., Post, M. J., Rutjens, M. A. M., van Essen, A. L. M. & Moutsatsou, P. Serum-free media for the growth of primary bovine myoblasts. Cytotechnology 72, 111–120 (2020).

    Article  Google Scholar 

  111. Dai, X. et al. Comparison of the differentiation abilities of bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells toward nucleus pulposus-like cells in three-dimensional culture. Exp. Ther. Med. 22, 1018 (2021).

    Article  Google Scholar 

  112. Rosso, F., Giordano, A., Barbarisi, M. & Barbarisi, A. From cell-ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174–180 (2004).

    Article  Google Scholar 

  113. Scheper, T. Tissue Engineering II: Basics of Tissue Engineering and Tissue Applications (eds Lee, K. & Kaplan, D.) (Springer, 2006).

  114. Bhatia, S. N., Balis, U. J., Yarmush, M. L. & Toner, M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13, 1883–1900 (1999).

    Article  Google Scholar 

  115. Lu, H. H. & Wang I, E. in Biomedical Nanostructures (ed. Gonsalves, K. E. et al.) Ch. 14 (Wiley, 2007).

  116. Abatangelo, G., Brun, P., Radice, M., Cortiro, R. & Auth, M. K. H. in Integrated Biomaterials Science (ed. Barbucci, R.) 885–945 (Kluwer, 2001).

  117. Li, Y. et al. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Mol. Biol. Rep. 41, 7543–7553 (2014).

    Article  Google Scholar 

  118. Siddiqui, S. H. et al. Modulatory effects of cell–cell interactions between porcine skeletal muscle satellite cells and fibroblasts on the expression of myogenesis-related genes. J. Appl. Anim. Res. 50, 259–268 (2022).

    Article  Google Scholar 

  119. Krieger, J., Park, B. W., Lambert, C. R. & Malcuit, C. 3D skeletal muscle fascicle engineering is improved with TGF-β1 treatment of myogenic cells and their co-culture with myofibroblasts. PeerJ 2018, e4939 (2018).

    Article  Google Scholar 

  120. Acharya, C. et al. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J. Cell. Physiol. 227, 88–97 (2012).

    Article  Google Scholar 

  121. Guo, S. et al. Prevascularized scaffolds bearing human dental pulp stem cells for treating complete spinal cord injury. Adv. Healthc. Mater. 9, e2000974 (2020).

    Article  Google Scholar 

  122. Luo, Y. et al. Co-culture with TM4 cells enhances the proliferation and migration of rat adipose-derived mesenchymal stem cells with high stemness. Cytotechnology 70, 1409–1422 (2018).

    Article  Google Scholar 

  123. Han, H. W. & Hsu, S. H. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells. Acta Biomater. 42, 157–167 (2016).

    Article  Google Scholar 

  124. Orsi, N. M. & Reischl, J. B. Mammalian embryo co-culture: trials and tribulations of a misunderstood method. Theriogenology 67, 441–458 (2007).

    Article  Google Scholar 

  125. Nishiofuku, M. et al. Modulated differentiation of embryonic stem cells into hepatocyte-like cells by coculture with hepatic stellate cells. J. Biosci. Bioeng. 111, 71–77 (2011).

    Article  Google Scholar 

  126. Campbell, J. J., Davidenko, N., Caffarel, M. M., Cameron, R. E. & Watson, C. J. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology. PLoS ONE 6, e25661 (2011).

    Article  Google Scholar 

  127. Wang, I.-N. E. et al. Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25, 1609–1620 (2007).

    Article  Google Scholar 

  128. Bogdanowicz, D. R. & Lu, H. H. Studying cell–cell communication in co-culture. Biotechnol. J. 8, 395–396 (2013).

    Article  Google Scholar 

  129. Kowalczyk, A. P. & Green, K. J. Structure, function, and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116, 95–118 (2013).

  130. Ou, D. B. et al. Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes. J. Cell. Biochem. 112, 3555–3562 (2011).

    Article  Google Scholar 

  131. Liu, Y. & Chan-Park, M. B. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31, 1158–1170 (2010).

    Article  Google Scholar 

  132. Arrigoni, C., Bersini, S., Gilardi, M. & Moretti, M. In vitro co-culture models of breast cancer metastatic progression towards bone. Int. J. Mol. Sci. 17, 1405 (2016).

    Article  Google Scholar 

  133. Yuan, Z. et al. Impact of human adipose tissue-derived stem cells on dermatofibrosarcoma protuberans cells in an indirect co-culture: an in vitro study. Stem Cell Res. Ther. 12, 440 (2021).

    Article  Google Scholar 

  134. Zhou, D. et al. A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro. Sci. Rep. 10, 11485 (2020).

    Article  Google Scholar 

  135. Osugi, M. et al. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng. A 18, 1479–1489 (2012).

    Article  Google Scholar 

  136. Jung, T. H. et al. Application of co-culture technology of epithelial type cells and mesenchymal type cells using nanopatterned structures. PLoS ONE https://doi.org/10.1371/journal.pone.0232899 (2020).

    Article  Google Scholar 

  137. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. https://doi.org/10.1038/nbt.2958 (2014).

    Article  Google Scholar 

  138. Kim, J. H. et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat. Commun. 11, 1025 (2020).

    Article  Google Scholar 

  139. De Giglio, E. et al. Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Sci. Rep. 8, 15130 (2018).

    Article  Google Scholar 

  140. Cho, W. W. et al. Flexible adipose-vascular tissue assembly using combinational 3D printing for volume-stable soft tissue reconstruction. Adv. Healthc. Mater. 10, 1–12 (2021).

    Google Scholar 

  141. Kaji, H., Camci-Unal, G., Langer, R. & Khademhosseini, A. Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochim. Biophys. Acta Gen. Subj. 1810, 239–250 (2011).

    Article  Google Scholar 

  142. Bhatia, S. N., Yarmush, M. L. & Toner, M. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34, 189–199 (1997).

    Article  Google Scholar 

  143. Co, C. C., Wang, Y. C. & Ho, C. C. Biocompatible micropatterning of two different cell types. J. Am. Chem. Soc. 127, 1598–1599 (2005).

    Article  Google Scholar 

  144. Yousaf, M. N., Houseman, B. T. & Mrksich, M. Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl Acad. Sci. USA 98, 5992–5996 (2001).

    Article  Google Scholar 

  145. Li, Y. et al. Hierarchical patterning of cells with a microeraser and electrospun nanofibers. Small 12, 1230–1239 (2016).

    Article  Google Scholar 

  146. Zhong, H. et al. Generation of a co-culture cell micropattern model to simulate lung cancer bone metastasis for anti-cancer drug evaluation. RSC Adv. 7, 21837–21847 (2017).

    Article  Google Scholar 

  147. Zagury, Y., Ianovici, I., Landau, S., Lavon, N. & Levenberg, S. Engineered marble-like bovine fat tissue for cultured meat. Commun. Biol. 5, 927 (2022). This article reports the formation of a marble-like construct, composed of engineered bovine adipose and muscle tissues, mimicking inter- and intramuscular fat structures.

    Article  Google Scholar 

  148. Xie, X. et al. A co-culture system of rat synovial stem cells and meniscus cells promotes cell proliferation and differentiation as compared to mono-culture. Sci. Rep. 8, 7693 (2018).

    Article  Google Scholar 

  149. Kovina, M. V., Dyuzheva, T. G., Krasheninnikov, M. E., Yakovenko, S. A. & Khodarovich, Y. M. Co-growth of stem cells with target tissue culture as an easy and effective method of directed differentiation. Front. Bioeng. Biotechnol. 9, 1–11 (2021).

    Article  Google Scholar 

  150. Kuppusamy, P., Kim, D., Soundharrajan, I., Hwang, I. & Choi, K. C. Adipose and muscle cell co-culture system: a novel in vitro tool to mimic the in vivo cellular environment. Biology https://doi.org/10.3390/biology10010006 (2021).

    Article  Google Scholar 

  151. Walenda, T. et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J. Cell. Mol. Med. 14, 337–350 (2010).

    Article  Google Scholar 

  152. Venter, C. & Niesler, C. A triple co-culture method to investigate the effect of macrophages and fibroblasts on myoblast proliferation and migration. Biotechniques 64, 52–58 (2018).

    Article  Google Scholar 

  153. Shahin-Shamsabadi, A. & Selvaganapathy, P. R. A 3D self-assembled in vitro model to simulate direct and indirect interactions between adipocytes and skeletal muscle cells. Adv. Biosyst. 4, 1–11 (2020).

    Article  Google Scholar 

  154. Orlidge, A. & D’Amore, P. A. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105, 1455–1462 (1987).

    Article  Google Scholar 

  155. Wang, Z., Wang, Y., Farhangfar, F., Zimmer, M. & Zhang, Y. Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts. PLoS ONE 7, 1–12 (2012).

    Google Scholar 

  156. Ostrovidov, S. et al. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J. Tissue Eng. Regen. Med. 11, 582–595 (2017).

    Article  Google Scholar 

  157. Liu, Y. et al. The effects of different phenotype astrocytes on neural stem cells differentiation in co-culture. Neurosci. Lett. 508, 61–66 (2012).

    Article  Google Scholar 

  158. Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Behav. Genet. 45, 183–195 (2015).

    Google Scholar 

  159. Levy-Mishali, M., Zoldan, J. & Levenberg, S. Effect of scaffold stiffness on myoblast differentiation. Tissue Eng. A 15, 935–944 (2009).

    Article  Google Scholar 

  160. Kaully, T., Kaufman-Francis, K., Lesman, A. & Levenberg, S. Vascularization — the conduit to viable engineered tissues. Tissue Eng. B 15, 159–169 (2009). This article reviews the progress and recent achievements toward vascularization of engineered tissues, to allow long-term viability of thick 3D-engineered tissue constructs.

    Article  Google Scholar 

  161. Debbi, L. et al. Integrating engineered macro vessels with self-assembled capillaries in 3D implantable tissue for promoting vascular integration in-vivo. Biomaterials 280, 121286 (2022).

    Article  Google Scholar 

  162. Merfeld-Clauss, S., Gollahalli, N., March, K. L. & Traktuev, D. O. Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng. A 16, 2953–2966 (2010).

    Article  Google Scholar 

  163. Haug, V., Torio-Padron, N., Stark, G. B., Finkenzeller, G. & Strassburg, S. Comparison between endothelial progenitor cells and human umbilical vein endothelial cells on neovascularization in an adipogenesis mouse model. Microvasc. Res. 97, 159–166 (2015).

    Article  Google Scholar 

  164. Asahara, T. & Isner, J. M. State-of-the-art reviews on vascular stem cells and angiogenesis endothelial progenitor cells for vascular regeneration. J. Hematother. Stem Cell Res. 11, 171–178 (2002).

    Article  Google Scholar 

  165. Perry, L., Ben-Shaul, S., Landau, S. & Levenberg, S. in Vascularization for Tissue Engineering and Regenerative Medicine (eds Holnthoner, W. et al.) 385–413 (Springer, 2021).This article reviews studies integrating co-cultures of endothelial with various types of supporting cells, for the generation of vascularized and functional tissue.

  166. Landau, S., Guo, S. & Levenberg, S. Localization of engineered vasculature within 3D tissue constructs. Front. Bioeng. Biotechnol. 6, 2 (2018).

    Article  Google Scholar 

  167. Von Tell, D., Armulik, A. & Betsholtz, C. Pericytes and vascular stability. Exp. Cell Res. 312, 623–629 (2006).

    Article  Google Scholar 

  168. Levenberg, S. et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 (2005).

    Article  Google Scholar 

  169. Perry, L., Flugelman, M. Y. & Levenberg, S. Elderly patient-derived endothelial cells for vascularization of engineered muscle. Mol. Ther. 25, 935–948 (2017).

    Article  Google Scholar 

  170. Perry, L., Landau, S., Flugelman, M. Y. & Levenberg, S. Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis. Commun. Biol. 1, 161 (2018).

    Article  Google Scholar 

  171. Kulesza, A. et al. The mutual interactions between mesenchymal stem cells and myoblasts in an autologous co-culture model. PLoS ONE 11, e0161693 (2016).

    Article  Google Scholar 

  172. Huttala, O. et al. Development of versatile human in vitro vascularized adipose tissue model with serum-free angiogenesis and natural adipogenesis induction. Basic Clin. Pharmacol. Toxicol. 123, 62–71 (2018).

    Article  Google Scholar 

  173. Tremolada, C., Palmieri, G. & Ricordi, C. Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine. Cell Transpl. 19, 1217–1223 (2010).

    Article  Google Scholar 

  174. Kang, J. H., Gimble, J. M. & Kaplan, D. L. In vitro 3D model for human vascularized adipose tissue. Tissue Eng. A 15, 2227–2236 (2009).

    Article  Google Scholar 

  175. Volz, A. C., Huber, B., Schwandt, A. M. & Kluger, P. J. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells. Differentiation 95, 21–30 (2017).

    Article  Google Scholar 

  176. Volz, A. C., Hack, L., Atzinger, F. B. & Kluger, P. J. Completely defined co-culture of adipogenic differentiated ASCs and microvascular endothelial cells. ALTEX 35, 464–476 (2018).

    Article  Google Scholar 

  177. Michael Sorrell, J., Baber, M. A., Traktuev, D. O., March, K. L. & Caplan, A. I. The creation of an in vitro adipose tissue that contains a vascular–adipocyte complex. Biomaterials 32, 9667–9676 (2011).

    Article  Google Scholar 

  178. Xue, W. et al. 3D bioprinted white adipose model for in vitro study of cancer-associated cachexia induced adipose tissue remodeling. Biofabrication 14, ac6c4b (2022).

    Article  Google Scholar 

  179. Choi, J. H. et al. Adipose tissue engineering for soft tissue regeneration. Tissue Eng. B 16, 413–426 (2010).

    Article  Google Scholar 

  180. Hausman, G. J., Basu, U., Du, M., Fernyhough-Culver, M. & Dodson, M. V. Intermuscular and intramuscular adipose tissues: bad vs. good adipose tissues. Adipocyte 3, 242–255 (2014).

    Article  Google Scholar 

  181. Shaw, C. S., Clark, J. & Wagenmakers, A. J. M. The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity. Annu. Rev. Nutr. 30, 13–34 (2010).

    Article  Google Scholar 

  182. Addison, O., Marcus, R. L., Lastayo, P. C. & Ryan, A. S. Intermuscular fat: a review of the consequences and causes. Int. J. Endocrinol. 2014, 34–36 (2014).

    Article  Google Scholar 

  183. Leal, L. G., Lopes, M. A. & Batista, M. L. Physical exercise-induced myokines and muscle–adipose tissue crosstalk: a review of current knowledge and the implications for health and metabolic diseases. Front. Physiol. https://doi.org/10.3389/fphys.2018.01307 (2018).

    Article  Google Scholar 

  184. Patrick, C. W. Tissue engineering strategies for adipose tissue repair. Anat. Rec. 263, 361–366 (2001).

    Article  Google Scholar 

  185. Jo, B., Morimoto, Y. & Takeuchi, S. Skeletal muscle–adipose cocultured tissue fabricated using cell-laden microfibers and a hydrogel sheet. Biotechnol. Bioeng. 119, 636–643 (2022).

    Article  Google Scholar 

  186. Pandurangan, M. & Hwang, I. Application of cell co-culture system to study fat and muscle cells. Appl. Microbiol. Biotechnol. 98, 7359–7364 (2014).

    Article  Google Scholar 

  187. Seo, K., Suzuki, T., Kobayashi, K. & Nishimura, T. Adipocytes suppress differentiation of muscle cells in a co-culture system. Anim. Sci. J. 90, 423–434 (2019).

    Article  Google Scholar 

  188. Pellegrinelli, V., Clément, K., Butler-Browne, G. S. & Lacasa, D. Human adipocytes induce inflammation and atrophy in muscle cells during obesity.Diabetes 64, 3121–3134 (2015).

    Article  Google Scholar 

  189. Specht, L. An Analysis of Culture Medium Costs and Production Volumes for Cultivated Meat, 1–30 (Good Food Institute, 2020).

  190. Church, R. L. Procollagen and collagen produced by normal bovine corneal stroma fibroblasts in cell culture. Investig. Ophthalmol. Vis. Sci. 19, 192–202 (1980).

    Google Scholar 

  191. Berthod, F., Hayek, D., Damour, O. & Collombel, C. Collagen synthesis by fibroblasts cultured within a collagen sponge. Biomaterials 14, 749–754 (1993).

    Article  Google Scholar 

  192. Haraguchi, Y., Okamoto, Y. & Shimizu, T. A circular cell culture system using microalgae and mammalian myoblasts for the production of sustainable cultured meat. Arch. Microbiol. 204, 615 (2022).

    Article  Google Scholar 

  193. Haraguchi, Y. et al. Thicker three-dimensional tissue from a ‘symbiotic recycling system’ combining mammalian cells and algae. Sci. Rep. 7, 41594 (2017).

    Article  Google Scholar 

  194. Yue, Y., Zhang, L., Zhang, X., Li, X. & Yu, H. De novo lipogenesis and desaturation of fatty acids during adipogenesis in bovine adipose-derived mesenchymal stem cells. Vitr. Cell. Dev. Biol. Anim. 54, 23–31 (2018).

    Article  Google Scholar 

  195. Li, C. H. et al. The production of fat-containing cultured meat by stacking aligned muscle layers and adipose layers formed from gelatin-soymilk scaffold. Front. Bioeng. Biotechnol.https://doi.org/10.3389/fbioe.2022.875069 (2022).

    Article  Google Scholar 

  196. Baldwin, J. et al. In vitro pre-vascularisation of tissue-engineered constructs a co-culture perspective. Vasc. Cell 6, 13 (2014).

    Article  Google Scholar 

  197. Vis, M. A. M., Ito, K. & Hofmann, S. Impact of culture medium on cellular interactions in in vitro co-culture systems. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2020.00911 (2020).

    Article  Google Scholar 

  198. Ghezelayagh, Z. et al. Improved differentiation of hESC-derived pancreatic progenitors by using human fetal pancreatic mesenchymal cells in a micro‐scalable three-dimensional co-culture system. Stem Cell Rev. Rep. 18, 360–377 (2022).

    Article  Google Scholar 

  199. Kay Sinclair, S. S. & Burg, K. J. L. Effect of osteoclast co-culture on the differentiation of human mesenchymal stem cells grown on bone graft granules. J. Biomater. Sci. Polym. Ed. 22, 789–808 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge J. Zavin for graphical illustrations and thank Y. Posen for editorial support.

Author information

Authors and Affiliations

Authors

Contributions

S.D., A.T., D.S. and A.M.-S. conducted the literature survey, collated relevant information, and wrote the paper with N.L. and S.L.

Corresponding author

Correspondence to Shulamit Levenberg.

Ethics declarations

Competing interests

The following authors are affiliated with Aleph Farms: S.L. is a chief scientific advisor, N.L. is a chief technology officer and A.M.-S. is a senior director, cell line and media development, R&D. The other authors do not have any conflicts of interest related to this article.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Joshua Flack, Lesley Chow, Paula Camacho Sierra and Masatoshi Suzuki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, S., Tsukerman, A., Safina, D. et al. Co-culture approaches for cultivated meat production. Nat Rev Bioeng 1, 817–831 (2023). https://doi.org/10.1038/s44222-023-00077-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00077-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research