Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zinc–iodine redox reaction enables direct brine valorization with efficient high-water-recovery desalination

Abstract

Current desalination methods, with high energy/cost demands and large volumes of brine discharged to the environment, are not sustainable. Here we propose a sustainable electrodialysis that enables direct brine valorization with efficient high-water-recovery desalination via zinc–iodine redox reactions. In a single process comprising electrodialysis and two chemical reactions in brine streams, we achieve seawater desalination with a remarkable water recovery of 90.09% without compromising other metrics (salt-removal ratio <98.29%, electric energy consumption of <2.18 kWh m−3). Such performance advantage is attributable to (1) high solubility of zinc–iodine-based ‘water-in-salt’ electrolytes mitigating the osmotic pressure, achieving high water recovery even for high concentration feed water (98–82% for 0.1–1.5 M) with minimal energy burdens, (2) zinc–iodine redox potential lowering electric energy demand and (3) electroconvection in the overlimiting regime enhancing desalination speed. Also, profitable ZnCl2/NaI are electrosynthesized in brine, enabling direct valorization of desalination brines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The concept of the zinc–iodine redox ED.
Fig. 2: Current–voltage responses and in situ dynamics of the zinc–iodine redox ED.
Fig. 3: Desalination metrics in current regimes.
Fig. 4: Desalination metrics in feed concentration and water recovery.
Fig. 5: Energy consumption of the lab-scale zinc–iodine redox ED.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Urban, J. J. Emerging scientific and engineering opportunities within the water–energy nexus. Joule 1, 665–688 (2017).

    Article  Google Scholar 

  2. Park, S. & Kwak, R. Microscale electrodeionization: in situ concentration profiling and flow visualization. Water Res. 170, 115310 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, J., Kim, S. & Kwak, R. Controlling ion transport with pattern structures on ion exchange membranes in electrodialysis. Desalination 499, 114801 (2021).

    Article  CAS  Google Scholar 

  4. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Mauter, M. S. & Fiske, P. S. Desalination for a circular water economy. Energy Environ. Sci. 13, 3180–3184 (2020).

    Article  CAS  Google Scholar 

  6. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S.-M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Darre, N. C. & Toor, G. S. Desalination of water: a review. Curr. Pollut. Rep. 4, 104–111 (2018).

    Article  CAS  Google Scholar 

  8. Xu, N. et al. Synergistic tandem solar electricity–water generators. Joule 4, 347–358 (2020).

    Article  Google Scholar 

  9. Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    Article  CAS  Google Scholar 

  10. Wang, J. et al. Continuous desalination with a metal-free redox-mediator. J. Mater. Chem. A 7, 13941–13947 (2019).

    Article  CAS  Google Scholar 

  11. Desai, D. et al. Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS Energy Lett. 3, 375–379 (2018).

    Article  CAS  Google Scholar 

  12. Suss, M. E. & Presser, V. Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018).

    Article  Google Scholar 

  13. Abu Khalla, S. & Suss, M. E. Desalination via chemical energy: an electrodialysis cell driven by spontaneous electrode reactions. Desalination 467, 257–262 (2019).

    Article  CAS  Google Scholar 

  14. Srimuk, P., Wang, L., Budak, Ö. & Presser, V. High-performance ion removal via zinc–air desalination. Electrochem. Commun. 115, 106713 (2020).

    Article  CAS  Google Scholar 

  15. Bhat, Z. M. et al. An electrochemical neutralization cell for spontaneous water desalination. Joule 4, 1730–1742 (2020).

    Article  CAS  Google Scholar 

  16. Zhang, Y., Wang, L. & Presser, V. Electrocatalytic fuel cell desalination for continuous energy and freshwater generation. Cell Rep. Phys. Sci. 2, 100416 (2021).

    Article  CAS  Google Scholar 

  17. Mavukkandy, M. O., Chabib, C. M., Mustafa, I., Al Ghaferi, A. & AlMarzooqi, F. Brine management in desalination industry: from waste to resources generation. Desalination 472, 114187 (2019).

    Article  CAS  Google Scholar 

  18. Panagopoulos, A., Haralambous, K.-J. & Loizidou, M. Desalination brine disposal methods and treatment technologies—a review. Sci. Total Environ. 693, 133545 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X., Zhao, W., Zhang, Y. & Jegatheesan, V. A review of resource recovery from seawater desalination brine. Rev. Environ. Sci. Bio/Technol. 20, 333–361 (2021).

    Article  CAS  Google Scholar 

  20. Charisiadis, C. Brine Zero Liquid Discharge (ZLD) Fundamentals and Design (Lenntech, 2018).

  21. Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Probstein, R. F. Physicochemical Hydrodynamics: An Introduction (John Wiley & Sons, 2005).

  23. Nikonenko, V. V. et al. Desalination at overlimiting currents: state-of-the-art and perspectives. Desalination 342, 85–106 (2014).

    Article  CAS  Google Scholar 

  24. Kang, S. & Kwak, R. Pattern formation of three-dimensional electroconvection on a charge selective surface. Phys. Rev. Lett. 124, 154502 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kwak, R., Lim, K. M. & Han, J. Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for electroconvective vortices. Phys. Rev. Lett. 110, 114501 (2013).

    Article  PubMed  Google Scholar 

  26. Kwak, R. & Han, J. Sheltering the perturbed vortical layer of electroconvection under shear flow. J. Fluid Mech. 813, 799–823 (2017).

    Article  CAS  Google Scholar 

  27. Dai, J. et al. Dual-zinc electrode electrochemical desalination. ChemSusChem 13, 2792–2798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong, X. et al. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2, e1501038 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. da Silva, D. A. et al. Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies. Mater. Adv. 3, 611–623 (2022).

    Article  Google Scholar 

  30. Luo, Y., Jiang, W., Yu, H., MacKerell, A. D. & Roux, B. Simulation study of ion pairing in concentrated aqueous salt solutions with a polarizable force field. Faraday Discuss. 160, 135–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo, Y. & Roux, B. Simulation of osmotic pressure in concentrated aqueous salt solutions.J. Phys. Chem. Lett. 1, 183–189 (2010).

    Article  CAS  Google Scholar 

  32. Nayar, K. G., Fernandes, J., McGovern, R. K., Al-Anzi, B. S. & Lienhard, J. H. Cost and energy needs of RO-ED-crystallizer systems for zero brine discharge seawater desalination. Desalination 457, 115–132 (2019).

    Article  CAS  Google Scholar 

  33. Kwak, R., Guan, G., Peng, W. K. & Han, J. Microscale electrodialysis: concentration profiling and vortex visualization. Desalination 308, 138–146 (2013).

    Article  CAS  Google Scholar 

  34. Larchet, C., Dammak, L., Auclair, B., Parchikov, S. & Nikonenko, V. A simplified procedure for ion-exchange membrane characterisation. New J. Chem. 28, 1260–1267 (2004).

    Article  CAS  Google Scholar 

  35. Zhao, R., Biesheuvel, P. & Van der Wal, A. Energy consumption and constant current operation in membrane capacitive deionization. Energy Environ. Sci. 5, 9520–9527 (2012).

    Article  CAS  Google Scholar 

  36. Vermaas, D. A., Saakes, M. & Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distance. Environ. Sci. Technol. 45, 7089–7095 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Chehayeb, K. M. & Lienhard, J. H. On the electrical operation of batch electrodialysis for reduced energy consumption. Environ. Sci. Water Res. Tech. 5, 1172–1182 (2019).

    Article  CAS  Google Scholar 

  38. Al-Karaghouli, A., Kazmerski, L. L. J. R. & Reviews, S. E. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013).

    Article  CAS  Google Scholar 

  39. Ahdab, Y. D., Schücking, G., Rehman, D. & Lienhard, J. H. Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses. Appl. Energy 301, 117425 (2021).

    Article  CAS  Google Scholar 

  40. Wetterau, G. Desalination of Seawater: M61 Vol. 61 (American Water Works Association, 2011).

  41. McGovern, R. K., Weiner, A. M., Sun, L., Chambers, C. G. & Zubair, S. M. On the cost of electrodialysis for the desalination of high salinity feeds. Appl. Energy 136, 649–661 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Research Funding and Incubation Center of Samsung Electronics (SRFC-MA1901-08), Individual Basic Science and Engineering Research Program from the National Research Foundation of Korea (NRF-2022R1A2C4001521) and National R&D Program from the National Research Foundation of Korea (NRF-2021K1A4A7A02102628).

Author information

Authors and Affiliations

Authors

Contributions

J.L., M.K. and R.K. conceived and designed the experiment. J.L. and M.K. performed the experiment. R.K. directed the project. All authors analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Rhokyun Kwak.

Ethics declarations

Competing interests

All authors declare the following competing financial interest(s): patents related to this work have been filed (application number 10-2020-0166881 (Korea) and application number 17/111,145 (United States)).

Peer review

Peer review information

Nature Water thanks John Lienhard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–7, Figs. 1–9, Tables 1–3 and references.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Kim, M. & Kwak, R. Zinc–iodine redox reaction enables direct brine valorization with efficient high-water-recovery desalination. Nat Water 2, 475–484 (2024). https://doi.org/10.1038/s44221-024-00238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00238-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing