Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluorescence image-guided tumour surgery

Abstract

Intraoperative fluorescent imaging can provide real-time identification of tumours, lymph nodes, nerves and other healthy and malignant tissues during oncological surgery, contributing to better surgical outcomes. Various fluorescent probes have been clinically approved for surgical applications, improving tumour resection precision and preventing iatrogenic injury. In this Review, we discuss the development and application of fluorescent probes for image-guided surgery, including systemically and locally applied probes that are either non-targeted or targeted to specific tumours and tissues. We discuss the optimization and clinical potential of these probes, and highlight their current and future applications in oncological surgery. In addition, we examine the hardware of fluorescence imaging equipment, and discuss how artificial intelligence can enable real-time quantification to guide surgical decision-making. Finally, we highlight the remaining challenges in the field of image-guided surgery, including the need for standardization to achieve regulatory approval of new probes, and the required team effort for new probe development.

Key points

  • Fluorescence image-guided surgery offers real-time intraoperative visualization of tumours and/or nearby healthy tissues, enabling high-precision tumour resection and prevention of iatrogenic injury.

  • Several fluorescence imaging probes have been clinically approved for oncological surgery, including non-targeted and tumour-targeted probes, and various new probes are being explored at the preclinical stage.

  • Hardware improvements and artificial intelligence software of intraoperative fluorescence imaging systems have improved imaging quality and enable image quantification, optimized ergonomics and straightforward human–machine interaction.

  • The clinical translation of new fluorescent imaging probes will require equipment standardization, interdisciplinary cooperation and technological development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major milestones in fluorescent probe development for oncological surgery.
Fig. 2: Fluorescent imaging probes in image-guided surgery.
Fig. 3: Intraoperative imaging in oncological surgery.
Fig. 4: Intraoperative fluorescence imaging of cancer tissue and nerves.

Similar content being viewed by others

References

  1. Mieog, J. S. D. et al. Fundamentals and developments in fluorescence-guided cancer surgery. Nat. Rev. Clin. Oncol. 19, 9–22 (2022).

    Article  Google Scholar 

  2. Hernot, S., van Manen, L., Debie, P., Mieog, J. S. D. & Vahrmeijer, A. L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 20, e354–e367 (2019).

    Article  Google Scholar 

  3. Wang, X. et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery. Ann. Surg. 274, 97–106 (2021).

    Article  Google Scholar 

  4. Alander, J. T. et al. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 940585 (2012).

    Article  Google Scholar 

  5. Huang, W. et al. Intraoperative fluorescence visualization in thoracoscopic surgery. Ann. Thorac. Surg. https://doi.org/10.1016/j.athoracsur.2022.03.040 (2022).

    Article  Google Scholar 

  6. Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2020). This article reports the first-in-human study of visible, NIR-I and NIR-II multispectral imaging to guide cancer surgery.

    Article  Google Scholar 

  7. Cwalinski, T. et al. Methylene blue — current knowledge, fluorescent properties, and its future use. J. Clin. Med. 9, 3538 (2020).

    Article  Google Scholar 

  8. Zhang, C. et al. Improved generative adversarial networks using the total gradient loss for the resolution enhancement of fluorescence images. Biomed. Opt. Express 10, 4742–4756 (2019). This article demonstrates the potential of AI for intraoperative fluorescence imaging resolution enhancement.

    Article  Google Scholar 

  9. Stammes, M. A. et al. Modalities for image- and molecular-guided cancer surgery. Br. J. Surg. 105, e69–e83 (2018).

    Article  Google Scholar 

  10. Wang, H. et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 8, 1227–1242 (2018).

    Article  Google Scholar 

  11. Crawford, T. et al. pHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Sci. Rep. 10, 18356 (2020).

    Article  Google Scholar 

  12. Nishis, N. et al. Optimal dosing strategy for fluorescence-guided surgery with panitumumab-IRDye800CW in head and neck cancer. Mol. Imaging Biol. 22, 156–164 (2020).

    Article  Google Scholar 

  13. Moore, G. E. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106, 130–131 (1947).

    Article  Google Scholar 

  14. Porcu, E. P. et al. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol. Adv. 34, 768–789 (2016).

    Article  Google Scholar 

  15. Chen, Q. Y. et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial. JAMA Surg. 155, 300–311 (2020).

    Article  Google Scholar 

  16. Dip, F. et al. Randomized trial of near-infrared incisionless fluorescent cholangiography. Ann. Surg. 270, 992–999 (2019).

    Article  Google Scholar 

  17. De Nardi, P. et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg. Endosc. 34, 53–60 (2020).

    Article  Google Scholar 

  18. Jørgensen, M. G., Hermann, A. P., Madsen, A. R., Christensen, S. & Sørensen, J. A. Indocyanine green lymphangiography is superior to clinical staging in breast cancer-related lymphedema. Sci. Rep. 11, 21103 (2021).

    Article  Google Scholar 

  19. Zhang, R. R. et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14, 347–364 (2017).

    Article  Google Scholar 

  20. Ginimuge, P. R. & Jyothi, S. D. Methylene blue: revisited. J. Anaesthesiol. Clin. Pharmacol. 26, 517–520 (2010).

    Article  Google Scholar 

  21. Verbeek, F. P. et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J. Urol. 190, 574–579 (2013).

    Article  Google Scholar 

  22. Hillary, S. L., Guillermet, S., Brown, N. J. & Balasubramanian, S. P. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbecks Arch. Surg. 403, 111–118 (2018).

    Article  Google Scholar 

  23. Handgraaf, H. J. M. et al. Intraoperative near-infrared fluorescence imaging of multiple pancreatic neuroendocrine tumors: a case report. Pancreas 47, 130–133 (2018).

    Article  Google Scholar 

  24. Boughey, J. C. et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. Jama 310, 1455–1461 (2013).

    Article  Google Scholar 

  25. Liu, J. et al. Percutaneous contrast-enhanced ultrasound for localization and diagnosis of sentinel lymph node in early breast cancer. Sci. Rep. 9, 13545 (2019).

    Article  Google Scholar 

  26. Cwalinski, T. et al. Methylene blue-current knowledge, fluorescent properties, and its future use. J. Clin. Med. 9, 3538 (2020).

    Article  Google Scholar 

  27. Héritier Barras, A. C., Walder, B. & Seeck, M. Serotonin syndrome following methylene blue infusion: a rare complication of antidepressant therapy. J. Neurol. Neurosurg. Psychiatry 81, 1412–1413 (2010).

    Article  Google Scholar 

  28. Wang, L. M., Banu, M. A., Canoll, P. & Bruce, J. N. Rationale and clinical implications of fluorescein-guided supramarginal resection in newly diagnosed high-grade glioma. Front. Oncol. 11, 666734 (2021).

    Article  Google Scholar 

  29. Sun, Z. et al. Fluorescein-guided surgery for spinal gliomas: analysis of 220 consecutive cases. Int. Rev. Neurobiol. 151, 139–154 (2020).

    Article  Google Scholar 

  30. Acerbi, F. et al. Fluorescein-guided surgery for malignant gliomas: a review. Neurosurg. Rev. 37, 547–557 (2014).

    Article  Google Scholar 

  31. Hadjipanayis, C. G. & Stummer, W. 5-ALA and FDA approval for glioma surgery. J. Neurooncol. 141, 479–486 (2019).

    Article  Google Scholar 

  32. Mahmoudi, K. et al. 5-Aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J. Neurooncol. 141, 595–607 (2019).

    Article  Google Scholar 

  33. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet. Oncol. 7, 392–401 (2006).

    Article  Google Scholar 

  34. Folli, S. et al. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc. Natl Acad. Sci. USA 89, 7973–7977 (1992).

    Article  Google Scholar 

  35. Harlaar, N. J. et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol. Hepatol. 1, 283–290 (2016).

    Article  Google Scholar 

  36. Rosenthal, E. L. et al. Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin. Cancer Res. 23, 4744–4752 (2017).

    Article  Google Scholar 

  37. Lu, G. et al. Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: a phase 1 single-centre, open-label, single-arm, dose-escalation study. Lancet Gastroenterol. Hepatol. 5, 753–764 (2020).

    Article  Google Scholar 

  38. Boogerd, L. S. F. et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol. Hepatol. 3, 181–191 (2018).

    Article  Google Scholar 

  39. Lauwerends, L. J. et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet. Oncol. 22, e186–e195 (2021).

    Article  Google Scholar 

  40. Miller, S. E. et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800. J. Neurooncol. 139, 135–143 (2018).

    Article  Google Scholar 

  41. Rosenthal, E. L. et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin. Cancer Res. 21, 3658–3666 (2015).

    Article  Google Scholar 

  42. Gao, R. W. et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence. Cancer Res. 78, 5144–5154 (2018).

    Article  Google Scholar 

  43. Warram, J. M. et al. Antibody-based imaging strategies for cancer. Cancer Metastasis Rev. 33, 809–822 (2014).

    Article  Google Scholar 

  44. Goetz, M. et al. In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology 138, 435–446 (2010).

    Article  Google Scholar 

  45. de Valk, K. S. et al. First-in-human assessment of cRGD-ZW800-1, a zwitterionic, integrin-targeted, near-infrared fluorescent peptide in colon carcinoma. Clin. Cancer Res. 26, 3990–3998 (2020).

    Article  Google Scholar 

  46. Fidel, J. et al. Preclinical validation of the utility of BLZ-100 in providing fluorescence contrast for imaging spontaneous solid tumors. Cancer Res. 75, 4283–4291 (2015).

    Article  Google Scholar 

  47. Yamada, M. et al. A first-in-human study of BLZ-100 (tozuleristide) demonstrates tolerability and safety in skin cancer patients. Contemp. Clin. Trials Commun. 23, 100830 (2021).

    Article  Google Scholar 

  48. Barth, C. W. & Gibbs, S. L. Fluorescence image-guided surgery — a perspective on contrast agent development. Proc. SPIE Int. Soc. Opt. Eng. 11222, 112220J (2020).

    Google Scholar 

  49. van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011). This article reports the first-in-human use of intraoperative tumour-specific fluorescence imaging for real-time surgical visualization of cancer.

    Article  Google Scholar 

  50. Hoogstins, C. E. et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin. Cancer Res. 22, 2929–2938 (2016).

    Article  Google Scholar 

  51. Voskuil, F. J. et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat. Commun. 11, 3257 (2020).

    Article  Google Scholar 

  52. Zanoni, D. K. et al. Use of ultrasmall core-shell fluorescent silica nanoparticles for image-guided sentinel lymph node biopsy in head and neck melanoma: a nonrandomized clinical trial. JAMA Netw. Open 4, e211936 (2021).

    Article  Google Scholar 

  53. Hu, Z., Chen, W. H., Tian, J. & Cheng, Z. NIRF nanoprobes for cancer molecular imaging: approaching clinic. Trends Mol. Med. 26, 469–482 (2020).

    Article  Google Scholar 

  54. Zeng, W. et al. Ratiometric Imaging of MMP-2 activity facilitates tumor detection using activatable near-infrared fluorescent semiconducting polymer nanoparticles. Small 17, e2101924 (2021).

    Article  Google Scholar 

  55. Blau, R. et al. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics 8, 3437–3460 (2018).

    Article  Google Scholar 

  56. Kamiya, M. et al. An enzymatically activated fluorescence probe for targeted tumor imaging. J. Am. Chem. Soc. 129, 3918–3929 (2007).

    Article  Google Scholar 

  57. Zhou, F. et al. γ-Glutamyl transpeptidase-activatable near-infrared nanoassembly for tumor fluorescence imaging-guided photothermal therapy. Theranostics 11, 7045–7056 (2021).

    Article  Google Scholar 

  58. Kang, D., Cheung, S. T., Wong-Rolle, A. & Kim, J. Enamine N-oxides: synthesis and application to hypoxia-responsive prodrugs and imaging agents. ACS Cent. Sci. 7, 631–640 (2021).

    Article  Google Scholar 

  59. Chen, X. et al. Synergistic lysosomal activatable polymeric nanoprobe encapsulating pH sensitive imidazole derivative for tumor diagnosis. Small 14, 1703164 (2018).

    Article  Google Scholar 

  60. Steinkamp, P. J. et al. A standardized framework for fluorescence-guided margin assessment for head and neck cancer using a tumor acidosis sensitive optical imaging agent. Mol. Imaging Biol. 23, 809–817 (2021).

    Article  Google Scholar 

  61. Guo, R. et al. GSH activated biotin-tagged near-infrared probe for efficient cancer imaging. Theranostics 9, 3515–3525 (2019).

    Article  Google Scholar 

  62. Unkart, J. T. et al. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study. Ann. Surg. Oncol. 24, 3167–3173 (2017).

    Article  Google Scholar 

  63. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 8, 320ra324 (2016).

    Article  Google Scholar 

  64. Yim, J. J., Tholen, M., Klaassen, A., Sorger, J. & Bogyo, M. Optimization of a protease activated probe for optical surgical navigation. Mol. Pharm. 15, 750–758 (2018).

    Article  Google Scholar 

  65. Zhu, S., Tian, R., Antaris, A. L., Chen, X. & Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, e1900321 (2019).

    Article  Google Scholar 

  66. O’Connor, J. P. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 14, 169–186 (2017).

    Article  Google Scholar 

  67. van Leeuwen, F. W. B. et al. Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance. J. Nucl. Med. 61, 13–19 (2020).

    Article  Google Scholar 

  68. Manca, G. et al. Novel experience in hybrid tracers: clinical evaluation of feasibility and efficacy in using ICG-99mTc nanotop for sentinel node procedure in breast cancer patients. Clin. Nucl. Med. 46, e181–e187 (2021).

    Article  Google Scholar 

  69. Verbeek, F. P. et al. Sentinel lymph node biopsy in vulvar cancer using combined radioactive and fluorescence guidance. Int. J. Gynecol. Cancer. 25, 1086–1093 (2015).

    Article  Google Scholar 

  70. Christensen, A. et al. Feasibility of real-time near-infrared fluorescence tracer imaging in sentinel node biopsy for oral cavity cancer patients. Ann. Surg. Oncol. 23, 565–572 (2016).

    Article  Google Scholar 

  71. Hekman, M. C. et al. Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: a first in man study. Theranostics 8, 2161–2170 (2018). This article reports monoclonal antibodies co-labelled with radionuclides and NIR dyes for clinical intraoperative cancer imaging with a high contrast ratio, enabling precise delineation of tumour margins.

    Article  Google Scholar 

  72. Li, D. et al. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using (68)Ga-IRDye800CW-BBN. Theranostics 8, 2508–2520 (2018).

    Article  Google Scholar 

  73. Derks, Y. H. W. et al. PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery. Theranostics 9, 6824–6839 (2019).

    Article  Google Scholar 

  74. Demétrio de Souza França, P. et al. A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer. Eur. J. Nucl. Med. Mol. Imaging 48, 3618–3630 (2021).

    Article  Google Scholar 

  75. Kossatz, S. et al. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nat. Biomed. Eng. 4, 272–285 (2020). This article demonstrates topically applied targeted probes for clinical cancer surgery.

    Article  Google Scholar 

  76. de Souza França, P. D. et al. PARP1: a potential molecular marker to identify cancer during colposcopy procedures. J. Nucl. Med. 62, 941–948 (2021).

    Article  Google Scholar 

  77. Chen, J. et al. Multiplexed endoscopic imaging of Barrett’s neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study. Gut 70, 1010–1013 (2021). This article reports multiple molecular targets for imaging in patients.

    Article  Google Scholar 

  78. Pan, Y. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl. Med. 6, 260ra148 (2014).

    Article  Google Scholar 

  79. Buckle, T. et al. Translation of c-Met targeted image-guided surgery solutions in oral cavity cancer — initial proof of concept data. Cancers 13, 2674 (2021).

    Article  Google Scholar 

  80. Onoyama, H. et al. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Sci. Rep. 6, 26399 (2016).

    Article  Google Scholar 

  81. Mizushima, T. et al. Rapid detection of superficial head and neck squamous cell carcinoma by topically spraying fluorescent probe targeting dipeptidyl peptidase-IV. Head Neck 40, 1466–1475 (2018).

    Article  Google Scholar 

  82. Walker, E. et al. Rapid visualization of nonmelanoma skin cancer. J. Am. Acad. Dermatol. 76, 209–216.e9 (2017).

    Article  Google Scholar 

  83. Walker, E. et al. A protease-activated fluorescent probe allows rapid visualization of keratinocyte carcinoma during excision. Cancer Res. 80, 2045–2055 (2020).

    Article  Google Scholar 

  84. Sensarn, S. et al. A clinical wide-field fluorescence endoscopic device for molecular imaging demonstrating cathepsin protease activity in colon cancer. Mol. Imaging Biol. 18, 820–829 (2016).

    Article  Google Scholar 

  85. Mitsunaga, M. et al. Fluorescence endoscopic detection of murine colitis-associated colon cancer by topically applied enzymatically rapid-activatable probe. Gut 62, 1179–1186 (2013).

    Article  Google Scholar 

  86. Yang, R. Q. et al. Surgical navigation for malignancies guided by near-infrared-ii fluorescence imaging. Small Meth. 5, e2001066 (2021).

    Article  Google Scholar 

  87. Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    Article  Google Scholar 

  88. Cosco, E. D. et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angew. Chem. 56, 13126–13129 (2017).

    Article  Google Scholar 

  89. Bandi, V. G. et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Meth. 19, 353–358 (2022).

    Article  Google Scholar 

  90. Widen, J. C. et al. AND-gate contrast agents for enhanced fluorescence-guided surgery. Nat. Biomed. Eng. 5, 264–277 (2021). This article reports an ‘AND-Gate’ protease probe that relies on multivariate activation, enabling intraoperative cancer detection, precise treatment and real-time monitoring.

    Article  Google Scholar 

  91. Zheng, X. et al. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng. 1, 0057 (2017).

    Article  Google Scholar 

  92. Cornelissen, B. et al. Translational molecular imaging in exocrine pancreatic cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 2442–2455 (2018).

    Article  Google Scholar 

  93. Hadjipanayis, C. G., Widhalm, G. & Stummer, W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 77, 663–673 (2015).

    Article  Google Scholar 

  94. Pogue, B. W. et al. Fluorescence-guided surgery and intervention — an AAPM emerging technology blue paper. Med. Phys. 45, 2681–2688 (2018).

    Article  Google Scholar 

  95. Billings, C., Langley, M., Warrington, G., Mashali, F. & Johnson, J. A. Magnetic particle imaging: current and future applications, magnetic nanoparticle synthesis methods and safety measures. Int. J. Mol. Sci. 22, 7651 (2021).

    Article  Google Scholar 

  96. Song, G. et al. Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 18, 182–189 (2018).

    Article  Google Scholar 

  97. Wang, G. et al. Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. Eur. J. Nucl. Med. Mol. Imaging 49, 2723–2734 (2022). This article describes the combination of fluorescence molecular imaging and MPI for the precise and quantitative identification of metastatic lymph nodes without penetration depth limitation.

    Article  Google Scholar 

  98. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).

    Article  Google Scholar 

  99. Yang, J. et al. Gold/α-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nat. Biomed. Eng. 4, 686–703 (2020).

    Article  Google Scholar 

  100. Shen, D. et al. Selective imaging of solid tumours via the calcium-dependent high-affinity binding of a cyclic octapeptide to phosphorylated Annexin A2. Nat. Biomed. Eng. 4, 298–313 (2020).

    Article  Google Scholar 

  101. Ayo, A. & Laakkonen, P. Peptide-based strategies for targeted tumor treatment and imaging. Pharmaceutics 13, 481 (2021).

    Article  Google Scholar 

  102. Zhang, Z. et al. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur. J. Nucl. Med. Mol. Imaging 49, 2531–2543 (2022).

    Article  Google Scholar 

  103. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  Google Scholar 

  104. Singhal, S. The future of surgical oncology: image-guided cancer surgery. JAMA Surg. 151, 184–185 (2016).

    Article  Google Scholar 

  105. Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).

    Article  Google Scholar 

  106. Wang, K. et al. Optical molecular imaging frontiers in oncology: the pursuit of accuracy and sensitivity. Engineering 1, 308–323 (2015).

    Article  Google Scholar 

  107. KleinJan, G. H. et al. Toward (hybrid) navigation of a fluorescence camera in an open surgery setting. J. Nucl. Med. 57, 1650–1653 (2016).

    Article  Google Scholar 

  108. van Oosterom, M. N. et al. Extending the hybrid surgical guidance concept with freehand fluorescence tomography. IEEE Trans. Med. Imaging 39, 226–235 (2020).

    Article  Google Scholar 

  109. Kitai, T., Inomoto, T., Miwa, M. & Shikayama, T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12, 211–215 (2005).

    Article  Google Scholar 

  110. van den Berg, N. S. et al. (Near-infrared) Fluorescence-guided surgery under ambient light conditions: a next step to embedment of the technology in clinical routine. Ann. Surg. Oncol. 23, 2586–2595 (2016).

    Article  Google Scholar 

  111. Elliott, J. T. et al. Review of fluorescence guided surgery visualization and overlay techniques. Biomed. Opt. Express 6, 3765–3782 (2015).

    Article  Google Scholar 

  112. Glatz, J. et al. Concurrent video-rate color and near-infrared fluorescence laparoscopy. J. Biomed. Opt. 18, 101302 (2013).

    Article  Google Scholar 

  113. Fengler, J. Near-infrared fluorescence laparoscopy — technical description of PINPOINT® a novel and commercially available system. Colorectal Dis. 17, 3–6 (2015).

    Article  Google Scholar 

  114. Troyan, S. L. et al. The FLARE™ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16, 2943–2952 (2009).

    Article  Google Scholar 

  115. Ottermo, M. V. et al. The role of tactile feedback in laparoscopic surgery. Surg. Laparosc. Endosc. Percutan. Tech. 16, 390–400 (2006).

    Article  Google Scholar 

  116. Keating, J. et al. Near-infrared intraoperative molecular imaging can locate metastases to the lung. Ann. Thorac. Surg. 103, 390–398 (2017).

    Article  Google Scholar 

  117. Graves, C. E. & Duh, Q.-Y. Fluorescent technologies for intraoperative parathyroid identification. Ann. Thyroid. 5, 26 (2020).

    Article  Google Scholar 

  118. Behrooz, A. et al. Multispectral open-air intraoperative fluorescence imaging. Opt. Lett. 42, 2964–2967 (2017).

    Article  Google Scholar 

  119. He, K. et al. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals. Transl. Res. 178, 74–80 (2016).

    Article  Google Scholar 

  120. Doenst, T., Diab, M., Sponholz, C., Bauer, M. & Färber, G. The opportunities and limitations of minimally invasive cardiac surgery. Dtsch. Arztebl Int. 114, 777–784 (2017).

    Google Scholar 

  121. DSouza, A., Lin, H., Henderson, E., Samkoe, K. & Pogue, B. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J. Biomed. Opt. 21, 080901 (2016).

    Article  Google Scholar 

  122. Mao, Y. et al. Development and application of the near-infrared and white-light thoracoscope system for minimally invasive lung cancer surgery. J. Biomed. Opt. 22, 066002 (2017).

    Article  Google Scholar 

  123. Daskalaki, D., Aguilera, F., Patton, K. & Giulianotti, P. C. Fluorescence in robotic surgery. J. Surg. Oncol. 112, 250–256 (2015).

    Article  Google Scholar 

  124. Tjalma, J. J. J. et al. Quantitative fluorescence endoscopy: an innovative endoscopy approach to evaluate neoadjuvant treatment response in locally advanced rectal cancer. Gut 69, 406–410 (2020).

    Article  Google Scholar 

  125. Achterberg, F. B. et al. Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery. Eur. J. Nucl. Med. Mol. Imaging 48, 332–339 (2021).

    Article  Google Scholar 

  126. Koga, H. et al. Comparison of 2K and 4K imaging systems for laparoscopic repair of choledochal cyst in children. J. Pediatr. Surg. 57, 235–238 (2022).

    Article  Google Scholar 

  127. Liu, Y. et al. First in-human intraoperative imaging of HCC using the fluorescence goggle system and transarterial delivery of near-infrared fluorescent imaging agent: a pilot study. Transl. Res. 162, 324–331 (2013).

    Article  Google Scholar 

  128. Shao, P. et al. Designing a wearable navigation system for image-guided cancer resection surgery. Ann. Biomed. Eng. 42, 2228–2237 (2014).

    Article  Google Scholar 

  129. Tonetti, J., Boudissa, M., Kerschbaumer, G. & Seurat, O. Role of 3D intraoperative imaging in orthopedic and trauma surgery. Orthop. Traumatol. Surg. Res. 106, S19–S25 (2020).

    Article  Google Scholar 

  130. Quang, T. T., Chen, W. F., Papay, F. A. & Liu, Y. Dynamic, real-time, fiducial-free surgical navigation with integrated multimodal optical imaging. IEEE Photonics J. 13, 1–13 (2021).

    Article  Google Scholar 

  131. Azargoshasb, S. et al. Advancing intraoperative magnetic tracing using 3D freehand magnetic particle imaging. Int. J. Comput. Assist. Radiol. Surg. 17, 211–218 (2022).

    Article  Google Scholar 

  132. Mason, E. E. et al. Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. Sci. Rep. 11, 13456 (2021).

    Article  Google Scholar 

  133. de Jongh, S. J. et al. Back-table fluorescence-guided imaging for circumferential resection margin evaluation using bevacizumab-800CW in patients with locally advanced rectal cancer. J. Nucl. Med. 61, 655–661 (2020).

    Article  Google Scholar 

  134. Zhang, P. et al. Real-time navigation for laparoscopic hepatectomy using image fusion of preoperative 3D surgical plan and intraoperative indocyanine green fluorescence imaging. Surg. Endosc. 34, 3449–3459 (2020).

    Article  Google Scholar 

  135. Zhang, C., Wang, K. & Tian, J. Adaptive brightness fusion method for intraoperative near-infrared fluorescence and visible images. Biomed. Opt. Express 13, 1243–1260 (2022).

    Article  Google Scholar 

  136. Quang, T., Zhou, M., Papay, F. & Liu, Y. in 2018 IEEE Int. Symp. Signal Processing and Information Technology (ISSPIT) 1–6 (2018).

  137. Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep learning for in vivo near-infrared imaging. Proc. Natl Acad. Sci. USA 118, e2021446118 (2021).

    Article  Google Scholar 

  138. Koch, M. et al. Video-rate optical flow corrected intraoperative functional fluorescence imaging. J. Biomed. Opt. 19, 046012 (2014).

    Article  Google Scholar 

  139. Feruglio, P. F. et al. Noise suppressed, multifocus image fusion for enhanced intraoperative navigation. J. Biophotonics 6, 363–370 (2013).

    Article  Google Scholar 

  140. Madani, A. et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann. Surg. 276, 363–369 (2022).

    Article  Google Scholar 

  141. Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8, 337ra364 (2016).

    Article  Google Scholar 

  142. Cahill, R. A. et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br. J. Surg. 108, 5–9 (2020).

    Article  Google Scholar 

  143. Shen, B. et al. Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks. Eur. J. Nucl. Med. Mol. Imaging 48, 3482–3492 (2021).

    Article  Google Scholar 

  144. Ishizawa, T. et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115, 2491–2504 (2009).

    Article  Google Scholar 

  145. He, K. S. et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial. J. Am. Coll. Surg. 234, 130–137 (2022).

    Article  Google Scholar 

  146. Garrido, A. & Djouder, N. Cirrhosis: a questioned risk factor for hepatocellular carcinoma. Trends Cancer 7, 29–36 (2021).

    Article  Google Scholar 

  147. Kanwal, F. & Singal, A. G. Surveillance for hepatocellular carcinoma: current best practice and future direction. Gastroenterology 157, 54–64 (2019).

    Article  Google Scholar 

  148. Marino, M. V., Podda, M., Fernandez, C. C., Ruiz, M. G. & Fleitas, M. G. The application of indocyanine green-fluorescence imaging during robotic-assisted liver resection for malignant tumors: a single-arm feasibility cohort study. HPB 22, 422–431 (2020).

    Article  Google Scholar 

  149. Yu, W. Q., Liu, R., Zhou, Y. & Gao, H. L. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 6, 100–116 (2020).

    Article  Google Scholar 

  150. Tang, C., Du, Y., Liang, Q., Cheng, Z. & Tian, J. Development of a novel histone deacetylase-targeted near-infrared probe for hepatocellular carcinoma imaging and fluorescence image-guided surgery. Mol. Imaging Biol. 22, 476–485 (2020).

    Article  Google Scholar 

  151. Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).

    Article  Google Scholar 

  152. Zhang, H., Yang, T., Wu, M. C. & Shen, F. Intrahepatic cholangiocarcinoma: epidemiology, risk factors, diagnosis and surgical management. Cancer Lett. 379, 198–205 (2016).

    Article  Google Scholar 

  153. Zhang, Y. et al. Clinical application of indocyanine green fluorescence imaging in laparoscopic lymph node dissection for intrahepatic cholangiocarcinoma: a pilot study (with video). Surgery 171, 1589–1595 (2022).

    Article  Google Scholar 

  154. Tummers, W. S. et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann. Surg. Oncol. 25, 1880–1888 (2018).

    Article  Google Scholar 

  155. Tummers, W. S. et al. Detection of visually occult metastatic lymph nodes using molecularly targeted fluorescent imaging during surgical resection of pancreatic cancer. HPB 21, 883–890 (2019).

    Article  Google Scholar 

  156. Hoogstins, C. E. S. et al. Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann. Surg. Oncol. 25, 3350–3357 (2018).

    Article  Google Scholar 

  157. Zhou, J., Yang, F., Jiang, G. C. & Wang, J. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J. Thorac. Dis. 8, S738–S743 (2016).

    Article  Google Scholar 

  158. Newton, A. D., Predina, J. D., Nie, S. M., Low, P. S. & Singhal, S. Intraoperative fluorescence imaging in thoracic surgery. J. Surg. Oncol. 118, 344–355 (2018).

    Article  Google Scholar 

  159. Matsuura, Y., Ichinose, J., Nakao, M., Okumura, S. & Mun, M. Recent fluorescence imaging technology applications of indocyanine green in general thoracic surgery. Surg. Today 50, 1332–1342 (2020).

    Article  Google Scholar 

  160. Kim, H. K. et al. Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging. Eur. J. Cardiothorac. Surg. 49, 1497–1502 (2016).

    Article  Google Scholar 

  161. Okusanya, O. T. et al. Intraoperative near-infrared imaging can identify pulmonary nodules. Ann. Thorac. Surg. 98, 1223–1230 (2014).

    Article  Google Scholar 

  162. Mao, Y. M. et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. Eur. J. Cardiothorac. Surg. 52, 1190–1196 (2017).

    Article  Google Scholar 

  163. Li, H. et al. Clinical application of near-infrared thoracoscope with indocyanine green in video-assisted thoracoscopic bullectomy. J. Thorac. Dis. 8, 1841–1845 (2016).

    Article  Google Scholar 

  164. Li, H., Zhou, J., Yang, F. & Wang, J. Identifying interlobar fissure in a Craig grade 4 fissureless patient by near-infrared thoracoscopy. J. Thorac. Dis. 10, E52–E54 (2018).

    Article  Google Scholar 

  165. Quan, Y. H. et al. Evaluation of intraoperative near-infrared fluorescence visualization of the lung tumor margin with indocyanine green inhalation. JAMA Surg. 155, 732–740 (2020).

    Article  Google Scholar 

  166. Predina, J. D., Newton, A., Connolly, C. & Singhal, S. Folate receptor-targeted molecular imaging improves identification of malignancy during pulmonary resection: a case report. J. Cardiothorac. Surg. 12, 110 (2017).

    Article  Google Scholar 

  167. Predina, J. D. et al. Intraoperative molecular imaging combined with positron emission tomography improves surgical management of peripheral malignant pulmonary nodules. Ann. Surg. 266, 479–488 (2017).

    Article  Google Scholar 

  168. Gangadharan, S. et al. Multiinstitutional phase 2 clinical trial of intraoperative molecular imaging of lung cancer. Ann. Thorac. Surg. 112, 1150–1159 (2021).

    Article  Google Scholar 

  169. Wang, X. J. et al. Near-infrared fluorescence imaging-guided lymphatic mapping in thoracic esophageal cancer surgery. Surg. Endosc. 36, 3994–4003 (2022).

    Article  Google Scholar 

  170. Huang, Z.-N. et al. Assessment of indocyanine green tracer-guided lymphadenectomy in laparoscopic gastrectomy after neoadjuvant chemotherapy for locally advanced gastric cancer: results from a multicenter analysis based on propensity matching. Gastric Cancer 24, 1355–1364 (2021).

    Article  Google Scholar 

  171. Zhong, Q. et al. Clinical implications of indocyanine green fluorescence imaging-guided laparoscopic lymphadenectomy for patients with gastric cancer: a cohort study from two randomized, controlled trials using individual patient data. Int. J. Surg. 94, 106120 (2021).

    Article  Google Scholar 

  172. Burggraaf, J. et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 21, 955–961 (2015).

    Article  Google Scholar 

  173. Schaap, D. P. et al. Carcinoembryonic antigen-specific, fluorescent image-guided cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Br. J. Surg. 107, 334–337 (2020).

    Article  Google Scholar 

  174. Nishigori, N. et al. Visualization of lymph/blood flow in laparoscopic colorectal cancer surgery by ICG fluorescence imaging (Lap-IGFI). Ann. Surg. Oncol. 23, 266–274 (2016).

    Article  Google Scholar 

  175. Satoyoshi, T. et al. Timing of indocyanine green injection prior to laparoscopic colorectal surgery for tumor localization: a prospective case series. Surg. Endosc. 35, 763–769 (2021).

    Article  Google Scholar 

  176. Blair, S. et al. Hexachromatic bioinspired camera for image-guided cancer surgery. Sci. Transl. Med. 13, eaaw7067 (2021).

    Article  Google Scholar 

  177. Zhang, C. et al. Methylene blue-based near-infrared fluorescence imaging for breast cancer visualization in resected human tissues. Technol. Cancer Res. Treat. 18, 1533033819894331 (2019).

    Article  Google Scholar 

  178. Lamberts, L. E. et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin. Cancer Res. 23, 2730–2741 (2017).

    Article  Google Scholar 

  179. Frumovitz, M. et al. Near-infrared fluorescence for detection of sentinel lymph nodes in women with cervical and uterine cancers (FILM): a randomised, phase 3, multicentre, non-inferiority trial. Lancet Oncol. 19, 1394–1403 (2018).

    Article  Google Scholar 

  180. Randall, L. M., Wenham, R. M., Low, P. S., Dowdy, S. C. & Tanyi, J. L. A phase II, multicenter, open-label trial of OTL38 injection for the intra-operative imaging of folate receptor-α positive ovarian cancer. Gynecol. Oncol. 155, 63–68 (2019).

    Article  Google Scholar 

  181. Chan, D. T. M., Sonia, H. Y. P. & Poon, W. S. 5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience. Asian J. Surg. 41, 467–472 (2018).

    Article  Google Scholar 

  182. Shi, X. et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of patients. IEEE Trans. Biomed. Eng. 69, 1889–1900 (2022).

    Article  Google Scholar 

  183. Nishio, N. et al. Optical molecular imaging can differentiate metastatic from benign lymph nodes in head and neck cancer. Nat. Commun. 10, 5044 (2019).

    Article  Google Scholar 

  184. van Keulen, S. et al. The sentinel margin: intraoperative ex vivo specimen mapping using relative fluorescence intensity. Clin. Cancer Res. 25, 4656–4662 (2019).

    Article  Google Scholar 

  185. Cao, C. et al. Intraoperative near-infrared II window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses. Clin. Transl. Med. 11, e604 (2021).

    Article  Google Scholar 

  186. Shang, W. et al. A clinical study of a CD44v6-targeted fluorescent agent for the detection of non-muscle invasive bladder cancer. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-022-05701-3 (2022).

    Article  Google Scholar 

  187. Walsh, E. M. et al. Fluorescence imaging of nerves during surgery. Ann. Surg. 270, 69–76 (2019). This article summarizes the value of imaging nerves during cancer operation.

    Article  Google Scholar 

  188. Wang, L. G. et al. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci. Transl. Med. 12, eaay0712 (2020).

    Article  Google Scholar 

  189. He, K. S. et al. Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics 8, 304–313 (2018).

    Article  Google Scholar 

  190. He, K. et al. Intraoperative near-infrared fluorescence imaging can identify pelvic nerves in patients with cervical cancer in real time during radical hysterectomy. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-022-05686-z (2022).

    Article  Google Scholar 

  191. Pei, G. et al. The safety and feasibility of intraoperative near-infrared fluorescence imaging with indocyanine green in thoracoscopic sympathectomy for primary palmar hyperhidrosis. Thorac. Cancer 11, 943–949 (2020).

    Article  Google Scholar 

  192. Wang, P. A. et al. Detection of the common bile duct in difficult bile duct exploration using indocyanine green fluorescence imaging: a case report. Photodiagnosis Photodyn. Ther. 36, 102610 (2021).

    Article  Google Scholar 

  193. Yang, F. et al. Near-infrared fluorescence-guided thoracoscopic surgical intervention for postoperative chylothorax. Interact. Cardiovasc. Thorac. Surg. 26, 171–175 (2018).

    Article  Google Scholar 

  194. Morales-Conde, S. et al. Fluorescence angiography with indocyanine green (ICG) to evaluate anastomosis in colorectal surgery: where does it have more value? Surg. Endosc. 34, 3897–3907 (2020).

    Article  Google Scholar 

  195. Ye, Z. P., Yang, X. Y., Li, W. S., Hou, B. & Guo, Y. Microsurgical resection of cervical spinal cord arteriovenous malformations: report of 6 cases. World Neurosurg. 96, 362–369 (2016).

    Article  Google Scholar 

  196. Maheshwari, A. & Finger, P. T. Cancers of the eye. Cancer Metastasis Rev. 37, 677–690 (2018).

    Article  Google Scholar 

  197. Koch, M., Symvoulidis, P. & Ntziachristos, V. Tackling standardization in fluorescence molecular imaging. Nat. Photonics 12, 505–515 (2018). This article reports high-fidelity fluorescence imaging, and approaches to standardization in intraoperative fluorescence imaging.

    Article  Google Scholar 

  198. Linssen, M. D. et al. Roadmap for the development and clinical translation of optical tracers cetuximab-800CW and trastuzumab-800CW. J. Nucl. Med. 60, 418–423 (2019).

    Article  Google Scholar 

  199. Souto, E. B. et al. Nanopharmaceutics: part I — clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics 12, 146 (2020).

    Article  Google Scholar 

  200. Chapman, S. et al. Nanoparticles for cancer imaging: the good, the bad, and the promise. Nano Today 8, 454–460 (2013).

    Article  Google Scholar 

  201. Pogue, B. W. & Rosenthal, E. L. Review of successful pathways for regulatory approvals in open-field fluorescence-guided surgery. J. Biomed. Opt. 26, 030901 (2021).

    Article  Google Scholar 

  202. Tummers, W. S. et al. Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res. 77, 2197–2206 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Wang, X. Zhang and K. M. von Deneen for their advisory help with this article. The authors received support from the Ministry of Science and Technology of China under Grant No. 2017YFA0205200, the National Natural Science Foundation of China under Grant Nos 62027901, 92159305, 81930053, 81227901 and 82272029, the Beijing Science Fund under Grant No. JQ22013 and the Excellent Member Project of Youth Innovation Promotion Association CAS under Grant No. 2016124.

Author information

Authors and Affiliations

Authors

Contributions

J.T. contributed to the conception of the Review. All authors contributed to the literature research, and to the writing and editing of this manuscript.

Corresponding author

Correspondence to Jie Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Jan Grimm, Ben Mclarne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Good manufacturing practices: https://www.iso.org/standard/36437.html

Investigational new drug application recommendations: https://www.fda.gov/drugs/types-applications/investigational-new-drug-ind-application

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Du, Y., Zhang, Z. et al. Fluorescence image-guided tumour surgery. Nat Rev Bioeng 1, 161–179 (2023). https://doi.org/10.1038/s44222-022-00017-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-022-00017-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer