Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic morphology with agential materials

Abstract

Bioengineering can address many important needs, from transformative biomedicine to environmental remediation. In addition to practical applications, the construction of new living systems will increase our understanding of biology and will nurture emerging intersections between biological and computational sciences. In this Review, we discuss the transition from cell-level synthetic biology to multicellular synthetic morphology. We highlight experimental embryology studies, including organoids and xenobots, that go beyond the familiar, default outcomes of embryogenesis, revealing the plasticity, interoperability and problem-solving capacities of life. In addition to traditional bottom-up engineering of genes and proteins, design strategies can be pursued based on modelling cell collectives as agential materials, with their own goals, agendas and powers of problem-solving. Such an agential bioengineering approach could transform developmental biology, regenerative medicine and robotics, building on frameworks that include active, computational and agential matter.

Key points

  • Synthetic bioengineering allows the construction of new arrangements of living material.

  • Synthetic morphology aims at creating an ‘anatomical compiler’ that writes DNA instructions based on a specific design goal.

  • Bottom-up bioengineering approaches are limited by knowledge gaps in developmental biology, thus relying on the micromanagement of passive materials.

  • Cells and tissues are effectively manipulated as agential materials, by targeting their pattern memory and homeostatic capabilities.

  • Extending bottom-up approaches by adding empirically and computationally characterized agential materials (cells and tissues) will greatly improve the rational creation and repair of complex morphologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Competencies of cellular collective intelligence.
Fig. 2: An example of synthetic morphogenesis.
Fig. 3: Optimal engineering strategies depend on the agency level of the material.
Fig. 4: Agential bioengineering.
Fig. 5: Bioelectric interface for organ-level control.
Fig. 6: Xenobot platform for cracking the morphogenetic code.

Similar content being viewed by others

References

  1. Davies, J. A. Synthetic morphology: prospects for engineered, self-constructing anatomies. J. Anat. 212, 707–719 (2008).

    Article  Google Scholar 

  2. Kamm, R. D. et al. Perspective: the promise of multi-cellular engineered living systems. APL Bioeng. 2, 040901 (2018).

    Article  Google Scholar 

  3. Fields, C. & Levin, M. Competency in navigating arbitrary spaces as an invariant for analyzing cognition in diverse embodiments. Entropy https://doi.org/10.3390/e24060819 (2022).

    Article  Google Scholar 

  4. Cunha, G. R. & Baskin, L. Mesenchymal–epithelial interaction techniques. Differentiation 91, 20–27 (2016).

    Article  Google Scholar 

  5. Vainio, S., Lin, Y. & Pihlajaniemi, T. Induced repatterning of type XVIII collagen associates with ectopic Sonic hedgehog and lung surfactant C gene expression and changes in epithelial epigenesis in the ureteric bud. J. Am. Soc. Nephrol. 14, S3–S8 (2003).

    Article  Google Scholar 

  6. Lemus, D. Contributions of heterospecific tissue recombinations to odontogenesis. Int. J. Dev. Biol. 39, 291–297 (1995).

    Google Scholar 

  7. Bessho, Y. et al. Planarian mitochondria sequence heterogeneity: relationships between the type of cytochrome c oxidase subunit I gene sequence, karyotype and genital organ. Mol. Ecol. 6, 129–136 (1997).

    Article  Google Scholar 

  8. Martinez Arias, A., Nichols, J. & Schroter, C. A molecular basis for developmental plasticity in early mammalian embryos. Development 140, 3499–3510 (2013).

    Article  Google Scholar 

  9. Schmid, T. & Hajnal, A. Signal transduction during C. elegans vulval development: a NeverEnding story. Curr. Opin. Genet Dev. 32, 1–9 (2015).

    Article  Google Scholar 

  10. Vandenberg, L. N., Adams, D. S. & Levin, M. Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology. Dev. Dyn. 241, 863–878 (2012).

    Article  Google Scholar 

  11. Blackiston, D. J. & Levin, M. Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. J. Exp. Biol. 216, 1031–1040 (2013).

    Article  Google Scholar 

  12. Fankhauser, G. Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape. J. Exp. Zool. 100, 445–455 (1945).

    Article  Google Scholar 

  13. Fankhauser, G. The effects of changes in chromosome number on amphibian development. Q. Rev. Biol. 20, 20–78 (1945).

    Article  Google Scholar 

  14. Pezzulo, G. & Levin, M. Top-down models in biology: explanation and control of complex living systems above the molecular level. J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0555 (2016).

    Article  Google Scholar 

  15. Nanos, V. & Levin, M. Multi-scale chimerism: an experimental window on the algorithms of anatomical control. Cell Dev. 169, 203764 (2022).

    Article  Google Scholar 

  16. Emmons-Bell, M. et al. Regenerative adaptation to electrochemical perturbation in planaria: a molecular analysis of physiological plasticity. iScience 22, 147–165 (2019).

    Article  Google Scholar 

  17. Levin, M. The biophysics of regenerative repair suggests new perspectives on biological causation. Bioessays 42, e1900146 (2020).

    Article  Google Scholar 

  18. Harris, A. K. The need for a concept of shape homeostasis. Biosystems 173, 65–72 (2018).

    Article  Google Scholar 

  19. Levin, M. Collective intelligence of morphogenesis as a teleonomic process. Preprint at https://doi.org/10.31234/osf.io/hqc9b (2022).

  20. Clawson, W. P. & Levin, M. Endless forms most beautiful 2.0: teleonomy and the bioengineering of chimaeric and synthetic organisms. Biol. J. Linn. Soc. https://doi.org/10.1093/biolinnean/blac073 (2022).

    Article  Google Scholar 

  21. Cachat, E., Liu, W., Hohenstein, P. & Davies, J. A. A library of mammalian effector modules for synthetic morphology. J. Biol. Eng. 8, 26 (2014).

    Article  Google Scholar 

  22. Martínez-Ara, G. et al. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nat. Commun. 13, 5400 (2022).

    Article  Google Scholar 

  23. Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell–cell signaling. Science 361, 156–162 (2018).

    Article  Google Scholar 

  24. Cachat, E. et al. 2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation. Sci. Rep. 6, 20664 (2016).

    Article  Google Scholar 

  25. Sekine, R., Shibata, T. & Ebisuya, M. Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty. Nat. Commun. 9, 5456 (2018).

    Article  Google Scholar 

  26. Cao, Y. et al. Collective space-sensing coordinates pattern scaling in engineered bacteria. Cell 165, 620–630 (2016).

    Article  Google Scholar 

  27. Cachat, E., Liu, W. & Davies, J. A. Synthetic self‐patterning and morphogenesis in mammalian cells: a proof‐of‐concept step towards synthetic tissue development. Eng. Biol. 1, 71–76 (2017).

    Article  Google Scholar 

  28. Chvykov, P. et al. Low rattling: a predictive principle for self-organization in active collectives. Science 371, 90–95 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  29. McGivern, P. Active materials: minimal models of cognition? Adapt. Behav. 28, 441–451 (2019).

    Article  Google Scholar 

  30. Watson, R. A., Buckley, C. L., Mills, R. & Davies, A. Associative memory in gene regulation networks. in Artificial Life Conference XII, 194–201 (2022).

  31. Pezzulo, G. & Levin, M. Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integr. Biol. 7, 1487–1517 (2015).

    Article  Google Scholar 

  32. Baluska, F. & Levin, M. On having no head: cognition throughout biological systems. Front. Psychol. 7, 902 (2016).

    Article  Google Scholar 

  33. Saigusa, T., Tero, A., Nakagaki, T. & Kuramoto, Y. Amoebae anticipate periodic events. Phys. Rev. Lett. 100, 018101 (2008).

    Article  Google Scholar 

  34. Berry, M. J. 2nd, Brivanlou, I. H., Jordan, T. A. & Meister, M. Anticipation of moving stimuli by the retina. Nature 398, 334–338 (1999).

    Article  Google Scholar 

  35. Katz, Y. Embodying probabilistic inference in biochemical circuits. Preprint at https://arxiv.org/abs/1806.10161 (2018).

  36. El Azhar, Y. & Sonnen, K. F. Development in a dish — in vitro models of mammalian embryonic development. Front. Cell Dev. Biol. 9, 655993 (2021).

    Article  Google Scholar 

  37. Wilson, H. V. Development of sponges from dissociated tissue cells. Bull. US Bur. Fish. 1910, 1–10 (1910).

    Google Scholar 

  38. Unbekandt, M. & Davies, J. A. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 77, 407–416 (2010).

    Article  Google Scholar 

  39. Gilmour, D., Rembold, M. & Leptin, M. From morphogen to morphogenesis and back. Nature 541, 311–320 (2017).

    Article  Google Scholar 

  40. Mills, C. G. et al. Asymmetric BMP4 signalling improves the realism of kidney organoids. Sci. Rep. 7, 14824 (2017).

    Article  Google Scholar 

  41. Spemann, H. & Mangold, H. Induction of embryonic primordia by implantation of organizers from a different species. Arch. Mikrosk. Anat. Enwicklmech. 100, 599–638 (1924).

    Google Scholar 

  42. Glykofrydis, F., Cachat, E., Berzanskyte, I., Dzierzak, E. & Davies, J. A. Bioengineering self-organizing signaling centers to control embryoid body pattern elaboration. ACS Synth. Biol. 10, 1465–1480 (2021).

    Article  Google Scholar 

  43. ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    Article  Google Scholar 

  44. Levin, M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184, 1971–1989 (2021).

    Article  Google Scholar 

  45. Harris, M. P. Bioelectric signaling as a unique regulator of development and regeneration. Development https://doi.org/10.1242/dev.180794 (2021).

    Article  Google Scholar 

  46. Kralj, J. M., Hochbaum, D. R., Douglass, A. D. & Cohen, A. E. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333, 345–348 (2011).

    Article  Google Scholar 

  47. Yang, C. Y. et al. Encoding membrane-potential-based memory within a microbial community. Cell Syst. 10, 417–423 (2020).

    Article  Google Scholar 

  48. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (2015).

    Article  Google Scholar 

  49. Fields, C., Bischof, J. & Levin, M. Morphological coordination: a common ancestral function unifying neural and non-neural signaling. Physiology 35, 16–30 (2020).

    Article  Google Scholar 

  50. Levin, M. & Martyniuk, C. J. The bioelectric code: an ancient computational medium for dynamic control of growth and form. Biosystems 164, 76–93 (2018).

    Article  Google Scholar 

  51. Sundelacruz, S., Levin, M. & Kaplan, D. L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 5, 231–246 (2009).

    Article  Google Scholar 

  52. Levin, M., Pezzulo, G. & Finkelstein, J. M. Endogenous bioelectric signaling networks: exploiting voltage gradients for control of growth and form. Annu. Rev. Biomed. Eng. 19, 353–387 (2017).

    Article  Google Scholar 

  53. Vandenberg, L. N., Morrie, R. D. & Adams, D. S. V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev. Dyn. 240, 1889–1904 (2011).

    Article  Google Scholar 

  54. Adams, D. S. et al. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen–Tawil syndrome. J. Physiol. 594, 3245–3270 (2016).

    Article  Google Scholar 

  55. Beane, W. S., Morokuma, J., Adams, D. S. & Levin, M. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem. Biol. 18, 77–89 (2011).

    Article  Google Scholar 

  56. Williams, K. B. et al. Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mech. Dev. 163, 103614 (2020).

    Article  Google Scholar 

  57. Pai, V. P. et al. HCN2 rescues brain defects by enforcing endogenous voltage pre-patterns. Nat. Commun. 9, 998 (2018).

    Article  Google Scholar 

  58. Tseng, A. S., Beane, W. S., Lemire, J. M., Masi, A. & Levin, M. Induction of vertebrate regeneration by a transient sodium current. J. Neurosci. 30, 13192–13200 (2010).

    Article  Google Scholar 

  59. Pai, V. P., Aw, S., Shomrat, T., Lemire, J. M. & Levin, M. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139, 313–323 (2012).

    Article  Google Scholar 

  60. Blackiston, D. J., Vien, K. & Levin, M. Serotonergic stimulation induces nerve growth and promotes visual learning via posterior eye grafts in a vertebrate model of induced sensory plasticity. NPJ Regen. Med. 2, 8 (2017).

    Article  Google Scholar 

  61. Tseng, A. & Levin, M. Cracking the bioelectric code: probing endogenous ionic controls of pattern formation. Commun. Integr. Biol. 6, e22595 (2013).

    Article  Google Scholar 

  62. Beane, W. S., Morokuma, J., Lemire, J. M. & Levin, M. Bioelectric signaling regulates head and organ size during planarian regeneration. Development 140, 313–322 (2013).

    Article  Google Scholar 

  63. Oviedo, N. J. et al. Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev. Biol. 339, 188–199 (2010).

    Article  Google Scholar 

  64. Durant, F. et al. The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity. Biophys. J. 116, 948–961 (2019).

    Article  Google Scholar 

  65. Pezzulo, G., LaPalme, J., Durant, F. & Levin, M. Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Phil. Trans. R. Soc. Lond. B 376, 20190765 (2021).

    Article  Google Scholar 

  66. Durant, F. et al. Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys. J. 112, 2231–2243 (2017).

    Article  Google Scholar 

  67. Mustard, J. & Levin, M. Bioelectrical mechanisms for programming growth and form: taming physiological networks for soft body robotics. Soft Robot. 1, 169–191 (2014).

    Article  Google Scholar 

  68. Adams, D. S. & Levin, M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res. 352, 95–122 (2013).

    Article  Google Scholar 

  69. Sundelacruz, S., Levin, M. & Kaplan, D. L. Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells. Tissue Eng. Part A 19, 1889–1908 (2013).

    Article  Google Scholar 

  70. Wolf, A. E., Heinrich, M. A., Breinyn, I. B., Zajdel, T. J. & Cohen, D. J. Short-term bioelectric stimulation of collective cell migration in tissues reprograms long-term supracellular dynamics. PNAS Nexus 1, pgac002 (2022).

    Article  Google Scholar 

  71. Levin, M. The computational boundary of a ‘Self’: developmental bioelectricity drives multicellularity and scale-free cognition. Front. Psychol. 10, 2688 (2019).

    Article  Google Scholar 

  72. Chernet, B. T., Adams, D. S., Lobikin, M. & Levin, M. Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 7, 19575–19588 (2016).

    Article  Google Scholar 

  73. Chernet, B. T. & Levin, M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis. Model. Mech. 6, 595–607 (2013).

    Google Scholar 

  74. Pai, V. P. et al. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation. J. Neurosci. 35, 4366–4385 (2015).

    Article  Google Scholar 

  75. Kriegman, S., Blackiston, D., Levin, M. & Bongard, J. A scalable pipeline for designing reconfigurable organisms. Proc. Natl Acad. Sci. USA 117, 1853–1859 (2020).

    Article  Google Scholar 

  76. Park, S. J. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016).

    Article  Google Scholar 

  77. Aydin, O. et al. Neuromuscular actuation of biohybrid motile bots. Proc. Natl Acad. Sci. USA 116, 19841–19847 (2019).

    Article  Google Scholar 

  78. Blackiston, D. et al. A cellular platform for the development of synthetic living machines. Sci. Robot. 6, eabf1571 (2021).

    Article  Google Scholar 

  79. Pesavento, U. An implementation of von Neumann’s self-reproducing machine. Artif. Life 2, 337–354 (1995).

    Article  Google Scholar 

  80. Jones, R. D. et al. Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles. Nat. Commun. 13, 1720 (2022).

    Article  Google Scholar 

  81. Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25, 795–801 (2007).

    Article  Google Scholar 

  82. Macia, J. et al. Implementation of complex biological logic circuits using spatially distributed multicellular consortia. PLoS Comput. Biol. 12, e1004685 (2016).

    Article  Google Scholar 

  83. Steventon, B., Busby, L. & Arias, A. M. Establishment of the vertebrate body plan: rethinking gastrulation through stem cell models of early embryogenesis. Dev. Cell 56, 2405–2418 (2021).

    Article  Google Scholar 

  84. Kauffman, S. A. The Origins of Order: Self Organization and Selection in Evolution (Oxford Univ. Press, 1993).

  85. Arias Del Angel, J. A., Nanjundiah, V., Benitez, M. & Newman, S. A. Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. Evodevo 11, 21 (2020).

    Article  Google Scholar 

  86. Newman, S. A. Inherency of form and function in animal development and evolution. Front. Physiol. 10, 702 (2019).

    Article  Google Scholar 

  87. Newman, S. A. & Comper, W. D. ‘Generic’ physical mechanisms of morphogenesis and pattern formation. Development 110, 1–18 (1990).

    Article  Google Scholar 

  88. Beloussov, L. V. Mechanically based generative laws of morphogenesis. Phys. Biol. 5, 015009 (2008).

    Article  Google Scholar 

  89. Wagner, A. & Rosen, W. Spaces of the possible: universal Darwinism and the wall between technological and biological innovation. J. R. Soc. Interface 11, 20131190 (2014).

    Article  Google Scholar 

  90. Turner, J. S. The Tinkerer’s Accomplice: How Design Emerges from Life Itself (Harvard Univ. Press, 2010).

  91. Rosenblueth, A., Wiener, N. & Bigelow, J. Behavior, purpose, and teleology. Philos. Sci. 10, 18–24 (1943).

    Article  Google Scholar 

  92. Levin, M. Technological approach to mind everywhere: an experimentally-grounded framework for understanding diverse bodies and minds. Front. Syst. Neurosci. 16, 768201 (2022).

    Article  Google Scholar 

  93. Kriegman, S. et al. in 2020 3rd IEEE International Conference on Soft Robotics, 359–366 (RoboSoft, 2020).

  94. Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).

    Article  Google Scholar 

  95. Cheney, N., Bongard, J. C. & Lipson, H. Evolving soft robots in tight spaces. GECCO'15 Proc. Annu. Conf. Genet. Evol. Comput. https://doi.org/10.1145/2739480.2754662 (2015).

    Article  Google Scholar 

  96. Cheney, N., Clune, J. & Lipson, H. Evolved electrophysiological soft robots. ALIFE 14, 222–229 (2014).

    Article  Google Scholar 

  97. Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).

    Article  Google Scholar 

  98. Davies, J. A. Mechanisms of Morphogenesis (Academic, 2013).

  99. Stone, J. R. The spirit of D’Arcy Thompson dwells in empirical morphospace. Math. Biosci. 142, 13–30 (1997).

    Article  MATH  Google Scholar 

  100. Avena-Koenigsberger, A., Goni, J., Sole, R. & Sporns, O. Network morphospace. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0881 (2015).

    Article  Google Scholar 

  101. Cervera, J., Levin, M. & Mafe, S. Morphology changes induced by intercellular gap junction blocking: a reaction–diffusion mechanism. Biosystems 209, 104511 (2021).

    Article  Google Scholar 

  102. Emmons-Bell, M. et al. Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type Girardia dorotocephala flatworms. Int. J. Mol. Sci. 16, 27865–27896 (2015).

    Article  Google Scholar 

  103. Churchill, C. D. M., Winter, P., Tuszynski, J. A. & Levin, M. EDEn — electroceutical design environment: an ion channel database with small molecule modulators and tissue expression information. iScience 11, 42–56 (2018).

    Article  Google Scholar 

  104. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (Garland, 1994).

  105. Kriegman, S., Blackiston, D., Levin, M. & Bongard, J. Kinematic self-replication in reconfigurable organisms. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2112672118 (2021).

    Article  Google Scholar 

  106. Lyon, P. The biogenic approach to cognition. Cogn. Process. 7, 11–29 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Poirier for assistance with manuscript preparation. M.L. acknowledges support via grant 62212 from the John Templeton Foundation and grant TWCF0606 of the Templeton World Charity Foundation. J.D. acknowledges support via the European Commission (grant CyGenTig), the Biotechnology and Biological Sciences Research Council (grant BB/M018040/1) and the Medical Research Council (grant MR/R026483/1). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the funders.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this paper.

Corresponding author

Correspondence to Michael Levin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Leonardo Morsut and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, J., Levin, M. Synthetic morphology with agential materials. Nat Rev Bioeng 1, 46–59 (2023). https://doi.org/10.1038/s44222-022-00001-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-022-00001-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing