Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioreactors for engineering patient-specific tissue grafts

Abstract

Bioreactors have the potential to advance the clinical application of cell-based therapies. Cell expansion bioreactors have been used commercially for therapeutic applications; however, bioreactor-based engineering of 3D tissue grafts remains challenging owing to the complexity of tissue architectures, cellular heterogeneity and the lack of non-invasive, tissue-specific biomarkers with which to assess graft viability and maturation. Consequently, only a few bioreactor-based start-up companies that engineer patient-specific tissue grafts have emerged. In this Review, we discuss patient-specific bioreactors that can be used to engineer skin, small-diameter arteries and musculoskeletal tissues. We evaluate the impact of precision manufacturing, including 3D bioprinting, automation and non-invasive sensing, on optimizing the biological, chemical and physical parameters of the bioreactors that are required for specific tissue regeneration. We discuss the commercially available tissue-engineering bioreactors and the potential of digital twins and automation, and we outline the scientific and regulatory pathways that must be followed to enable the translation of tissue-specificbioreactors to the clinic.

Key points

  • Tissue-engineering bioreactors have driven major technological innovations in commercialized cell expansion; however, the clinical translation of bioreactor-based cell-based tissue-engineered constructs remains limited.

  • Bioreactors can be designed to engineer autologous cell-based, patient-specific and tissue-specific grafts, including cartilage, tendons, ligament, bone, skin and small-diameter vascular grafts.

  • Several tissue-engineering bioreactors have been commercialized that enable the engineering of large-scale, economically viable and clinically accessible tissues.

  • The biological, chemical and physical parameters of bioreactors need to be optimized to allow automation, non-invasive sensing, 3D bioprinting and computational modelling for patient-specific tissue regeneration.

  • Distinct clinical, biological and regulatory pathways must be followed to allow the clinical translation of bioreactor-based tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioreactors for patient-specific tissue engineered grafts.
Fig. 2: Patient-specific 3D tissue grafts grown in bioreactor systems.
Fig. 3: Computational prediction of tissue growth inside an additively manufactured titanium scaffold cultured in a perfusion bioreactor.

Similar content being viewed by others

References

  1. Vacanti, J. P. & Langer, R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354, S32–S34 (1999).

    Article  Google Scholar 

  2. Hoffman, T., Khademhosseini, A. & Langer, R. Chasing the paradigm: clinical translation of 25 years of tissue engineering. Tissue Eng. A 25, 679–687 (2019).

    Article  Google Scholar 

  3. Kwee, B. J. & Sung, K. E. Engineering microenvironments for manufacturing therapeutic cells. Exp. Biol. Med. 246, 1845–1856 (2021).

    Article  Google Scholar 

  4. Martin, I., Wendt, D. & Heberer, M. The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86 (2004).

    Article  Google Scholar 

  5. Schmid, J. et al. A perfusion bioreactor system for cell seeding and oxygen-controlled cultivation of three-dimensional cell cultures. Tissue Eng. C 24, 585 (2018).

    Article  Google Scholar 

  6. Martin, I., Obradovic, B., Freed, L. E. & Vunjak-Novakovic, G. Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann. Biomed. Eng. 27, 656–662 (1999).

    Article  Google Scholar 

  7. Fassnacht, D. & Pörtner, R. Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. J. Biotechnol. 72, 169–184 (1999).

    Article  Google Scholar 

  8. Ball, O., Nguyen, B. N. B., Placone, J. K. & Fisher, J. P. 3D printed vascular networks enhance viability in high-volume perfusion bioreactor. Ann. Biomed. Eng. 44, 3435–3445 (2016).

    Article  Google Scholar 

  9. Gensler, M. et al. 3D printing of bioreactors in tissue engineering: a generalised approach. PLoS ONE 15, e0242615 (2020).

    Article  Google Scholar 

  10. Qian, X. et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat. Protoc. 13, 565–580 (2018).

    Article  Google Scholar 

  11. Smith, L. J., Li, P., Holland, M. R. & Ekser, B. FABRICA: a bioreactor platform for printing, perfusing, observing, & stimulating 3D tissues. Sci. Rep. 8, 7561 (2018).

    Article  Google Scholar 

  12. Chen, A. M. et al. Oxygenation profiles of human blood, cell culture medium, and water for perfusion of 3D-bioprinted tissues using the FABRICA bioreactor platform. Sci. Rep. 10, 7237 (2020).

    Article  Google Scholar 

  13. Cox, B. L. et al. A novel bioreactor for combined magnetic resonance spectroscopy and optical imaging of metabolism in 3D cell cultures. Magn. Reson. Med. 81, 3379–3391 (2019).

    Article  Google Scholar 

  14. Engel, N. et al. An optimized 3D-printed perfusion bioreactor for homogeneous cell seeding in bone substitute scaffolds for future chairside applications. Sci. Rep. 11, 22228 (2021).

    Article  Google Scholar 

  15. Putame G. et al. Application of 3D printing technology for design and manufacturing of customized components for a mechanical stretching bioreactor. J. Healthc. Eng. 2019, 3957931 (2019).

    Article  Google Scholar 

  16. Grab, M. et al. Customized 3D printed bioreactors for decellularization — high efficiency and quality on a budget. Artif. Organs 45, 1477–1490 (2021).

    Article  Google Scholar 

  17. Daneshgar, A. et al. Teburu — open source 3D printable bioreactor for tissue slices as dynamic three-dimensional cell culture models. Artif. Organs 43, 1035–1041 (2019).

    Article  Google Scholar 

  18. Tatara, A. M. et al. Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proc. Natl Acad. Sci. USA 116, 6954–6963 (2019).

    Article  Google Scholar 

  19. Khan, I. et al. A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging. Biomicrofluidics 15, 024105 (2021).

    Article  Google Scholar 

  20. Linz, G. et al. 3D-printed bioreactor with integrated impedance spectroscopy for cell barrier monitoring. Adv. Mater. Technol. 6, 2100009 (2021).

    Article  Google Scholar 

  21. Matos, R. S., Maselli, D., McVey, J. H., Heiss, C. & Campagnolo, P. 3D printed bioreactor enabling the pulsatile culture of native and angioplastied large arteries. Front. Cardiovasc. Med. 9, 1444 (2022).

    Article  Google Scholar 

  22. Temple, J. P., Yeager, K., Bhumiratana, S., Vunjak-Novakovic, G. & Grayson, W. L. Bioreactor cultivation of anatomically shaped human bone grafts. Methods Mol. Biol. 1202, 57–78 (2014).

    Article  Google Scholar 

  23. Lim, W. L., Liau, L. L., Ng, M. H., Chowdhury, S. R. & Law, J. X. Current progress in tendon and ligament tissue engineering. Tissue Eng. Regen. Med. 16, 549–571 (2019).

    Article  Google Scholar 

  24. Huegel, J. et al. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion. J. Orthop. Res. 35, 1250–1257 (2017).

    Article  Google Scholar 

  25. Wang, W. et al. Comparison of autologous, allogeneic, and cell-free scaffold approaches for engineered tendon repair in a rabbit model — a pilot study. Tissue Eng. A 23, 750–761 (2017).

    Article  Google Scholar 

  26. Chen, J. M., Willers, C., Xu, J., Wang, A. & Zheng, M. H. Autologous tenocyte therapy using porcine-derived bioscaffolds for massive rotator cuff defect in rabbits. Tissue Eng. 13, 1479–1491 (2007).

    Article  Google Scholar 

  27. Cao, Y. et al. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast. Reconstr. Surg. 110, 1280–1289 (2002).

    Google Scholar 

  28. He, Q., Li, Q., Chen, B. & Wang, Z. Repair of flexor tendon defects of rabbit with tissue engineering method. Chin. J. Traumatol. 5, 200–208 (2002).

    Google Scholar 

  29. Dahlgren, L. A. & Ward, D. Effect of adipose-derived nucleated cell fractions on tendon repair in a collagenase-induced tendonitis model. Artic. Am. J. Vet. Res. 69, 928–937 (2008).

    Article  Google Scholar 

  30. Uysal, C. A., Tobita, M., Hyakusoku, H. & Mizuno, H. Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. J. Plast. Reconstr. Aesthet. Surg. 65, 1712–1719 (2012).

    Article  Google Scholar 

  31. Pelinkovic, D. et al. Muscle cell-mediated gene delivery to the rotator cuff. Tissue Eng. 9, 143–151 (2003).

    Article  Google Scholar 

  32. Young, R. G. et al. Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. J. Orthop. Res. 16, 406–413 (1998).

    Article  Google Scholar 

  33. Awad, H. A. et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 5, 267–277 (1999).

    Article  Google Scholar 

  34. Angelidis, I. K. et al. Tissue engineering of flexor tendons: the effect of a tissue bioreactor on adipoderived stem cell-seeded and fibroblast-seeded tendon constructs. J. Hand Surg. Am. 35, 1466–1472 (2010).

    Article  Google Scholar 

  35. Dyment, N. A. et al. A brief history of tendon and ligament bioreactors: impact and future prospects. J. Orthop. Res. 38, 2318–2330 (2020).

    Article  Google Scholar 

  36. Wang, T. et al. Bioreactor design for tendon/ligament engineering. Tissue Eng. B 19, 133–146 (2013).

    Article  Google Scholar 

  37. Youngstrom, D. W., Rajpar, I., Kaplan, D. L. & Barrett, J. G. A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. J. Orthop. Res. 33, 911–918 (2015).

    Article  Google Scholar 

  38. Lohberger, B. et al. Impact of cyclic mechanical stimulation on the expression of extracellular matrix proteins in human primary rotator cuff fibroblasts. Knee Surg. Sports Traumatol. Arthrosc. 24, 3884–3891 (2016).

    Article  Google Scholar 

  39. Gonçalves, A. I., Berdecka, D., Rodrigues, M. T., Reis, R. L. & Gomes, M. E. in Bioreactors for Stem Cell Expansion and Differentiation (eds Cabral, J. M. S. & da Silva, C. L.) 269–300 (CRC, 2018).

  40. Tucker, J. J. et al. Pulsed electromagnetic field therapy improves tendon-to-bone healing in a rat rotator cuff repair model. J. Orthop. Res. 35, 902–909 (2017).

    Article  Google Scholar 

  41. Liu, M. et al. Role of pulsed electromagnetic fields (PEMF) on tenocytes and myoblasts — potential application for treating rotator cuff tears. J. Orthop. Res. 35, 956–964 (2017).

    Article  Google Scholar 

  42. Qin, T. W. et al. Effect of mechanical stimulation on bone marrow stromal cell-seeded tendon slice constructs: a potential engineered tendon patch for rotator cuff repair. Biomaterials 51, 43–50 (2015).

    Article  Google Scholar 

  43. Saber, S. et al. Flexor tendon tissue engineering: bioreactor cyclic strain increases construct strength. Tissue Eng. A 16, 2085–2090 (2010).

    Article  Google Scholar 

  44. Woon, C. Y. L. et al. Three-dimensional-construct bioreactor conditioning in human tendon tissue engineering. Tissue Eng. A 17, 2561–2572 (2011).

    Article  Google Scholar 

  45. Woon, C. Y. L. et al. Optimization of human tendon tissue engineering: peracetic acid oxidation for enhanced reseeding of acellularized intrasynovial tendon. Plast. Reconstr. Surg. 127, 1107–1117 (2011).

    Article  Google Scholar 

  46. Thorfinn, J. et al. Flexor tendon tissue engineering: temporal distribution of donor tenocytes versus recipient cells. Plast. Reconstr. Surg. 124, 2019–2026 (2009).

    Article  Google Scholar 

  47. Lohan, A. et al. Human hamstring tenocytes survive when seeded into a decellularized porcine Achilles tendon extracellular matrix. Connect. Tissue Res. 54, 306–313 (2013).

    Article  Google Scholar 

  48. Talò, G., D’Arrigo, D., Lorenzi, S., Moretti, M. & Lovati, A. B. Independent, controllable stretch-perfusion bioreactor chambers to functionalize cell-seeded decellularized tendons. Ann. Biomed. Eng. 48, 1112–1126 (2020).

    Article  Google Scholar 

  49. Morita, Y., Sato, T., Watanabe, S. & Ju, Y. Evaluation of precise optimal cyclic strain for tenogenic differentiation of MSCs. Conf. Proc. Soc. Exp. Mech. Ser. 6, 149–155 (2017).

    Article  Google Scholar 

  50. Sun, L. et al. Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells Int. 2016, 9842075 (2016).

    Article  Google Scholar 

  51. Zhang, L., Hu, J. & Athanasiou, K. A. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37, 1–57 (2009).

    Article  Google Scholar 

  52. Schulz, R. M. & Bader, A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36, 539–568 (2007).

    Article  Google Scholar 

  53. Hunziker, E. B., Quinn, T. M. & Häuselmann, H. J. Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 10, 564–572 (2002).

    Article  Google Scholar 

  54. Daly, A. C., Sathy, B. N. & Kelly, D. J. Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. J. Tissue Eng. 9, 2041731417753718 (2018).

    Article  Google Scholar 

  55. US Food and Drug Administration. FDA approves first autologous cellularized scaffold for the repair of cartilage defects of the knee. FDA https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm533153.htm (2016).

  56. Stein, S., Strauss, E. & Bosco, J. Advances in the surgical management of articular cartilage defects: autologous chondrocyte implantation techniques in the pipeline. Cartilage 4, 12–19 (2013).

    Article  Google Scholar 

  57. Crawford, D. C., DeBerardino, T. M. & Williams, R. J. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J. Bone Joint Surg. Am. 94, 979–989 (2012).

    Article  Google Scholar 

  58. Fu, L. et al. The application of bioreactors for cartilage tissue engineering: advances, limitations, and future perspectives. Stem Cells Int. 2021, 6621806 (2021).

    Article  Google Scholar 

  59. Nazempour, A., Quisenberry, C. R., Abu-Lail, N. I. & Van Wie, B. J. Combined effects of oscillating hydrostatic pressure, perfusion and encapsulation in a novel bioreactor for enhancing extracellular matrix synthesis by bovine chondrocytes. Cell Tissue Res. 370, 179–193 (2017).

    Article  Google Scholar 

  60. Grad, S., Eglin, D., Alini, M. & Stoddart, M. J. Physical stimulation of chondrogenic cells in vitro: a review. Clin. Orthop. Relat. Res. 469, 2764–2772 (2011).

    Article  Google Scholar 

  61. Gemmiti, C. V. & Guldberg, R. E. Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue. Biotechnol. Bioeng. 104, 809–820 (2009).

    Google Scholar 

  62. Zhang, Z. J., Huckle, J., Francomano, C. A. & Spencer, R. G. S. The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound Med. Biol. 29, 1645–1651 (2003).

    Article  Google Scholar 

  63. Sallent, I. et al. The few who made it: commercially and clinically successful innovative bone grafts. Front. Bioeng. Biotechnol. 8, 952 (2020).

    Article  Google Scholar 

  64. Grayson, W. L. et al. Engineering anatomically shaped human bone grafts. Proc. Natl Acad. Sci. USA 107, 3299–3304 (2010).

    Article  Google Scholar 

  65. Bhumiratana, S. et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci. Transl Med. 8, 343–383 (2016). This article reports single-use perfusion bioreactors for engineering autologous, custom-designed, craniofacial bone grafts with complex geometries in large animals as a proof of principle for first-in-human use.

    Article  Google Scholar 

  66. Devillard, C. D. & Marquette, C. A. Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel. Front. Bioeng. Biotechnol. 9, 913 (2021).

    Article  Google Scholar 

  67. Zhang, W. J., Liu, W., Cui, L. & Cao, Y. Tissue engineering of blood vessel. J. Cell Mol. Med. 11, 945 (2007).

    Article  Google Scholar 

  68. Seifu, D. G., Purnama, A., Mequanint, K. & Mantovani, D. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10, 410–421 (2013).

    Article  Google Scholar 

  69. Elliott, M. B. et al. Off-the-shelf, heparinized small diameter vascular graft limits acute thrombogenicity in a porcine model. Acta Biomater. 151, 134–147 (2022).

    Article  Google Scholar 

  70. Kumar, V. A., Brewster, L. P., Caves, J. M. & Chaikof, E. L. Tissue engineering of blood vessels: functional requirements, progress, and future challenges. Cardiovasc. Eng. Technol. 2, 137 (2011).

    Article  Google Scholar 

  71. Weinberg, C. B. & Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231, 397–400 (1986).

    Article  Google Scholar 

  72. Shin’oka, T., Imai, Y. & Ikada, Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 344, 532–533 (2001).

    Article  Google Scholar 

  73. L’Heureux, N., McAllister, T. N. & de la Fuente, L. M. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357, 1451–1453 (2007).

    Article  Google Scholar 

  74. Konig, G. et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30, 1542–1550 (2009).

    Article  Google Scholar 

  75. L’Heureux, N. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12, 361–365 (2006).

    Article  Google Scholar 

  76. Niklason, L. E. et al. Functional arteries grown in vitro. Science 284, 489–493 (1999). This article reports a pulsatile bioreactor-based tissue-engineering approach to developing autologous arteries, which formed the foundation of FDA-designated human acellular vessels by Humacyte.

    Article  Google Scholar 

  77. Hoerstrup, S. P. et al. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 20, 164–169 (2001).

    Article  Google Scholar 

  78. Aper, T., Schmidt, A., Duchrow, M. & Bruch, H. P. Autologous blood vessels engineered from peripheral blood sample. Eur. J. Vasc. Endovasc. Surg. 33, 33–39 (2007).

    Article  Google Scholar 

  79. Olausson, M. et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 380, 230–237 (2012).

    Article  Google Scholar 

  80. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, 1209–1224 (2007).

    Article  Google Scholar 

  81. Mcfetridge, P. S., Abe, K., Horrocks, M. & Chaudhuri, J. B. Vascular tissue engineering: bioreactor design considerations for extended culture of primary human vascular smooth muscle cells. ASAIO J. 53, 623–630 (2007).

    Article  Google Scholar 

  82. Jafarihaghighi, F., Ardjmand, M., Mirzadeh, A., Hassani, M. S. & Parizi, S. S. Current challenges and future trends in manufacturing small diameter artificial vascular grafts in bioreactors. Cell Tissue Bank 21, 377–403 (2020).

    Article  Google Scholar 

  83. Bit, A., Suri, J. S. & Deskmukh, K. in Flow Dynamics and Tissue Engineering of Blood Vessels (eds Bit, A. & Suri, J. S.) 11–30 (IOP, 2020).

  84. Syedain, Z. H., Meier, L. A., Bjork, J. W., Lee, A. & Tranquillo, R. T. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32, 714–722 (2011).

    Article  Google Scholar 

  85. Dahan, N. et al. Dynamic autologous reendothelialization of small-caliber arterial extracellular matrix: a preclinical large animal study. Tissue Eng. A 23, 69–79 (2017).

    Article  Google Scholar 

  86. Olausson, M. et al. In vivo application of tissue-engineered veins using autologous peripheral whole blood: a proof of concept study. EBioMedicine 1, 72–79 (2014).

    Article  Google Scholar 

  87. Dahl, S. L. M. et al. Readily available tissue-engineered vascular grafts. Sci. Transl Med. 3, 68ra9 (2011).

    Article  Google Scholar 

  88. Kirkton, R. D. et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci. Transl Med. 11, eaau6934 (2019).

    Article  Google Scholar 

  89. Morrison, J. J. et al. Clinical implementation of the Humacyte human acellular vessel: implications for military and civilian trauma care. J. Trauma Acute Care Surg. 87, S44–S47 (2019).

    Article  Google Scholar 

  90. Niklason, L. E. & Lawson, J. H. Bioengineered human blood vessels. Science https://doi.org/10.1126/SCIENCE.AAW8682 (2020).

    Article  Google Scholar 

  91. Yu, J. R. et al. Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv. Healthc. Mater. 8, 1801471 (2019).

    Article  Google Scholar 

  92. Ríos-Galacho, M., Martínez-Moreno, D., López-Ruiz, E., Gálvez-Martín, P. & Marchal, J. A. An overview on the manufacturing of functional and mature cellular skin substitutes. Tissue Eng. B 28, 1035–1052 (2022).

    Article  Google Scholar 

  93. Meuli, M. et al. A cultured autologous dermo-epidermal skin substitute for full-thickness skin defects: a phase I, open, prospective clinical trial in children. Plast. Reconstr. Surg. 144, 188–198 (2019).

    Article  Google Scholar 

  94. Tarassoli, S. P. et al. Skin tissue engineering using 3D bioprinting: an evolving research field. J. Plast. Reconstr. Aesthet. Surg. 71, 615–623 (2018).

    Article  Google Scholar 

  95. Prenosil, J. E. & Kino-Oka, M. Computer controlled bioreactor for large-scale production of cultured skin grafts. Ann. NY Acad. Sci. 875, 386–397 (1999).

    Article  Google Scholar 

  96. Mansbridge, J. Commercial considerations in tissue engineering. J. Anat. 209, 527–532 (2006).

    Article  Google Scholar 

  97. Kemmerrer, S. V. & Bagley, D. K. in Proc. Second Joint 24th Annu. Conf. Annu. Fall Meet. Biomed. Eng. Soc. (eds Clark, J. W. et al.) 879–880 (IEEE, 2002).

  98. Jones, H. R. & Crawford, D. C. An autologous tissue implant, neocart, for treatment of hyaline cartilage injury in the knee. Oper. Tech. Orthop. 24, 264–270 (2014).

    Article  Google Scholar 

  99. Middendorf, J. M. et al. Mechanical properties and structure-function relationships of human chondrocyte-seeded cartilage constructs after in vitro culture. J. Orthop. Res. 35, 2298–2306 (2017).

    Article  Google Scholar 

  100. Helmedag, M. J. et al. The effects of constant flow bioreactor cultivation and keratinocyte seeding densities on prevascularized organotypic skin grafts based on a fibrin scaffold. Tissue Eng. A 21, 343–352 (2015).

    Article  Google Scholar 

  101. Wahlsten, A. et al. Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials 273, 120779 (2021). This article reports a dynamic bioreactor that can generate cyclic mechanical load to accelerate the maturation and reduce production time of patient-specific autologous dermo-epidermal skin grafts.

    Article  Google Scholar 

  102. Ladd, M. R., Lee, S. J., Atala, A. & Yoo, J. J. Bioreactor maintained living skin matrix. Tissue Eng. A 15, 861–868 (2009).

    Article  Google Scholar 

  103. Eibl, R., Kaiser, S., Lombriser, R. & Eibl, D. Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl. Microbiol. Biotechnol. 86, 41–49 (2010).

    Article  Google Scholar 

  104. Wang, X. & Rivière, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolyt. 3, 16015 (2016).

    Article  Google Scholar 

  105. Doulgkeroglou, M. N. et al. Automation, monitoring, and standardization of cell product manufacturing. Front. Bioeng. Biotechnol. 8, 811 (2020).

    Article  Google Scholar 

  106. Lim, D. et al. Bioreactor design and validation for manufacturing strategies in tissue engineering. Biodes. Manuf. 5, 43–63 (2022).

    Article  Google Scholar 

  107. Ravichandran, A., Liu, Y. & Teoh, S. H. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J. Tissue Eng. Regen. Med. 12, e7–e22 (2018).

    Article  Google Scholar 

  108. Destro, F. & Barolo, M. A review on the modernization of pharmaceutical development and manufacturing — trends, perspectives, and the role of mathematical modeling. Int. J. Pharm. 620, 121715 (2022).

    Article  Google Scholar 

  109. Waters, S., Schumacher, L. & El Haj, A. J. Regenerative medicine meets mathematical modelling: developing symbiotic relationships. npj Regen. Med. 6, 24 (2021).

    Article  Google Scholar 

  110. Allenby, M. & Woodruff, M. A. Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials 284, 121514 (2022).

    Article  Google Scholar 

  111. Sego, T. J. et al. Computational fluid dynamic analysis of bioprinted self‐supporting perfused tissue models. Biotechnol. Bioeng. 117, 798–815 (2019).

    Article  Google Scholar 

  112. Schwedhelm, I. et al. Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors. Sci. Rep. 9, 12297 (2019).

    Article  Google Scholar 

  113. Prendergast, M. E. et al. Numerical and experimental simulation of a dynamic-rotational 3D cell culture for stratified living tissue models. Biofabrication 14, 025022 (2022).

    Article  Google Scholar 

  114. Liu, J. et al. Design and computational validation of a novel bioreactor for conditioning vascular tissue to time-varying multidirectional fluid shear stress. Cardiovasc. Eng. Technol. 10, 531–542 (2019).

    Article  Google Scholar 

  115. Xue, R. et al. Osteochondral tissue coculture: an in vitro and in silico approach. Biotechnol. Bioeng. 116, 3112–3123 (2019).

    Article  Google Scholar 

  116. Shakhawath Hossain, M., Bergstrom, D. J. & Chen, X. B. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor. Biotechnol. Bioeng. 112, 2601–2610 (2015).

    Article  Google Scholar 

  117. Guyot, Y., Papantoniou, I., Luyten, F. P. & Geris, L. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold. Biomech. Model. Mechanobiol. 15, 169–180 (2016).

    Article  Google Scholar 

  118. Misener, R. et al. Stem cell biomanufacturing under uncertainty: a case study in optimizing red blood cell production. AIChE J. 64, 3011–3022 (2018).

    Article  Google Scholar 

  119. Van Beylen, K. et al. Lactate-based model predictive control strategy of cell growth for cell therapy applications. Bioengineering 7, 78 (2020).

    Article  Google Scholar 

  120. Graf, A. et al. A novel approach for non-invasive continuous in-line control of perfusion cell cultivations by Raman spectroscopy. Front. Bioeng. Biotechnol. 10, 719614 (2022).

    Article  Google Scholar 

  121. Webb, A. R. et al. In vitro characterization of a compliant biodegradable scaffold with a novel bioreactor system. Ann. Biomed. Eng. 35, 1357–1367 (2007).

    Article  Google Scholar 

  122. Schmidt, C. et al. Rapid three-dimensional quantification of VEGF-induced scaffold neovascularisation by microcomputed tomography. Biomaterials 30, 5959–5968 (2009).

    Article  Google Scholar 

  123. Garcia, J. P. et al. Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs. Acta Biomater. 100, 202–212 (2019).

    Article  Google Scholar 

  124. Stewart, R. et al. Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology 266, 141–150 (2013).

    Article  Google Scholar 

  125. Kerckhofs, G. et al. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials 159, 1–12 (2018).

    Article  Google Scholar 

  126. Thimm, B. W., Hofmann, S., Schneider, P., Carretta, R. & Müller, R. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography. Tissue Eng. C 18, 167–175 (2011).

    Article  Google Scholar 

  127. Papantoniou, I. et al. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng. C 20, 177–187 (2014).

    Article  Google Scholar 

  128. Guyot, Y. et al. A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech. Model. Mechanobiol. 13, 1361–1371 (2014).

    Article  MathSciNet  Google Scholar 

  129. Guyot, Y., Luyten, F. P., Schrooten, J., Papantoniou, I. & Geris, L. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. Biotechnol. Bioeng. 112, 2591–2600 (2015).

    Article  Google Scholar 

  130. Papantoniou, I. et al. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnol. Bioeng. 111, 2560–2570 (2014).

    Article  Google Scholar 

  131. Lambrechts, T., Papantoniou, I., Sonnaert, M., Schrooten, J. & Aerts, J. M. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnol. Bioeng. 111, 1982–1992 (2014).

    Article  Google Scholar 

  132. Sonnaert, M., Papantoniou, I., Luyten, F. P. & Schrooten, J. Quantitative validation of the Presto BlueTM metabolic assay for online monitoring of cell proliferation in a 3D perfusion bioreactor system. Tissue Eng. C Methods 21, 519–529 (2015).

    Article  Google Scholar 

  133. Wu, J., He, Z., Chen, Q. & Lin, J. M. Biochemical analysis on microfluidic chips. Trends Anal. Chem. 80, 213–231 (2016).

    Article  Google Scholar 

  134. Salem, D. P. et al. Characterization of protein aggregation using hydrogel-encapsulated nIR fluorescent nanoparticle sensors. ACS Sens. 5, 327–337 (2020).

    Article  Google Scholar 

  135. Ramshani, Z. et al. A multiplexed immuno-sensor for on-line and automated monitoring of tissue culture protein biomarkers. Talanta 225, 122021 (2021).

    Article  Google Scholar 

  136. Hasan, A. et al. Recent advances in application of biosensors in tissue engineering. Biomed. Res. Int. 2014, 307519 (2014).

    Article  Google Scholar 

  137. Vunjak Novakovic, G., Eschenhagen, T. & Mummery, C. Myocardial tissue engineering: in vitro models. Cold Spring Harb. Perspect. Med. 4, a014076 (2014).

    Article  Google Scholar 

  138. Butler, D. L. et al. Using functional tissue engineering and bioreactors to mechanically stimulate tissue-engineered constructs. Tissue Eng. A 15, 741–749 (2009).

    Article  Google Scholar 

  139. Preiss‐Bloom, O., Mizrahi, J., Elisseeff, J. H. & Seliktar, D. Real‐time monitoring of force response measured in mechanically stimulated tissue‐engineered cartilage. Artif. Organs 33, 318–327 (2009).

    Article  Google Scholar 

  140. Amini, M., Hisdal, J. & Kalvøy, H. Applications of bioimpedance measurement techniques in tissue engineering. J. Electr. Bioimpedance 9, 142–158 (2018).

    Article  Google Scholar 

  141. Dean, D. A., Ramanathan, T., Machado, D. & Sundararajan, R. Electrical impedance spectroscopy study of biological tissues. J. Electrostat. 66, 165–177 (2008).

    Article  Google Scholar 

  142. Canali, C. et al. Bioimpedance monitoring of 3D cell culturing-Complementary electrode configurations for enhanced spatial sensitivity. Biosens. Bioelectron. 63, 72–79 (2015).

    Article  Google Scholar 

  143. Williams, D. J. et al. Precision manufacturing for clinical-quality regenerative medicines. Phil. Trans. R. Soc. A 370, 3924–3949 (2012).

    Article  Google Scholar 

  144. Hackmann, M., Wizemann, T. & Beachy, S. H. (eds) Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop (National Academies, 2019).

  145. US Food and Drug Administration. Regulation of human cells, tissues, and cellular and tissue-based products (HCT/Ps) — small entity compliance guide: guidance for industry (FDA, 2022).

  146. Eiraku, M. & Sasai, Y. Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr. Opin. Neurobiol. 22, 768–777 (2012).

    Article  Google Scholar 

  147. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    Article  Google Scholar 

  148. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Article  Google Scholar 

  149. Kim, E. et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 588, 664–669 (2020).

    Article  Google Scholar 

  150. Nilsson Hall, G. et al. Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Adv. Sci. 7, 1902295 (2020).

    Article  Google Scholar 

  151. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  Google Scholar 

  152. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016). This article reports miniaturized spinning bioreactors for the generation of forebrain-specific organoids from human induced PSCs.

    Article  Google Scholar 

  153. DiStefano, T. et al. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep. 10, 300–313 (2018).

    Article  Google Scholar 

  154. Ovando-Roche, P. et al. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res. Ther. 9, 156 (2018).

    Article  Google Scholar 

  155. Przepiorski, A. et al. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Rep. 11, 470–484 (2018). This article reports a bioreactor-based process for the rapid, efficient and cost-effective production of large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development.

    Article  Google Scholar 

  156. American Society of Mechanical Engineers. Assessing credibility of computational modeling through verification and validation: application to medical devices. ASME https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices (2018).

  157. Musuamba, F. T. et al. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: building model credibility. CPT Pharmacomet. Syst. Pharmacol. 10, 804–825 (2021).

    Article  Google Scholar 

  158. De Bournonville, S. et al. Towards self‐regulated bioprocessing: a compact benchtop bioreactor system for monitored and controlled 3D cell and tissue culture. Biotechnol. J. 14, 1800545 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the NIH National Institute for Dental and Craniofacial Research (grant number 5 R01 DE027957 to W.L.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation and writing of this article.

Corresponding author

Correspondence to Warren L. Grayson.

Ethics declarations

Competing interests

S.B. is the co-founder and Chief Scientific Officer of EpiBone. W.L.G. is a shareholder of EpiBone. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Bruce Bunnell, Umberto Morbiducci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cardiovascular disease caused by coronary artery occlusion: https://www.cdc.gov/heartdisease/facts.htm

Transplant waiting lists: https://www.organdonor.gov/learn/organ-donation-statistics

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, N., Bhumiratana, S., Geris, L. et al. Bioreactors for engineering patient-specific tissue grafts. Nat Rev Bioeng 1, 361–377 (2023). https://doi.org/10.1038/s44222-023-00036-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00036-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research